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ABSTRACT: The initiator full configuration interaction quantum Monte Carlo (i-FCIQMC) method has recently been
developed as a highly accurate stochastic electronic structure technique. It has been shown to calculate the exact basis-set ground
state energy of small molecules, to within modest stochastic error bars, using tractable computational cost. Here, we use this
technique to elucidate an often troublesome series of first-row diatomics consisting of Be2, C2, CN, CO, N2, NO, O2, and F2.
Using i-FCIQMC, the dissociation energies of these molecules are obtained almost entirely to within chemical accuracy of
experimental results. Furthermore, the i-FCIQMC calculations are performed in a relatively black-box manner, without any a
priori knowledge or specification of the wave function. The size consistency of i-FCIQMC is also demonstrated with regards to
these diatomics at their more multiconfigurational stretched geometries. The clear and simple i-FCIQMC wave functions
obtained for these systems are then compared and investigated to demonstrate the dynamic identification of the dominant
determinants contributing to significant static correlation. The appearance and nature of such determinants is shown to provide
insight into both the i-FCIQMC algorithm and the diatomics themselves.

■ INTRODUCTION
Despite their simple appearance, diatomics constructed from
first row atoms are notoriously difficult to describe from first
principles, due to their varied and sometimes complex
electronic structures. As such, they are an excellent testing
ground for new electronic structure methods.1−5 In this paper
we investigate a series of such diatomic molecules, at both
equilibrium and stretched geometries, which present contrast-
ing challenges with regard to dominating correlation effects.6

The method applied is a new stochastic method we have
developed called full configuration interaction quantum Monte
Carlo7 (FCIQMC), together with its vastly more efficient
initiator extension8 (i-FCIQMC). These techniques can yield,
with tractable computational cost, the full CI energy of
molecular Hamiltonians for systems that are too large for
conventional FCI methods. Being stochastic methods, these
techniques incur random errors, which can be shown to be
controllable and modest in magnitude, such that these methods
rival in accuracy the most accurate quantum chemical
techniques available, while being “black-box” and applicable
across a broad range of systems. As such, the (i-)FCIQMC
methods have considerable promise. In previous studies, we
have applied these techniques to the calculation of ionization
potentials,9 electron affinities,10 and binding curves of C2,
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using Dunning correlation consistent basis sets12 up to aug-cc-
pVQZ. These energies can be extrapolated to the complete
basis set limit with standard techniques.13 FCIQMC has also
been applied to the homogeneous electron gas,14 as a first
application to condensed matter systems. In this study, we
continue our investigations and applications of this new
methodology by considering the complex systems which the
first row dimers present.
It hardly needs stating that ab initio quantum chemistry is

fundamentally concerned with the solutions to the electronic
Schrödinger equation, which it seeks to approximate using
basis-set expansions together with many-body approximations.

Regarding the latter, a vast body of methods exist, including CI
methods,15−30 coupled cluster (CC) methods,31−41 multi-
reference CC,42−50 multireference CI and perturbation
theory,51−59 density matrix renormalization group,60−65 varia-
tional density matrix methods,66,67 and CEEIS methods.68−72

This list is by no means complete. The ultimate goal of these
techniques is to approximate the full CI energy, namely the
exact energy of the Schrödinger equation within the given basis
set. Coupled with basis set extrapolation methods,5,13,73−79 or
more sophisticated R12/F12 methods80−93 to remove basis set
errors, the full CI energy should approximate the true ground
state energy of the Schrödinger equation.
The main goal of this vast and growing body of work has

been to reach “chemical accuracy”,94 which depending on the
system, has necessitated the different approaches. For example,
systems dominated by strong correlation require factorial-
scaling multireference methodologies which “single-reference”
systems do not. And yet, accuracy should not be the only aim of
a theory or method. Robustness and a “black box” approach are
also important. The demonstration of convergence onto
experiment in the absence of any adjustable parameters is
highly desirable, the success of model chemistries notwith-
standing.95−99 But above all, a method should be simple enough
to enable insight to be extracted from the answers. The problem
is that “high accuracy” often equates with “high-level theories”,
the interpretation of which, however, are not simple. The
attempt to square this circle, to develop a powerful yet simple
method, underlies the theoretical motivation for the i-FCIQMC
method applied in this study. By demonstrating that
i-FCIQMC indeed does satisfy both accuracy and simplicity,
we hope to encourage further development and use of this
method in larger and more complex systems yet to be studied.
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The subset of diatomics investigated here is made up of the
homonuclear species Be2, C2, N2, O2 and F2, as well as the
heteronuclear molecules, CN, CO, and NO. These systems
encompass a diverse set of electron correlation effects (such
“strong correlation”, “dynamical correlation”, and chemically
significant core−valence correlation) that arise in strong
multiple bonds (C2, N2, CN, NO), in long bonds (F2), in
stretched bonds, in extremely weak bonds (Be2), and in open-
shell systems (O2, NO). Such effects are known to present
challenges for ab initio electronic structure methods. In
particular, the dissociation energy (De) of these diatomics is
often the most difficult spectroscopic property to converge.
This is because an accurate description of each dissociation
across the series requires a computational method that can
provide a balanced and consistent representation of the varying
characteristics, as well as the dissociated atoms. Furthermore,
the method must be efficient enough to allow each system to be
considered in a basis set of substantial size.
As previously mentioned, FCI provides the exact solution

within a given basis set, and thus represents the level of
accuracy which quantum chemical methods aim to achieve.94

Unfortunately, FCI itself is very computationally demanding
and is therefore unable to treat most of the systems considered
here. While truncated CI methods, and more generally
subspace diagonalization methods, exist to reduce the
computational cost of such calculations, these often suffer
from size consistency errors and the computational cost may
still scale unfavorably with the size of the system.
A crucial distinction between subspace diagonalizations and

the present i-FCIQMC methods7,8 is that in the latter the entire
Slater determinant space is available to be sampled during a
simulation, each determinant being sampled by a probability
proportional to the absolute value of its FCI coefficient in the
ground-state wave function. This has some desirable
implications: on the one hand, one does not need to store
vectors of length equal to the FCI space, which is the primary
bottleneck as far as conventional FCI calculations are
concerned. What is stored, instead, is a dynamical list of
“walkers”, the number of which is found to be much much
smaller that the size of the underlying Hilbert space. On the
other hand, expectation values such as energies are computed by
post-equilibration averaging over iterations of imaginary time.
These expectation values approach their exact value, even
though typically only a tiny fraction of the full Hilbert space of
the problem would have been sampled during the simulation.
Clearly, this is a highly attractive feature of the method, and one
purpose of the present paper is to demonstrate this at work. We
do so in several ways: for small systems, for which an FCI wave
function can be stored in its entirety, time-averaged histograms
of the population of walkers visiting each determinant can be
stored and subsequently compared with the exact FCI solution.
For larger calculations, where histogramming the entire wave
function is no longer practical, we show that our i-FCIQMC
energies for stretched molecules are fully size-consistent. This is
an extremely stringent test: truncated CI methods fail
this test, whereas full CI does not. The implication is that the
i-FCIQMC sampling of the FCI space faithfully reflects the
ground-state wave function. This leads us to a second very
attractive feature of i-FCIQMC. Since the populations of
walkers directly sample the FCI coefficients, we can simply
“read-off” the FCI coefficients for the significantly populated
determinants, giving a direct feel for the importance of various
configurations in the FCI wave function.

The work presented here begins with a brief recap of the
i-FCIQMC method applied during this study. At this point, the
differences between i-FCIQMC and subspace diagonaliza-
tion methods are discussed through direct comparison of the
i-FCIQMC energy and wave function to those obtained
from an exact diagonalization in the same space. The accuracy
of i-FCIQMC is then evaluated by calculating the dissociation
energies of the above series of dimers and comparing these to
both experimental results and values given by some alternative
theoretical techniques. It is shown that with tractable
computational cost, dissociation energies may be obtained
that are generally within chemical accuracy of the experimental
result, once basis set errors have been taken into account.
Finally, the size consistency of the method is tested,
and dynamic identification of dominant determinants during
an i-FCIQMC simulation is used to provide some chemical
insight into these first row diatomics.

(i-)FCIQMC. Given the many-electron Schrödinger equation
for a molecule:

̂ Ψ = ΨH E (1)

the FCI wave function represents the exact solution in a given
basis set:

∑Ψ = | ⟩C D
i

i i
(2)

Here {|Di⟩} represents the full Hilbert space of determinants,
constructable by distributing N electrons in M spatial orbitals.
This FCI wave function is obviously highly desirable.
Mathematically, the FCI energy is variational, orbitally
invariant, spin-pure, and size-consistent. From a chemical
perspective, FCI treats dynamical and nondynamical correlation
on an equal footing and thus provides a well-balanced
description of electron correlation effects when used in
conjunction with a suitably large basis set. Furthermore, FCI
does not require the user to have any prior knowledge of the
wave function. Only the basis-set must be chosen, the errors
from which decay systematically, making FCI a “black-box”
tool. Of course, the FCI wave function is generally unachievable
in practice due to the combinatorial dimension of the problem.
The number of determinants in the FCI space is given by
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where Nα (Nβ) is the number of α (β) electrons in the system
(N = Nα + Nβ). Therefore, NFCI grows extremely rapidly with N
and M, and variational optimization of all Ci coefficients quickly
becomes infeasible. To date, the largest space that has been
handled by FCI involved 1010 determinants.100 Unfortunately,
many problems of chemical interest require vastly larger values
of NFCI. For instance, even the calculations performed here
involve up to 5 × 1019 determinants.
Subspace diagonalization techniques attempt to reduce the

computational cost of FCI, while maintaining its accuracy. The
general aim of subspace diagonalization is to decide upon a
subset of determinants which is in some sense “optimal”. The
Hamiltonian is then constructed and diagonalized in this
subspace, and the lowest eigenvalue taken as the best variational
estimate to the exact FCI ground state energy. Excitation level
truncation and complete-active-space (CAS) based methods are
some of the most common. As an alternative to this a priori
selection of configurations, a class of subspace diagonalization
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methods also exist which rely on heuristic iterative algorithms
to dynamically search the FCI space for the optimal selection of
determinants.101−103

