************************************************************************ *************** Dalton - An Electronic Structure Program *************** ************************************************************************ This is output from DALTON release Dalton2017.alpha (2017) ( Web site: http://daltonprogram.org ) ---------------------------------------------------------------------------- NOTE: Dalton is an experimental code for the evaluation of molecular properties using (MC)SCF, DFT, CI, and CC wave functions. The authors accept no responsibility for the performance of the code or for the correctness of the results. The code (in whole or part) is provided under a licence and is not to be reproduced for further distribution without the written permission of the authors or their representatives. See the home page "http://daltonprogram.org" for further information. If results obtained with this code are published, the appropriate citations would be both of: K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen, J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Agren, "The Dalton quantum chemistry program system", WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172) and Dalton, a Molecular Electronic Structure Program, Release Dalton2017.alpha (2017), see http://daltonprogram.org ---------------------------------------------------------------------------- Authors in alphabetical order (major contribution(s) in parenthesis): Kestutis Aidas, Vilnius University, Lithuania (QM/MM) Celestino Angeli, University of Ferrara, Italy (NEVPT2) Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties) Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection) Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks) Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies) Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems) Ove Christiansen, Aarhus University, Denmark (CC module) Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2) Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS) Janusz Cukras, University of Trieste, Italy (MChD in RESPONS) Paal Dahle, University of Oslo, Norway (Parallelization) Erik K. Dalskov, UNI-C, Denmark (SOPPA) Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA) Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA) Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA) Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS) Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response) Heike Fliegl, University of Oslo, Norway (CCSD(R12)) Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM) Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library) Christof Haettig, Ruhr-University Bochum, Germany (CC module) Kasper Hald, Aarhus University, Denmark (CC module) Asger Halkier, Aarhus University, Denmark (CC module) Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA) Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals) Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more) Alf Christian Hennum, University of Oslo, Norway (Parity violation) Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry) Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition) Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA) Maria Francesca Iozzi, University of Oslo, Norway (RPA) Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response) Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more) Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module) Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules) Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS) Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module) Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals) Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules) Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF) Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF) Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition) Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA) Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model) Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian) Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings) Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM) Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2) Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12)) Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM) Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS) Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules) Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Anders Osted, Copenhagen University, Denmark (QM/MM) Martin J. Packer, University of Sheffield, UK (SOPPA) Filip Pawlowski, Kazimierz Wielki University, Poland (CC3) Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model) Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition) Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals) Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR) Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info) Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS) Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more) Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code) Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI) Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition) Trond Saue, Paul Sabatier University, France (direct Fock matrix construction) Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors) Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module) Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM) Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model) Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model) K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF) Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation) Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D) David P. Tew, University of Bristol, England (CCSD(R12)) Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT) David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities) Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model) -------------------------------------------------------------------------------- Date and time (Linux) : Wed Oct 9 09:36:10 2019 Host name : nazare079.cluster * Work memory size : 6400000000 = 47.684 gigabytes. * Directories for basis set searches: 1) /home/CEISAM/jacquemin-d/TITOU/N2/TZ-FC 2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis Compilation information ----------------------- Who compiled | blondel-a Host | jaws.cluster System | Linux-3.10.0-862.9.1.el7.x86_64 CMake generator | Unix Makefiles Processor | x86_64 64-bit integers | ON MPI | OFF Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi | ne-dependant/soft/intel/2018.3.022/compilers_and_l | ibraries_2018.3.222/linux/bin/intel64/ifort Fortran compiler version | ifort (IFORT) 18.0.3 20180410 C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi | ne-dependant/soft/intel/2018.3.022/compilers_and_l | ibraries_2018.3.222/linux/bin/intel64/icc C compiler version | icc (ICC) 18.0.3 20180410 C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi | ne-dependant/soft/intel/2018.3.022/compilers_and_l | ibraries_2018.3.222/linux/bin/intel64/icpc C++ compiler version | icpc (ICC) 18.0.3 20180410 Static linking | ON Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083 Git branch | master Configuration time | 2018-07-26 15:11:23.544354 Content of the .dal input file ---------------------------------- **DALTON INPUT .RUN WAVE FUNCTIONS **INTEGRALS .DIPLEN .DEROVL .DERHAM **WAVE FUNCTIONS .CC *CC INP .CC2 .CCSD .CC3 .FREEZE 2 0 *CCEXCI .NCCEXCI 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 **END OF DALTON INPUT Content of the .mol file ---------------------------- BASIS cc-pVTZ N2/Scan Dalton Run w/o symmetry AtomTypes=1 Charge=0 Cartesian Charge=7.0 Atoms=2 N 0.0000000 0.0000000000 0.000 N 0.00000000 0.0000000000 3.500 ******************************************************************* *********** Output from DALTON general input processing *********** ******************************************************************* -------------------------------------------------------------------------------- Overall default print level: 0 Print level for DALTON.STAT: 1 HERMIT 1- and 2-electron integral sections will be executed "Old" integral transformation used (limited to max 255 basis functions) Wave function sections will be executed (SIRIUS module) -------------------------------------------------------------------------------- **************************************************************************** *************** Output of molecule and basis set information *************** **************************************************************************** The two title cards from your ".mol" input: ------------------------------------------------------------------------ 1: N2/Scan 2: Dalton Run w/o symmetry ------------------------------------------------------------------------ Atomic type no. 1 -------------------- Nuclear charge: 7.00000 Number of symmetry independent centers: 2 Number of basis sets to read; 2 Basis set file used for this atomic type with Z = 7 : "/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ" SYMADD: Requested addition of symmetry -------------------------------------- Symmetry test threshold: 5.00E-06 @ The molecule is centered at center of mass and rotated @ so principal axes of inertia are along coordinate axes. Symmetry class found: D(oo,h) Symmetry Independent Centres ---------------------------- 7 : 0.00000000 0.00000000 1.75000000 Isotope 1 The following elements were found: X Y Z SYMGRP: Point group information ------------------------------- @ Full point group is: D(oo,h) @ Represented as: D2h @ * The irrep name for each symmetry: 1: Ag 2: B3u 3: B2u 4: B1g 5: B1u 6: B2g 7: B3g 8: Au * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag Isotopic Masses --------------- N _1 14.003074 N _2 14.003074 Total mass: 28.006148 amu Natural abundance: 99.261 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 2 Basis set used is "cc-pVTZ" from the basis set library. label atoms charge prim cont basis ---------------------------------------------------------------------- N 2 7.0000 47 35 [10s5p2d1f|4s3p2d1f] ---------------------------------------------------------------------- total: 2 14.0000 94 70 ---------------------------------------------------------------------- Cartesian basis used. (Note that d, f, ... atomic GTOs are not all normalized.) Threshold for neglecting AO integrals: 1.00D-12 Cartesian Coordinates (a.u.) ---------------------------- Total number of coordinates: 6 N / 1 : 1 x 0.0000000000 2 y 0.0000000000 3 z 1.7500000000 N / 2 : 4 x 0.0000000000 5 y 0.0000000000 6 z -1.7500000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 Symmetry Ag ( 1) 1 N z [ 3 - 6 ]/2 Symmetry B3u ( 2) 2 N x [ 1 + 4 ]/2 Symmetry B2u ( 3) 3 N y [ 2 + 5 ]/2 Symmetry B1u ( 5) 4 N z [ 3 + 6 ]/2 Symmetry B2g ( 6) 5 N x [ 1 - 4 ]/2 Symmetry B3