Although the procedures to obtain a determinant subset vary
substantially, the final aim of these subspace diagonalization
methods remains the same. If a determinant which is neglected
in the final subspace has precisely zero weight in the FCI wave
function, then the absence of this function from the subspace
will not affect the energy, and no approximation has been made.
However, due to the variationality of any truncated CI result, a
neglected nonzero weighted determinant must serve to increase
the energy estimate from the true FCI energy, as the flexibility
in the description of the final wave function has been reduced.
Moreover, this error to the FCI energy is not size-consistent,
and thus care must be taken in relative energy contributions
when separate fragments are produced. Furthermore, the
explicit diagonalization of the Hamiltonian in this subspace
still requires storage of at least two vectors, which are the length
of the subspace being considered, and so these methods may
still become rather computationally demanding. However, in
many cases, the FCI wave function is sparse enough, and the
selection of determinants sufficiently large and well-chosen,
such that very good agreement is found between the results
from a subspace and full diagonalization results. The success of
this approach has meant that truncated, and especially CAS-
based methods have become the first-choice for many
investigations into strongly correlated molecular systems.
FCIQMC takes the different approach of projector Monte

Carlo methods and represents the wave function in terms of a
set of discretized “walkers”. One can think of a walker as a
particle that carries a sign (±1) and that “lives” on a
determinant, contributing a unit to the amplitude of the
determinant it is located on. The purpose of FCIQMC is to
stochastically project these walkers according to a set of rules
derived from the imaginary-time Schrödinger equation:

τ
∂Ψ
∂

= − ̂ − ΨH E( )S (4)

These rules are designed so that the long-time averaged
distribution of the walkers becomes proportional to the FCI wave
function. According to this FCIQMC algorithm, a walker
occupying determinant Di spawns a new walker onto Dj with a
probability proportional to |Hij|. The sign of the child being
spawned is then given by −sign(Hij). The parent walker dies
with a probability proportional to |Hii − ES|. (ES is an energy
offset, referred to as the “shift”, which can be periodically
adjusted to maintain a roughly constant population of walkers).
Pairs of walkers of different sign occupying the same
determinant are then removed in a series of annihilation
events. These annihilations are critical to the emergence of a
sign-coherent wave function: that is to say a wave function
where the sign of every determinant is correct, up to an overall
sign. The precise rules of FCIQMC are described in detail in ref
7.
It turns out that the key parameter which governs the success

of FCIQMC is the number of walkers in the simulation (Nw).
When Nw is below a system-dependent value, the distribution
of walkers fails to settle down on the FCI wave function. This is
because a certain density of walkers is required in the
population dynamics before annihilation events become
sufficiently probable for sign-coherence to emerge.7,104 On
the other hand, above this critical walker number, convergence
to the FCI energy is guaranteed. It was found that, in many

realistic problems, the required number of walkers scaled with
NFCI, obviating any great advantage over traditional FCI
methods. Nevertheless, FCIQMC has been used to compute
FCI energies for some hitherto unobtainable systems.7,11

The initiator method i-FCIQMC was developed to counter
this problem, and it does so extremely effectively, by making a
very small change to the algorithm. An additional survival of the
f ittest criterion is stipulated for walkers spawned onto empty
determinants (i.e., determinants not already occupied at that
time-step). Such a newly spawned walker is allowed to survive
only if its parent resides on a determinant that has been
designated an “initiator”. Determinants become initiators when
their walker population is considered to have a well-established
sign, in that it exceeds a critical number na.
It should be noted that this initiator rule becomes irrelevant

in the limit of a large number of walkers, since all determinants
eventually become occupied. In this large Nw limit, i-FCIQMC
is identical to FCIQMC, and therefore to FCI, irrespective of
the value of na. However, the i-FCIQMC algorithm has been
found to achieve energies that are within stochastic errors of the
FCI results well before this limit is realized, and with
substantially reduced computational cost, even compared to
the original FCIQMC method.8,10,11

While there will be an optimal set of parameters for a given
i-FCIQMC simulation, providing the energy is converged with
respect to the number of walkers in the system, this method has
been found to reliably converge onto the FCIQMC and thus
the FCI result. For this reason, the i-FCIQMC method is
relatively black-box in nature. This refers to the fact that
without any orbital specification, extrapolation, selection, or
optimization of a trial wave function, or prior knowledge of the
final solution, and with minimal input from the user, the errors
in converged i-FCIQMC energies may be isolated as system-
atically reducible basis set incompleteness errors.
With the inclusion of an additional initiator spawning

criterion, which disallows spawning between some determinant
pairs, the i-FCIQMC algorithm is effectively applying a slightly
modified Hamiltonian operator, in which some of the H matrix
elements have been set to zero:

τ τ= ∉ =H D N( ) 0 if {initiators} and ( ) 0ij i j (5)

This essentially places restrictions on the determinant space
accessible to the i-FCIQMC wave function, the extent of which
will depend on the number of determinants that have been
made initiators (Ninit) at a particular point in time and, thus, the
number of walkers in the system. Furthermore, the affected H
elements evolve with the distribution of walkers over imaginary
time, and as such, these restrictions do not generally behave like
a typical truncation of the space (as discussed later). The above
modifications can nonetheless introduce a systematic ‘initiator
error’ in the i-FCIQMC energy. While such an error can always
be reduced by increasing Nw, the number of walkers required to
eliminate it is system dependent and must be considered on a
case-by-case basis.
There are two methods for computing the energy. The first is

the “projected energy”:

∑
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| ̂ |Ψ
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where |D0⟩ is the reference determinant (usually taken to be the
Hartree−Fock (HF) determinant in this study). It is clear that
⟨Eproj⟩τ is dependent on the population of walkers on |D0⟩ and
the determinants connected to it, namely single and double
excitations from the HF determinant. Furthermore, because
⟨N0⟩τ appears in the denominator, it is necessary for the
fluctuations in N0 to be small, to allow for a meaningful
estimate of Eproj. This in turn requires a large number of walkers
to accumulate on D0, since the fluctuations in N0 go as N0

1/2. In
practice, we find that ⟨N0⟩τ ≈ 104 walkers is necessary for
acceptable fluctuations in ⟨Eproj⟩τ, and if it is affordable, we grow
the overall population of walkers so that the reference
occupation comfortably exceeds this. This forms the basis
with which we select our target population.
The second measure of the energy comes from ⟨ES⟩τ, which

is accumulated as a time-average of ES in variable-shift mode. ES
is periodically updated (every 10−20 time-steps) to stabilize
the walker growth as detailed in ref 7. Note that, unlike Eproj, ES
is determined by the total population of walkers. This has two
implications. First, the statistical fluctuations in ES and Eproj are
generally uncorrelated, providing an independent measure of
the energy as the simulation proceeds. As such we have an
internal check: a necessary criterion for convergence is that the
two measures of energy must agree, to within statistical error
bars. The second implication is that, since ES depends on the
distribution of walkers throughout the space, it is a genuinely
multireference measure of the energy. As such, for more
multireference problems (e.g., stretched geometries), it is easier
to obtain small statistical errors using ES; whereas for systems
dominated by a single determinant, Eproj can be measured with
smaller statistical uncertainty.
Efficient Sampling of the FCI Wave Function with

i-FCIQMC. An advantage of the stochastic i-FCIQMC
algorithm is that only the list of instantaneously occupied
determinants (Nocc) must be stored during a particular
iteration. The set of determinants that become occupied at
any stage of the simulation defines the space that contributes to
the i-FCIQMC energy. Clearly as Nw increases, the walkers
spread throughout a larger fraction of NFCI. The effect of the
initiator adaptation is to reduce the spread of noisy low-
weighted walker populations within the wave function, maintain
a high annihilation rate, and to promote spawning within a
dynamically identified set of configurations that contribute a
significant weight to the FCI wave function.
In this sense, i-FCIQMC exhibits similarities to some

iterative subspace diagonalization techniques;101−103 determi-
nants are generated at random, added to an occupied
determinant subspace according to a stochastically realized
criteria, and in the long-time limit i-FCIQMC aims to
approximate an eigenfunction of the Hamiltonian in the
space. However, as we shall see, key aspects of the algorithm
mean that i-FCIQMC is not simply an efficient way to search
the space for an optimal configurational subset, which is
subsequently diagonalized, as it may first appear.
To demonstrate this effect, a dramatically undersampled

i-FCIQMC calculation was considered, using Be2 in a cc-pVQZ
basis set with all electrons correlated. Be2 is a relatively strongly
correlated system, even at the equilibrium geometry considered
here, due to the near-degeneracy between the 2s
and 2p atomic orbitals. While this system has NFCI = 1.4 ×
1012 spin-coupled functions, only 2500 walkers were used to
obtain the i-FCIQMC projected energies shown in Figure 1.
These energies nonetheless oscillate around the energy

obtained using a converged FCIQMC simulation, which is
taken to be of FCI accuracy. Included in Figure 1 for
comparison are the energies obtained by performing an exact
diagonalization of the subspace Hamiltonian at each time step,
using the space of determinants that are instantaneously
occupied by the i-FCIQMC simulation (Nocc ≈ 2140), as well
as a separate diagonalization of the smaller subspace of
initiators (Ninit ≈ 59).
As shown in Figure 1, even at this trivially small number of

walkers, the averaged projected energy estimator is already very
close to the FCI limit. By comparison, energy estimates taken
from the exact diagonalization of the subspace Hamiltonians
yield energies which at best capture only about half of the total
correlation energy. That these energies are higher than the
exact value is unsurprising, since their variationality ensures that
any neglected determinants raise the energy, though the
magnitude of the error, as well as the quality of the i-FCIQMC
results with such few walkers is of note. Of course, the
instantaneous i-FCIQMC wave function is not likely to
represent the optimal subspace choice to diagonalize, but this
nonetheless demonstrates the effect of the variational
estimator in restricted-space calculations. It is certainly not
possible that i-FCIQMC is sampling the entire space of
[1012] determinants; however, these results suggest this is

unnecessary to reach FCI accuracy. Of course, the subspace
diagonalization must tend to the exact result as more
determinants are included in the expansion, and so as the
walker number is increased we should be able to observe this.
The fact that the i-FCIQMC energies can achieve such

accuracy is indicative of the efficiency of a Monte Carlo
sampling of the Hilbert space. Unconstrained by variationality,
assuming the sign-problem is controlled, i-FCIQMC should
return an unbiased estimate of the true energy, with estimable
and improvable errorbars. The fact that the whole space has not

Figure 1. Comparison of the i-FCIQMC correlation energy obtained
for all electron Be2 in a cc-pVQZ basis set, to various subspace
diagonalizations. This system has NFCI = 1.4 × 1012, but only
approximately 2500 walkers were used to obtain the i-FCIQMC
energy. These occupied Nocc ≈ 2140 determinants, Ninit ≈ 59 of which
were initiators. The ECI energies in each of these subspaces were
obtained by diagonalizing the space that is instantaneously occupied by
all i-FCIQMC walkers or just the initiator determinants. While the
Eproj(τ) values of this i-FCIQMC wave function oscillate around
FCIQMC energy (EFCIQMC, which is taken to be of FCI accuracy), the
variational energies from the diagonalizations capture at most half of
the total correlation energy.
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been sampled can therefore be reflected in the size of the
errorbar, rather than necessarily any systematic deviation.
Indeed, in the limit of the absence of a sign-problem in the
space, the single walker limit should be sufficient to
obtain an exact time-averaged wave function, in common with
all Quantum Monte Carlo approaches. What marks out i-
FCIQMC as different here is the fact that the combination of
annihilation events and the initiator approximation seem to
efficiently control this sign-problem even within such under-
sampled systems, which allows the Monte Carlo sampling to
remain unbiased, and achieve accurate time-averaged results, at
least for these systems.
In order to analyze the effect of this time-averaging, a smaller

Be2 system in a cc-pVTZ basis set was considered with the core
electrons frozen. This smaller system (NFCI = 346 485 spin-
coupled functions) makes it possible to monitor the
occupations of the entire Hilbert space and compare these to
the exact FCI wave function. The i-FCIQMC simulation was
this time run with 2300 walkers. The upper plot of Figure 2
shows the wave function obtained from a subspace diagonaliza-
tion on a set of instantaneously occupied determinants (Nw =
2380 and Nocc = 1746). This eigenfunction of the truncated
space exhibits qualitative agreement with the FCI wave
function, and the amplitudes of the most significant
determinants are generally correct. Despite this, the variational
energy of this solution is still 24.6 mEh higher than the FCI
result.
The second plot of Figure 2 depicts the normalized

instantaneous distribution of the i-FCIQMC walkers, over the
same subspace as the above diagonalization. These occupations
bear little resemblance to the FCI coefficients, and the
discretization due to the small number of walkers is very
evident. However, the instantaneous projected energy of this
distribution is only 6.12 mEh lower than the FCI value, which is
a small difference compared to the standard deviation of the
data of 9 mEh observed with this walker number. The
determinants of significant amplitude in the FCI wave function
are also generally occupied. Nonetheless, the difference
between this i-FCIQMC distribution and the diagonaliza-
tion solution in the upper plot further indicates the
instantaneous i-FCIQMC wave function is not even a
qualitative representation of the eigenfunction in the truncated
space. The variational energy (i.e., ⟨ψ|H|ψ⟩/⟨ψ|ψ⟩) of this
instantaneous distribution would thus have an even higher
value than the ground state eigenvalue in the occupied
subspace. It is worth noting that when applied to an eigenstate,
this variational energy expression will give an identical (and
hence also variational) value to that obtained via the projection
formula of eq 6.
Finally, using the simulation described above, the i-FCIQMC

walker distributions were averaged over ∼7000 au of imaginary
time, and the normalized wave function is presented in the
lower frame of Figure 2. Despite occupying only approximately
1750 determinants at a time, this time-averaged wave function
nearly perfectly describes the FCI amplitudes on 176 957
determinants, including all the single and double excitations,
whose contributions are used to calculate Eproj. These results
indicate that while the instantaneous i-FCIQMC distribution
shows little resemblance to an eigenfunction in the FCI, or
indeed any truncated space, the time-averaged i-FCIQMC
population dynamics are rather accurately describing the FCI
ground state.

Figure 2. Wave functions obtained from an i-FCIQMC simulation of
frozen core Be2 in a cc-pVTZ basis set, compared to the exact FCI
wave function. The upper plot shows the relatively good distribution
obtained from a subspace diagonalization of the instantaneously
occupied space of Nw = 2380 walkers on Nocc = 1746 determinants.
The second is the normalized instantaneous i-FCIQMC distribution of
walkers which spans the same subspace as above. This does not agree
well with the FCI coefficients, or even the subspace diagonalization,
but when the i-FCIQMC simulation is averaged over ∼7000 au of
imaginary time, with Nw ∼ 2300 walkers and Nocc ∼ 1750 walkers, the
normalized distribution near perfectly describes the FCI amplitudes on
176 957 determinants (lower plot).
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Overall, this analysis suggests that the i-FCIQMC algorithm
provides a highly compact and accurate representation of the
wave function. The i-FCIQMC algorithm is effectively
identifying the important determinants in the space, without
a priori knowledge of the system, such that those neglected
from the simulation make negligible contributions to the
energy. Furthermore, it is the dynamic nature of the i-FCIQMC
distribution and its evolution over imaginary time that allows an
accurate time-averaged wave function to be obtained while only
having to store, in this case, 2 orders of magnitude less memory
than would be required to instantaneously consider the entire
occupied space. Although not conclusively proven, subspace
diagonalization methods with equivalent memory requirements
are expected to result in much higher variational energy
estimates.
However, for a sufficiently large system, the initiator

approximation will result in a non-negligible number of
Hamiltonian elements being set to zero at any one time,
leading to an error from an effective truncation of the
instantaneous available space which does not necessarily reduce
to zero with time averaging. It is thus useful to consider the
convergence of the i-FCIQMC energy with increasing numbers
of walkers to establish the value of Nw required to achieve an
unbiased estimate, and therefore, FCI accuracy. The severity of
the initiator approximation in the presence of multiconfigura-
tional effects is not obvious and will be explored later in this
study.

■ RESULTS AND DISCUSSION

i-FCIQMC Energies of the Diatomics at Equilibrium.
The frozen core i-FCIQMC total energies of the equilibrium
diatomic molecules, and their contributing atoms, are presented
in Table 1. The energy of each dimer was obtained using the cc-
pVDZ, cc-pVTZ, and cc-pVQZ Dunning correlation consistent
basis sets;12 hereafter referred to as VDZ, VTZ, and VQZ. The
equilibrium geometries were taken to be the experimental bond
lengths (re) given by Huber and Herzberg.105 For the closed
shell molecules Be2, C2, N2, CO, and F2, as well as O2 in the
VQZ basis set, both angular momentum and spin time-reversal
symmetries could be utilized.11 It should be noted that the
energy for the VTZ and VQZ equilibrium geometry for C2 is
different to that published in Tables II and III in ref 11. The

equilibrium values in this reference were erroneously averaged
over the points shown in Figures 5 and 7, respectively. This
hides a sub-error-bar decay of initiator error and results in a
systematic error in the published results which is larger than
that accounted for by the error bar. Here, we simply use the
final energy and error from Figures 5 and 7 in ref 11, which
should be taken as correct. The nonequilibrium points are
unaffected. For the remaining open shell diatomics, time-
reversal symmetry was not used or not applicable, but angular
momentum symmetry was employed for the larger VQZ
calculations. All calculations were performed using restricted
HF (RHF) orbitals, and the core electrons were frozen for all
systems except Be and Be2, for which the corresponding cc-
pCVXZ basis sets were employed.
Each calculation was performed with the following

protocol: a single walker is placed on the HF determinant,
and the i-FCIQMC algorithm is applied with Δτ = 10−5−10−4,
na = 3, and ES held fixed at zero or ∼0.1 hartree. During this
initial stage, the walker population grows exponentially. This
walker growth phase is continued until a target population is
reached, at which point ES is allowed to vary to maintain a
constant population of walkers at the target value of Nw. During
this second phase, various quantities are examined, including
the instantaneous values of N0(τ) and Eproj(τ). Once these have
stabilized, the simulation is deemed to have equilibrated, and
the production phase of the calculation can begin (i.e., the
accumulators of expectation values are zeroed). This phase is
continued, until the statistical errors in ⟨Eproj⟩τ and ⟨N0⟩τ have
been sufficiently reduced. Note that obtaining the statistical
error of a quantity being generated in a Monte Carlo simulation
requires an estimate of the serial correlation time in the data,
which we obtain via a Flyvbjerg−Petersen “blocking”
algorithm.107 For the projected energy measurement, the
blocking is performed on the numerator and the denominator
separately. ⟨Eproj⟩τ and its stochastic error are then calculated
from the ratio of the averages and the covariance. The final
errors are presented in parentheses throughout this paper, as
the uncertainty in the preceding digit, and represent one
standard deviation in the distribution of energies. This means
that, with approximately 68, 95, and 99.7% probability, the
stochastically sampled energies will lie within one, two, and
three standard deviations of the exact result, respectively.

Table 1. i-FCIQMC Energies of the Series of First Row Diatomics and Their Constituent Atoms (Hartree)a

system VDZ VTZ VQZ V(TQ)Z VQZ+ΔEF12ccsd(T)

Be (1S)b −14.65182(3) −14.66244(5) −14.66568(4) −14.66803(6)
C (3P) −37.76069(1) −37.78121(1) −37.786960(9) −37.79039(1) −37.788368(9)
N (4S) −54.47858(1) −54.51491(1) −54.52506(1) −54.53115(2) −54.52802(1)
O (3P) −74.91010(3) −74.97414(3) −74.99388(3) −75.00602(4) −75.00103(3)
F (2P) −99.52772(4) −99.6205(1) −99.65052(7) −99.6686(2) −99.66275(7)
Be2 (

1Σg
+)b −29.30449(8) −29.32772(7) −29.3350(1) −29.3403(1)

C2 (
1Σg

+)b −75.7285(1) −75.7850(1) −75.8023(3) −75.8127(3) −75.8082(3)
CN (2Σ+) −92.4933(1) −92.5698(1) −92.5938(1) −92.6081(2) −92.6028(1)
N2 (

1Σg
+) −109.2767(1) −109.3754(1) −109.4058(1) −109.4245(1) −109.4179(1)

CO (1Σ+) −113.05564(9) −113.15639(7) −113.1887(1) −113.2080(2) −113.2016(1)
NO (2Π) −129.59995(8) −129.7185(1) −129.7562(2) −129.7793(2) −129.7713(2)
O2 (

3Σg
−) −149.98781(8) −150.1305(1) −150.1750(2) −150.2027(2) −150.1934(2)

F2 (
1Σg

+) −199.09941(9) −199.2977(1) −199.3598(2) −199.3984(2) −199.3870(2)
aExcept when noted, these systems had their core electrons frozen and were calculated at the experimental equilibrium bond lengths given by Huber
and Herzberg.105 The VQZ+ΔEF12ccsd(T) results refer to the i-FCIQMC VQZ energy corrected by a CCSD(T)-F12/B contribution, and V(TQ)Z to the
basis set extrapolation given by eq 8. The Be2 experimental bond length was taken from ref 106. The standard F12 basis sets were not available for
Be, and so, the corrected energies were omitted for consistency. bAll electron calculations use the equivalent cc-pCVXZ basis sets.
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In order to obtain a reliable i-FCIQMC energy, the behavior
of the initiator error with walker number must be established,
i.e. the rate at which the i-FCIQMC energy converges with an
increasing number of walkers in the simulation. Two examples
of this convergence are shown in Figure 3 for CO and N2 in

VQZ basis sets. These exemplify the relatively consistent trends
that are typical of the diatomic series investigated here. For
each of the different systems, the energies are no longer
changing beyond the statistical error bars when 30 000−50 000
walkers were accumulated on the HF reference determinant. By
using this value of N0 to determine the total number of walkers
required for each calculation, and keeping the other parameters
mostly constant, the i-FCIQMC simulations performed during
this study could be carried out in a relatively black-box manner.
The resulting total energies of the first row diatomics at their

equilibrium geometries are shown in Table 1. As an example of

the computational cost required for each i-FCIQMC
calculation, the VDZ, VTZ, and VQZ energies of NO were
obtained after approximately 120, 6400, and 11000 CPU hours,
respectively.
For the two smallest systems, C2 and CN in VDZ basis sets,

FCI energies could be obtained using MOLPRO.21,108,109 From
these values, the errors in the i-FCIQMC results can be
calculated as 0.1(1) and 0.0(1) mEh for C2 and CN VDZ,
respectively (EFCI(C2) = −75.72855 and EFCI(CN) =
−92.49326 Eh). These verify the absence of any significant
initiator errors for these systems.

Basis Set Extrapolation and CCSD(T) F12 Corrections.
Any systematic errors from the basis set (FCI) correlation
energy, due to the i-FCIQMC method itself, are expected to be
minimal for the converged total energies presented in Table 1.
However, the VDZ, VTZ, and VQZ values are still likely to be
hindered by basis set incompleteness errors. In order to obtain
results that can be compared to experimental data, these errors
can be reduced using either F12 corrections to account for the
basis set deficiencies, or extrapolation to the complete basis set
(CBS) limit. F12 adapted theories attempt to account for the
remaining dynamic correlation which is unable to be captured
in the finite basis set, by including explicitly correlated pair
products within the wave function ansatz. These have proved
extremely successful at achieving basis set converged results.
The pseudo F12 corrected results presented here were
calculated from the i-FCIQMC VQZ values, with an
approximate F12 correction provided by the difference between
the equivalent basis CCSD(T) and CCSD(T)-F12/B calcu-
lations (see ref 10).109,111 The resulting energies are labeled as
VQZ+ΔEF12

CCSD(T), which is later abbreviated to VQZ+F12. Of
course, this approach is not ideal, since the basis-set
convergence of CCSD(T) and i-FCIQMC may differ slightly,
and the F12 corrections taken from the CC framework may
inherit the difficulties with strong correlation effects. However,
for these equilibrium geometries, the approach is expected to
be effective.
Alternatively, the extrapolation method of Helgaker et al. was

used to calculate the complete basis set correlation energy
(Ecorr

CBS) from two data points with different cardinal numbers (X
and Y):13,112

=
−
−

E
E X E Y

X Y

X Y

corr
CBS corr

3
corr

3

3 3 (8)

This extrapolation technique takes advantage of the systematic
improvement in the basis set error, which is provided by the
hierarchical sequence of correlation consistent cc-pVXZ basis
sets used here. It has also been shown to be most effective
when calculated using basis sets larger than double-ζ quality.13

It is therefore applied here to the VTZ and VQZ i-FCIQMC
results, to obtain estimates of the CBS correlation energy
(denoted V(TQ)Z).
The HF energy is known to converge quickly with respect to

basis set size, and so, the CBS total energy is simply found by
adding Ecorr

CBS to the HF energy obtained in the large aug-cc-
pV6Z basis, or aug-cc-pV5Z for the Be systems. The F12
corrected and extrapolated i-FCIQMC energies are presented
with the finite basis set results for each system in Table 1.

Dissociation Energies. The dissociation energies for
this series of first row diatomics can then be calculated from
the i-FCIQMC total energies presented in Table 1 and
compared to experimental results. However, for a fair

Figure 3. Convergence of the i-FCIQMC energies with respect to
walker number (Nw), for CO and N2 in VQZ basis sets. The
energies are plot as errors relative to the most converged value
(which has 50 000 walkers on the HF determinant). For both systems,
the i-FCIQMC energy is converged for the last two points, when the
population on the HF determinant (shown on the upper x-axis) has
reached 30 000−50 000 walkers. Taking advantage of spin time-
reversal, angular momentum, and point group symmetries, CO and N2
VQZ have FCI spaces of 4.706 × 1014 and 2.353 × 1014 spin-coupled
functions, respectively.
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comparison to the frozen core nonrelativistic i-FCIQMC
calculations performed here, the experimentally measured
values for the ground state dissociation energy D0, are first
corrected for contributions from the zero point energy ΔEZPE,
scalar relativistic effects ΔESR, spin−orbit coupling ΔESO, and
core correlation ΔECV. For simplicity, these effects are assumed
to be additive. The exception to this is Be2, for which all
electron calculations were performed and relativistic effects
were considered to be negligible. The remaining equilibrium
dissociation energies De*(expt), represent the nonrelativistic
valence-correlated experimental result which i-FCIQMC aims
to capture. This calculation of corrected experimental values
was previously performed for the homonuclear diatomics by
Ruedenberg et al.71

The resulting i-FCIQMC dissociation energies of each of
these diatomics are then presented in Table 2, and their

convergence toward the corrected experimental values is
depicted in Figure 4. For Be2, both the all electron cc-
pCVXZ results and the frozen core cc-pVXZ dissociation
energies are shown. Since the experimental Be2 result has not
been corrected for core correlation effects, the apparent
accuracy of the frozen core cc-pVXZ values is fortuitous.
However, the extrapolated all electron calculations accurately
capture the uncorrected De(expt). With the exception of C2, the
i-FCIQMC dissociation energies are thus calculated to within
chemical accuracy of the experimental results when basis set
incompleteness errors are accounted for using either pseudo
F12 corrections or extrapolations.
Comparison to Alternative Theoretical Methods. The

accuracy of the i-FCIQMC dissociation energies can be further
evaluated by comparison to some alternative theoretical
techniques that have been applied to the same first row
diatomics. Such a comparison is made in Table 3, by

considering the errors in the calculated De values, relative to
the corrected experimental results. The focus here is on the
accuracy of the electronic structure techniques, rather than on a
comparison of the basis set errors and methods of
extrapolation. The i-FCIQMC results are thus primarily
compared to other frozen core nonrelativistic values, which
have been obtained using the same basis sets and extrapolation
technique.
First, the VDZ, VTZ, and VQZ i-FCIQMC results in Table 3

all underestimate the dissociation energy. This suggests these
finite basis sets are insufficient to accurately describe the
dynamic correlation of the diatomic around equilibrium. This
effect has been previously observed for dissociation energies
calculated using FCI.117 It is possible the overly large CEEIS
V(TQ)Z value for O2 is therefore a product of the
nonvariationality of this method.
Generally, these CCSD(T) results show rather good

agreement with the experimental values, particularly when
F12 corrections are included. However, Feller and Sordo have
previously identified the more multireference C2 and CN
molecules as the first-row diatomics that present the greatest
challenge to CCSD(T).1 Table 3 demonstrates that more
accurate dissociation energies may be achieved for these
systems using i-FCIQMC, although their experimental values
also have the largest errors.
The two QMC methods most commonly applied to

molecular systems such as these first-row diatomics are
AFQMC118,119 and DMC.115,116,120−123 The errors in
some DMC results are presented in Table 3 for comparison
to the i-FCIQMC energies. The values denoted FN-DMC were
taken from an older single determinant fixed-node DMC study
of the G1 benchmark set of molecules.115 The errors in these
DMC dissociation energies were improved during a more
recent study whereby the trial wave functions were constructed
from large multideterminant expansions;116 these are presented
in Table 3 as MD FN-DMC. The all-electron DMC results are
presented as errors compared to the experimental values
without the correction for the core correlation. As well as the
use of multiconfigurational wave functions, alternative
techniques for optimizing the DMC solution have also been
applied to individual first-row dimers to reduce fixed-node
errors and improve their DMC dissociation energy.121−123

Finally, the i-FCIQMC results presented here show relatively
similar errors to CEEIS, which has recently been applied to the
homonuclear diatomics of this series.71 Since CEEIS aims to
extrapolate truncated calculations to the FCI limit, the
agreement between the i-FCIQMC and CEEIS results is
encouraging, and it suggests that both methods may be
effectively and consistently capturing the basis set correlation
energy of each system. However, the number of extrapolations
required, and the specifics of the orbitals and their partitioning
mean that CEEIS is far from a black box method.

Diatomics at Stretched Geometries. Having applied
i-FCIQMC to the equilibrium diatomics and atoms of this
series, and obtained good agreement with CCSD(T) and
CEEIS dissociation energies, the next part of this study
considers the ability of i-FCIQMC to describe the first-row
dimers at stretched geometries. The stretched diatomics
represent a series of strongly correlated systems that generally
require multireference techniques to describe accurately. For
example, CCSD(T) has generally diverged by the time it
reaches the dissociated bond lengths considered here.6

However, most multireference methods require some a priori

Table 2. i-FCIQMC Dissociation Energies of a Series of
Homo- and Heteronuclear First-Row Diatomics (kcal
mol−1)a

basis Be2
b C2 CN CO

VDZ 0.53(3) 129.95(8) 159.40(7) 241.49(6)
VTZ 1.78(6) 139.69(8) 171.71(6) 251.66(5)
VQZ 2.27(9) 143.3(2) 176.80(9) 255.92(9)
V(TQ)Z 2.67(10) 145.5(2) 179.8(1) 258.3(1)
VQZ+ΔEF12ccsd(T) 145.2(2) 179.71(9) 258.68(9)
De*(expt) 2.658(6) 146.9(5) 180.4(2.4) 258.8(2)

basis NO N2 O2 F2

VDZ 132.57(5) 200.52(8) 105.17(6) 27.59(7)
VTZ 143.99(6) 216.86(9) 114.35(8) 35.5(1)
VQZ 148.9(1) 223.20(8) 117.5(1) 36.9(1)
V(TQ)Z 151.9(2) 227.3(1) 119.6(1) 38.4(2)
VQZ+ΔEF12

ccsd(T) 152.0(2) 227.09(8) 120.1(1) 38.6(1)
De*(expt) 152.63(4) 227.60(5) 120.42(5) 39.0(1)

aOnly the valence electrons were correlated, and the diatomic
geometries were taken to be the experimental bond lengths given by
Huber and Herzberg.105 In angstroms, these are the following: Be2
2.254,106 C2 1.2425, CN 1.1718, N2 1.0977, CO 1.1283, NO 1.1508,
O2 1.2075, F2 1.4119. The V(TQ)Z and VQZ+ΔEF12ccsd(T) energies were
calculated from CBS extrapolations and approximate F12 corrected
values respectively. The i-FCIQMC dissociation energies are
compared to corrected experimental results De*(expt). The standard
F12 basis sets were not available for Be, and so, the corrected
dissociation energy of Be2 was omitted for consistency. bAll electron
calculations in cc-pCVXZ basis sets.
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understanding of the system, often through the specification of
an appropriate multiconfigurational reference state. Contrary to
this, i-FCIQMC is applied here in an almost identical manner
to the equilibrium calculations, starting with only a single
walker on the HF determinant. It is hoped that the dynamic
identification of the initiator space will be sufficient to still
include the determinants required to describe the strong
correlation effects. This section begins by examining the
accuracy of the i-FCIQMC energies for these stretched systems
and then considers some comparisons to the more single-
reference equilibrium geometries.
Size Consistency. In a sense, the initiator spawning criteria

place restrictions on the determinants that may be instanta-
neously included in the wave function expression. Hence,

the loss of size consistency is a potential concern for the i-
FCIQMC method. For instance, Figure 5 presented later
demonstrates the very small fraction of walkers required for
each simulation, compared to the number of Slater
determinants in the FCI space. The earlier Be2 results indicate
the total sampled space is much larger than the number of
instantaneously occupied determinants, but these determinants
spanned by the time-averaged simulation will still usually
represent only a fraction of each Hilbert space.
The accuracy of the i-FCIQMC dissociation energies

presented earlier suggests that any size consistency errors for
these systems are not significant. However, this can be explicitly
tested for the dimers at stretched geometries, by calculating the
energy of the molecule at sufficient bond lengths so that the

Figure 4. Comparison of calculated i-FCIQMC dissociation energies to experimental values. With the exception of Be2, the nonrelativistic
i-FCIQMC calculations were performed with the core electrons frozen and so the experimental results have been corrected for relativistic and core
correlation effects. These i-FCIQMC values have been taken from Table 2, and the VQZ+F12 values refer to the VQZ+ΔEF12ccsd(T) results. The region
of chemical accuracy (±1 kcal mol−1 of De*(expt)) is also marked. Stochastic error bars on the i-FCIQMC results are present, but too small to be
observed on this plot.

Table 3. Comparison of the Errors in the Series of i-FCIQMC Dissociation Energies, to Those Calculated by Other Electronic
Structure Methodsa

method basis Be2
f C2 CN N2 CO NO O2 F2 MAD

i-FCIQMC VQZ −0.4 −3.6 −3.6 −4.4 −2.9 −3.7 −2.9 −2.1 3.0
CCSD(T)b VQZ −1.0 −4.0 −5.6 −5.0 −2.6 −4.5 −3.2 −2.4 3.5
CEEISc VQZ −3.4 −4.6 −2.5 −1.9 2.6
i-FCIQMC V(TQ)Z 0.0 −1.4 −0.6 −0.3 −0.5 −0.7 −0.8 −0.6 0.6
CCSD(T)b V(TQ)Z −0.6 −1.5 −1.2 −0.6 −0.3 −1.0 −0.7 −0.9 0.9
CEEISc V(TQ)Z −1.1 0.0 0.8 −0.4 0.5
FN-DMCd −7.5 −3.2 −2.5 −7.0 −6.5 −5.7 5.4
MD FN-DMCe −0.1 −3.0 −2.5 −3.2 −3.7 2.5
MD FN-DMC-extrape 0.0 −1.5 −2.2 −1.8 −3.3 1.8
i-FCIQMC VQZ+F12 −1.7 −0.7 −0.5 −0.1 −0.6 −0.3 −0.4 0.6
CCSD(T)-F12 VQZ −1.8 −1.0 −0.6 0.2 −0.8 −0.3 −0.4 0.5

aThe errors are given in kilocalories per mole, and these are measured relative to the corrected experimental results. The VQZ+F12 results refer to
the VQZ+ΔEF12ccsd(T) values, and V(TQ)Z, to the CBS extrapolation method described earlier. All coupled-cluster and F12 calculations were
performed with MOLPRO.109−111,113,114 The mean absolute deviation (MAD) across the available results is also presented for each method.
bReference 1. cReference 71. dReference 115. eReference 116. fAll electron calculations in cc-pCVXZ basis sets.
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atoms are no longer interacting and comparing this result to the
sum of the isolated atomic energies. The size consistency error
is likely to be system dependent, and so, the entire series of
diatomics is investigated here.
The stretched geometries were chosen to be five

times the equilibrium bond length of each diatomic (5re),
and the i-FCIQMC calculations were run using the same
simulation procedure as the equilibrium cases. The time-
averaged values of both the energy shift ⟨ES⟩τ and the projected
energy ⟨Eproj⟩τ are presented for each diatomic in Table 4, along
with the sum of the constituent atomic energies.
For each basis set, the root-mean-square (rms) deviation of

the molecular i-FCIQMC energies from these atomic results is
within the average stochastic error for both the shift and the
projected energy of these systems. The O2 molecule dissociates
through the 3Σg

− surface into two 3P oxygen atoms. The
stretched calculation was thus performed on O2 in a singlet
state. The VQZ calculation unfortunately required ∼9 × 107

walkers, and the projected energy was slow to converge. Given
the size consistency of the shift measurement, the ⟨Eproj⟩τ value
for this system was therefore omitted.
The results in Table 4 suggest there is no significant loss of

size consistency for these systems, despite the small fraction
of the Hilbert space that is instantaneously occupied during an
i-FCIQMC simulation. This is encouraging, as it implies that
the initiator approximation is effectively sampling the
configurations that are important to the wave function and its
associated energy, even for these multiconfigurational stretched
systems. The determinants that are never occupied likely
correspond to “configurational deadwood”,124 in that they have
negligible weights in the FCI expression.
Computational Difficulty. While Table 4 demonstrates

the ability for i-FCIQMC to provide accurate energies for the
stretched diatomic systems, these would generally be expected

to be more expensive calculations. The well-known multi-
configurational nature of the stretched molecules suggests that
more walkers would be required to describe the extra highly
weighted determinants that are present at the stretched
geometry, but are less significant at equilibrium.
The reality of any difference in computational cost between

the equilibrium and stretched i-FCIQMC calculations was
investigated by observing fci values for each simulation.
These represent the number of walkers required to initially
achieve 50 000 walkers on the HF determinant, as a fraction of
the Hilbert space of each system ( fci = Nw/NFCI). The observed
values are presented in Figure 5, for each of the diatomics in the
series considered here.
The fci values would be expected to vary slightly with the rate

of growth of Nw. To ensure this effect is not responsible for the
trends observed here, the CN and N2 VDZ calculations were
performed with identical ef fective shifts, for the equilibrium and
stretched geometries. In other words, the initial shift was fixed
at values 0.2 (CN) and 0.4 (N2) Eh above the expected
correlation energy, so that the rate of growth of Nw was
identical between the two geometries. Despite this, the fci values
are expected to be only a qualitative comparison of the
computational cost, due to the neglect of the relaxation of the
walker distribution once the shift can vary.14

The C2, N2, O2, and F2 results in Figure 5 show that more
walkers (or at least a similar number) are required for the
stretched geometries, to achieve roughly the same population at
the HF determinant as its equilibrium counterpart. For
example, O2 in a VTZ basis set required approximately twice
the number of walkers when stretched compared to the
equilibrium geometry for a similar accuracy. Also, the N2
calculation at 5re in a VQZ basis set needed around seven
times more walkers than the equilibrium simulation. This
behavior is what might be expected as the HF determinant
becomes less dominant in the more strongly correlated
stretched systems. However, the Be2, CN, CO, and NO
diatomics show the opposite trend. For these molecules, the
number of walkers required to initially reach NHF ≈ 50 000
actually decreases as each internuclear bond is stretched. For
example, the observed Nw for NO in a VQZ basis set is
approximately six times smaller in the stretched geometry than
at equilibrium.
To attempt to rationalize this observation, the distribution of

the i-FCIQMC walkers throughout each space was considered.
Figure 6 presents a snapshot of the absolute initiator
populations for the VDZ wave functions, once the shift has
been allowed to change. These are compared between the
stretched and equilibrium geometries, for each of the diatomics.
The x-axis of these plots simply represents each initiator
determinant, ordered according to their instantaneous walker
populations, which are shown on the y-axis.
The systems presented on the right of Figure 6 are those

whose stretched geometries need more walkers to accumulate
the required population at the HF determinant, than their
equilibrium counterparts. The occupations of the initiator
determinants show that these extra walkers have been used to
describe both the appearance of a few very highly weighted
determinants, in accordance with significant static correlation,
and an increase in the total number of determinants with large
enough weight to become initiators. For instance, N2 at its
equilibrium geometry has NHF ≈ 50 000 as required; however,
the second largest contribution comes from a determinant with

Figure 5. Representation of the difficulty of the i-FCIQMC
calculations for the series of first-row diatomics at equilibrium and
stretched geometries. The values presented are approximate fci values

for the i-FCIQMC simulations. This is given by the number of walkers
required to achieve 50 000 walkers on the HF determinant in fixed
shift mode, relative to the size of the FCI space. The equilibrium and
stretched calculations for each system were performed with the same
symmetries and therefore the same value of NFCI. While the stretched
calculations of C2, N2, O2, and F2 appear to be more difficult as
expected, the number of walkers required for the CN, CO, and NO
simulations is smaller when the internuclear bond is stretched.
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only around 6800 walkers. The populations of the remaining
106 800 initiators continue to decrease from there. In the
stretched geometry, the population on the HF determinant has
dropped to 35 500 walkers, but 23 other determinants are now
present with occupations greater than 20 000. The total
number of initiator determinants has also risen by almost a
factor of 4. These effects directly demonstrate the typical
transition from a predominantly single-reference state at
equilibrium, whereby the HF determinant has a large relative
weight, to a more multiconfigurational wave function when
stretched.
On the other hand, the diatomics on the left of Figure 6 were

found to require fewer walkers in their stretched geometries.
Their initiator populations suggest that, as the bond is
stretched, a few determinants again become apparent with
weights comparable to the HF determinant. For example, the
largest walker population among the initiators of equilibrium
NO (besides from NHF ≈ 50 000) is only 3200. Whereas in the
stretched system, four more highly weighted determinants are
present with occupations larger than 24 000. However,
counteracting this effect is a significant reduction in the total
number of initiator determinants, which drops from 263 800 to
only 93 400 and leads to a net decrease in the number of
walkers in this space.
The ability to discern these effects on the plots shown in

Figure 6 suggests they are reasonably substantial. As a further
test, the stretched CN VDZ simulation was rerun with the total

number of walkers increased to match the Nw value used for the
equilibrium geometry. The population on the HF determinant
was increased to 140 000, yet the total number of initiators
remained slightly smaller than that of the equilibrium
simulation. This further suggests the trends depicted in Figure
6 are likely to be related to the inherent structure of the
Hamiltonian matrix and eigenfunctions, rather than simply to
the discretized i-FCIQMC sampling. Similar effects were also
observed for the larger VTZ and VQZ basis sets, as might be
implied by the consistent trends seen in Figure 5.
These results support the appearance of static correlation in

stretched diatomics, which would require a multireference
method to describe accurately. However, they also show that, in
some cases, the total wave function appears to become more
compact. Such an effect is favorable for the i-FCIQMC method,
as it implies a larger fraction of the space may be neglected
without introducing a significant initiator error (as demon-
strated by Table 4). Furthermore, the i-FCIQMC algorithm
appears to have little trouble identifying the highly weighted
determinants in these first row diatomic systems. On the other
hand, the description of many determinants with smaller, but
still significant, contributions to the wave function requires
more walkers, and thus greater computational cost.
Finally, the presence of many low-lying excited states in the

stretched systems meant that occasionally the simulation
temporarily converged onto a higher energy symmetry-allowed
solution. This will always be corrected eventually but may

Table 4. Comparison of the i-FCIQMC Diatomic Energies with the Sums of the Constituent Atom Energies (Hartree)a

system VDZ VTZ VQZ

Be + Beb ⟨Eproj⟩τ −29.30364(4) −29.32488(6) −29.33137(5)
Be2 (5re)

b ⟨ES⟩τ −29.3035(6) −29.3249(6) −29.3316(9)
⟨Eproj⟩τ −29.30366(7) −29.32485(9) −29.3314(3)

C + C ⟨Eproj⟩τ −75.52138(2) −75.56241(1) −75.57392(1)
C2 (5re) ⟨ES⟩τ −75.5212(2) −75.5623(1) −75.5738(2)

⟨Eproj⟩τ −75.5213(5) −75.5620(3) −75.5735(2)
C + N ⟨Eproj⟩τ −92.23928(1) −92.29612(2) −92.31202(2)
CN (5re) ⟨ES⟩τ −92.2391(2) −92.2960(1) −92.3119(2)

⟨Eproj⟩τ −92.2391(5) −92.30(1) −92.3118(4)
N + N ⟨Eproj⟩τ −108.95716(1) −109.02982(2) −109.05011(2)
N2 (5re) ⟨ES⟩τ −108.9573(2) −109.0294(4) −109.0497(3)

⟨Eproj⟩τ −108.957(1) −109.029(1) −109.046(5)
C + O ⟨Eproj⟩τ −112.67081(3) −112.75535(3) −112.78084(3)
CO (5re) ⟨ES⟩τ −112.6707(2) −112.7555(2) −112.7805(8)

⟨Eproj⟩τ −112.671(1) −112.755(2) −112.780(2)
N + O ⟨Eproj⟩τ −129.38869(3) −129.48905(3) −129.51893(3)
NO (5re) ⟨ES⟩τ −129.3885(2) −129.4891(1) −129.5185(6)

⟨Eproj⟩τ −129.3886(3) −129.4890(8) −129.519(1)
O + O ⟨Eproj⟩τ −149.82020(4) −149.94828(4) −149.98775(4)
O2 (5re) ⟨ES⟩τ −149.8205(4) −149.9488(4) −149.9876(9)

⟨Eproj⟩τ −149.819(1) −149.949(1)
F + F ⟨Eproj⟩τ −199.05543(6) −199.2411(2) −199.3010(1)
F2 (5re) ⟨ES⟩τ −199.0554(6) −199.2409(8) −199.302(1)

⟨Eproj⟩τ −199.0556(8) −199.2404(8) −199.302(4)
rms ⟨ES⟩τ 0.0001(3) 0.0003(3) 0.0005(6)
rms ⟨Eproj⟩τ 0.0001(8) 0.001(2) 0.002(2)

aThe stretched geometries are set at 5re, such that the atoms are no longer interacting. Both the time-averaged shift ⟨ES⟩τ and projected energy
⟨Eproj⟩τ are shown for the diatomics, because the multiconfigurational nature of the stretched molecules often leads to a decrease of the HF
population, and ⟨ES⟩τ becomes the more precise measurement. The O2 VQZ calculation was computationally expensive, and so the calculation was
not run for long enough to obtain a converged projected energy, since the shift was shown to be size consistent. The RMS values correspond to the
root mean square deviation of the diatomic energies from the sum of the atoms. These are all within the average stochastic errors. bAll electron
calculations in cc-pCVXZ basis sets.
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require a relatively long simulation. For the systems considered
here, these simulations were found to use up to four times more
CPU time than would otherwise be expected for a given value
of Nw. Therefore, the actual reduction in computational cost for
the systems that used fewer walkers in the stretched geometry
was not always as significant as implied by the difference in the
values of Nw. Nonetheless, the effects described here provide
insight into the difficulty of these multiconfigurational systems,
with regard to strong correlation and the consequent structure
of the i-FCIQMC solution.
Interpretation of the Dominant Determinants. As

discussed earlier, an advantage of the FCIQMC method is the
clear and simple form of the calculated wave function. As a final
comment on this study, the instantaneous i-FCIQMC wave
functions are examined for each molecule in the series of first
row diatomics, to demonstrate the kind of insight that can be
extracted from such i-FCIQMC simulations. In particular, the
results considered are those obtained for each of the first row
diatomics at their equilibrium geometries, using RHF orbitals in
cc-pVDZ basis sets. Shown in Table 5 are the one or two
configurations with significant and outstanding instantaneous
walker populations, once the i-FCIQMC simulation had
reached an equilibrium. The approximate coefficients to
which these correspond are then presented in parentheses.
Two points are of note with regard to this discussion. First,

the dominant determinants and their contributions are not

orbitally invariant. However, some comparisons may still be
made to previous calculations similarly performed in an RHF
basis. Second, only the determinants with outlying dominant
populations are presented in Table 5. While these clearly make
significant contributions to the wave function, the more
abundant determinants with smaller coefficients can also be
crucial for the accurate description of a system. Known
examples where these are particularly important include Be2
and N2. Nonetheless, examination of the highly populated
configurations can provide interesting chemical insight and
verify the appearance of known characteristics of the wave
function.
In general, the highly populated determinants, which are

dynamically identified by the i-FCIQMC algorithm, are in
agreement with previous studies.71,125−130 For example, the
second σ-bound configuration apparent for C2 is known to be
crucial for an accurate description of its dissociation. C2
presents a particular challenge for CC methods, even at its
equilibrium geometry, and this is in part due to its inability to
accurately capture the contribution from this second config-
uration.71 This second dominant determinant also suggests the
C2 bond may be stronger than it appears when only the double
π bond RHF determinant is used as a reference.131

Similarly, the coefficient of the RHF determinant for CN is in
good agreement with values previously reported.130 Whereas, to
the authors' knowledge, no FCI study of this nature has been

Figure 6. Instantaneous snapshots of the absolute initiator populations, once the i-FCIQMC simulation has acquired 50 000 walkers on the HF
determinant and the shift has been allowed to change. These are compared between the equilibrium and stretched geometry, for each of the first row
diatomics in VDZ basis sets. The initiator determinants have been ordered by their occupations. The systems shown on the left require fewer walkers
to achieve the required HF determinant population at the stretched geometry, whereas, for those on the right, Nw is smaller at equilibrium.
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performed yet for NO. The results presented here suggest that
as well as the RHF determinant, a second configuration with
the 2πy pair of electrons excited to the 2πy* orbital, also makes
a significant contribution to its final wave function.
A system that is notoriously difficult to describe is Be2. While

the RHF determinant alone has a bond order of zero, Table 5
shows that a second bonding configuration makes a substantial
contribution when the multireference i-FCIQMC method is
used to describe the equilibrium wave function. Experimental
results likewise find Be2 to be bound, if somewhat
weakly.132−136 However, previous studies suggest the static
correlation captured by the 2s and 2p orbitals alone is
insufficient to accurately describe the dissociation energy. The
accuracy of the i-FCIQMC results shown in Table 2 therefore
suggests that, as well as identifying the dominant determinants
noted in Table 5, the i-FCIQMC algorithm is also effectively
capturing the remaining transitions between the 2s and 2p
orbitals, as well as the additional dynamic correlation that is
crucial to the dissociation energy of Be2.
Similarly, a UHF description of F2 finds it to be unbound.128

The accuracy of the i-FCIQMC dissociation energies obtained
for F2 is thus further evidence of the ability to capture dynamic
correlation with i-FCIQMC. Furthermore, both the dominant
determinants shown in Table 5 for F2 have been previously
found to be necessary as a reference state for CEEIS
calculations.129 The second antibonding configuration may
contribute to the relatively long equilibrium bond length
observed for F2.
Finally, it should also be noted that although only one

configuration is recorded as dominant for N2, nine determi-
nants are present in the instantaneous i-FCIQMC wave
function with walker populations between 3000 and 7000.128

These are single or double excitations from the RHF reference.
While such configurations are not included in Table 5 for
clarity, they suggest equilibrium N2 is still a relatively
multiconfigurational system, as indicated by previous studies.

■ CONCLUSION

The recently developed i-FCIQMC method was applied here
to a series of first row diatomics, which are known to be
difficult to accurately describe using ab initio electronic
structure techniques. When applied in a relatively black box
manner, i-FCIQMC was shown to achieve converged energies,
which are considered to be within stochastic errors of the FCI
limit. It was shown that in the i-FCIQMC method, while in an
undersampled simulation the instantaneous distribution of
walkers can be far from an eigenfunction, the time-averaged
distribution of walkers nevertheless accurately reproduces
the ground-state wave function and energy. The accuracy of
the i-FCIQMC results for the equilibrium diatomics was then
evaluated through calculation of each dissociation energy.
These were generally obtained to within stochastic errors of the
experimental results, once basis set errors were accounted for
by pseudo F12 corrections or extrapolation to the CBS limit.
The diatomics were then stretched toward dissociation to

provide a series of more multiconfigurational systems in which
to investigate the applicability of i-FCIQMC. The results
demonstrate that size consistency is maintained, even when the
instantaneous i-FCIQMC distribution of walkers sample only a
small fraction of the total space. Furthermore, comparison of
the stretched diatomic calculations to their equilibrium
counterparts reveals different properties of these strongly
correlated wave functions, which can be more or less
favorable for an i-FCIQMC simulation. Finally, consideration

Table 5. Walker Populations (Ni(τ)) and Approximate Coefficients (Ci(τ)) of the Dominant Determinants in a Series of
Instantaneous Equilibrated i-FCIQMC Wavefunctionsa

system dominant determinant (Di) Ni(τ) (Ci(τ))

Be2
†b core4(2σg)

2(2σu*)
2(αβ)4 50375 (0.89)

Be2
†b core4(2σg)

2(3σg)
2(αβ)4 14212 (0.25)

Be2
†b D3, D4, ..., DNocc

<5500 (<0.10)

C2 core4(2σg)
2(2σu*)

2(1πu)
4(αβ)6 50532 (0.83)

C2 core4(2σg)
2(3σg)

2(1πu)
4(αβ)6 20041 (0.33)

C2 D3, D4, ..., DNocc
<7500 (<0.12)

CN core4(2σ)2(2σ*)2(3σ)(1π)4(αβ)6α 50221 (0.90)
CN core4(2σ)2(2σ*)(3σ)2(1π)4(αβ)6α 11435 (0.20)
CN D3, D4, ..., DNocc

<5800 (<0.10)

CO core4(2σ)2(2σ*)2(3σ)2(1π)4(αβ)7 50384 (0.94)
CO D2, D3, ..., DNocc

<4800 (<0.09)

N2 core4(2σg)
2(2σu*)

2(3σg)
2(1πu)

4(αβ)7 50361 (0.92)
N2 D2, D3, ..., DNocc

<7000 (<0.13)

NO core4(2σ)2(2σ*)2(3σ)2(1π)4(1π*)(αβ)7α 50287 (0.93)
NO core4(2σ)2(2σ*)2(3σ)2(1π)2(1π*)3(αβ)7α 6880 (0.13)
NO D3, D4, ..., DNocc

<7000 (<0.08)

O2 core4(2σg)
2(2σu*)

2(3σg)
2(1πu)

4(1πg*)
2(αβ)7α2 49941 (0.94)

O2 core4(2σg)
2(2σu*)

2(3σg)
2(1πu)

2(1πg*)
4(αβ)7α2 6077 (0.11)

O2 D3, D4, ..., DNocc
<3100 (<0.06)

F2 core4(2σg)
2(2σu*)

2(3σg)
2(1πu)

4(1πg*)
4(αβ)9 50183 (0.94)

F2 core4(2σg)
2(2σu*)

2(3σu*)
2(1πu)

4(1πg*)
4(αβ)9 10463 (0.20)

F2 D3, D4, ..., DNocc
<2900 (<0.05)

aThese are recorded for each of the first row diatomics in the series investigated here, at their equilibrium geometries using a cc-pVDZ basis set. bAll
electron calculations in a cc-pCVDZ basis set.
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of the i-FCIQMC wave functions themselves demonstrates the
ability of i-FCIQMC to relatively easily identify the most
significant determinants that contribute to static correlation.
The simple and clear form of the calculated wave function was
then used to obtain insight into the structure and difficulty of
each diatomic.
To conclude, the i-FCIQMC method is shown to provide an

accurate and consistent description of both the static and
dynamic correlation effects present throughout the series of
first row diatomics investigated here. Furthermore, the
efficiency and highly parallelizable nature of the i-FCIQMC
algorithm allows these results to be achieved with tractable
computational cost. This study therefore suggests that with
continued development and optimization, the i-FCIQMC
method may be expected to provide valuable insight into a
range of interesting systems.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: asa10@cam.ac.uk.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to thank Sandeep Sharma and Garnet
Chan for making us aware of an error in ref 11, which is
corrected here. The authors would also like to thank the Woolf
Fisher Trust, the Cambridge Home and EU Scholarship
scheme, EPSRC, and Trinity College Cambridge, for funding.
The calculations were performed on the facilities of the Swiss
National Supercomputing Centre (CSCS).

■ REFERENCES
(1) Feller, D.; Sordo, J. A. J. Chem. Phys. 2000, 113, 485.
(2) Feller, D.; Peterson, K. A. J. Chem. Phys. 1998, 108, 154.
(3) Bak, K. L.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Gauss, J. Chem.
Phys. Lett. 2000, 317, 116.
(4) Schmidt, M. W.; Lam, M. T. B.; Elbert, S. T.; Ruedenberg, K.
Theor. Chim. Acta 1985, 68, 69.
(5) Peterson, K. A.; Wilson, A. K.; Woon, D. E.; Dunning, T. H., Jr.
Theor. Chim. Acta 1997, 97, 251.
(6) Abrams, M.; Sherrill, C. J. Chem. Phys. 2004, 121, 9211.
(7) Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131,
054106.
(8) Cleland, D.; Booth, G. H.; Alavi, A. J. Chem. Phys. 2010, 132,
041103.
(9) Booth, G. H.; Alavi, A. J. Chem. Phys. 2010, 132, 174104.
(10) Cleland, D. M.; Booth, G. H.; Alavi, A. J. Chem. Phys. 2011, 134,
024112.
(11) Booth, G. H.; Cleland, D.; Thom, A. J. W.; Alavi, A. J. Chem.
Phys. 2011, 135, 084104.
(12) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(13) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.;
Olsen, J.; Wilson, A. K. Chem. Phys. Let. 1998, 286, 243.
(14) Shepherd, J. J.; Booth, G. H.; Gruneis, A.; Alavi, A. Phys. Rev. B
2012, 85, 081103.
(15) Shavitt, I. Mol. Phys. 1998, 94, 3.
(16) Sherrill, C. D.; Schaefer, H. F., III Adv. Quantum Chem. 1999,
34, 143.
(17) Bauschlicher, C. W.; Taylor, P. R. J. Chem. Phys. 1986, 85, 2779.
(18) Larsen, H.; Olsen, J.; Jørgensen, P.; Christiansen, O. J. Chem.
Phys. 2000, 113, 6677.
(19) Sherrill, C. D.; Piecuch, P. J. Chem. Phys. 2005, 122, 124104.
(20) Chaudhuri, R. K.; Freed, K. F. J. Chem. Phys. 2005, 122, 154310.
(21) Knowles, P. J.; Handy, N. C. Chem. Phys. Lett. 1984, 111, 3159.

(22) Olsen, J.; Roos, B. O.; Jørgensen, P.; Jensen, H. J. A. J. Chem.
Phys. 1988, 89, 2185.
(23) Harrison, R. J. Chem. Phys. 1991, 94, 5021.
(24) Povill, A.; Rubio, J.; Illas, F. Theor. Chim. Acta 1992, 82, 229.
(25) Sherrill, C. D.; Schaefer, H. F., III J. Phys. Chem. 1996, 100,
6069.
(26) Ivanic, J.; Ruedenberg, K. Theor. Chem. Acc. 2001, 106, 339.
(27) Shepard, R. J. Phys. Chem. A. 2006, 110, 8880.
(28) Ivanic, J. J. Chem. Phys. 2003, 119, 9364.
(29) Ivanic, J. J. Chem. Phys. 2003, 119, 9377.
(30) Bunge, C. F. J. Chem. Phys. 2006, 125, 014107.
(31) Coester, F. Nucl. Phys. 1958, 7, 421.
(32) Coester, F.; Kummel, H. Nucl. Phys. 1960, 17, 477.
(33) Cizek, J. J. Chem. Phys. 1966, 45, 4256.
(34) Bartlett, R. J. Annu. Rev. Phys. Chem. 1981, 32, 359.
(35) Bartlett, R. J. J. Phys. Chem. 1989, 93, 1697.
(36) Crawford, T. D.; Schaefer, H. F., III Rev. Comput. Chem. 2000,
14, 33.
(37) Kowalski, K.; Piecuch, P. J. Chem. Phys. 2000, 113, 18.
(38) Piecuch, P.; Kowalski, K.; Pimienta, I. S. O.; Fan, P.-D.;
Lodriguito, M.; McGuire, M. J.; Kucharski, S. A.; Ku, T.; Musia, M.
Theor. Chem. Acc. 2004, 112, 349.
(39) Krylov, A. I. Acc. Chem. Res. 2006, 39, 83.
(40) Krylov, A. I.; Sherrill, C. D. J. Chem. Phys. 2002, 116, 3194.
(41) Nooijen, M.; Le Roy, R. J. J. Mol. Struct.: THEOCHEM 2006,
768, 25.
(42) Musia, M.; Bartlett, R. J. J. Chem. Phys. 2005, 122, 224102.
(43) Bartlett, R. J.; Musia, M. J. Chem. Phys. 2006, 125, 204105.
(44) Chattopadhyay, S.; Pahari, D.; Mukherjee, D.; Mahapatra, U. S.
J. Chem. Phys. 2004, 120, 5968.
(45) Evangelista, F. A.; Allen, W. D.; Schaefer, H. F., III J. Chem. Phys.
2007, 127, 024102.
(46) Li, X.; Paldus, J. J. Chem. Phys. 1998, 108, 637.
(47) Li, X.; Paldus, J. J. Chem. Phys. 2006, 124, 174101.
(48) Piecuch, P.; Oliphant, N.; Adamowicz, L. J. Chem. Phys. 1993,
99, 1875.
(49) Ivanov, V. V.; Adamowicz, L.; Lyakh, D. I. Int. J. Quantum Chem.
2006, 106, 2875.
(50) Lyakh, D. I.; Musial, M.; Lotrich, V. F.; Bartlett, R. J. Chem. Rev.
2012, 112, 182.
(51) Roos, B. O. Adv. Chem. Phys. 1987, 69, 399.
(52) Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T.
Chem. Phys. 1982, 71, 41.
(53) Schmidt, M. W.; Gordon, M. S. Annu. Rev. Phys. Chem. 1998, 49,
233.
(54) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803.
(55) Hirao, K. Chem. Phys. Lett. 1992, 190, 374.
(56) Nakano, H. J. Chem. Phys. 1993, 99, 7983.
(57) Roos, B. O.; Linse, P.; Siegbahn, P. E. M.; Blomberg, M. R. A.
Chem. Phys. 1982, 66, 197.
(58) Werner, H.-J. Mol. Phys. 1996, 89, 645.
(59) Celani, P.; Stoll, H.; Werner, H.-J.; Knowles, P. J. Mol. Phys.
2004, 102, 2369.
(60) White, S. R. Phys. Rev. Lett. 1992, 69, 2863.
(61) White, S. R.; Martin, R. L. J. Chem. Phys. 1999, 110, 4127.
(62) Mitrushenkov, A. O.; Linguerri, R.; Palmieri, P.; Fano, G. J.
Chem. Phys. 2003, 119, 4148.
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(89) Haẗtig, C.; Tew, D. P.; Köhn, A. J. Chem. Phys. 2010, 132,
231102.
(90) Klopper, W.; Manby, F. R.; Ten-No, S.; Valeev, E. F. Int. Rev.
Phys. Chem. 2006, 25, 427.
(91) Torheyden, M.; Valeev, E. F. J. Chem. Phys. 2009, 131, 171103.
(92) Ten-no, S. Chem. Phys. Lett. 2007, 447, 175.
(93) Yanai, T.; Shiozaki, T. J. Chem. Phys. 2012, 136, 084107.
(94) Pople, J. A. Rev. Mod. Phys. 1999, 71, 1267.
(95) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.;
Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.
(96) Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople,
J. A. J. Chem. Phys. 1990, 93, 2537.
(97) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J.
Chem. Phys. 1991, 94, 7221.
(98) Martin, J. M. L.; De Oliveira, G. J. Chem. Phys. 1999, 111, 1843.
(99) Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kallay,
M.; Gauss, J. J. Chem. Phys. 2004, 120, 4129.
(100) Rossi, E.; Bendazzoli, G. L.; Evangelisti, S.; Maynau, D. Chem.
Phys. Lett. 1999, 310, 530.
(101) Greer, J. C. J. Chem. Phys. 1995, 103, 1821.
(102) Troparevsky, M.; Franceschetti, A. J. Phys.: Condens. Matter
2008, 20, 055211.
(103) Sambataro, M.; Gambacurta, D.; Monaco, L. L. Phys. Rev. B
2011, 83, 045102.
(104) Spencer, J. S.; Blunt, N. S.; Foulkes, W. M. C. J. Chem. Phys.
2012, 136, 054110.
(105) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular
Structure: Constants of Diatomic; Van Nostrand Reinhold: New York,
1979; pp 112−490.
(106) Merritt, J. M.; Bondybey, V. E.; Heaven, M. C. Science 2009,
324, 1548.
(107) Flyvbjerg, H.; Petersen, H. G. J. Chem. Phys. 1989, 91, 461.
(108) Knowles, P. J.; Handy, N. C. Comput. Phys. Commun. 1989, 54,
75.
(109) Werner, H.-J.; Knowles, P. J.; Manby, F. R.; Schütz, M.; et al.
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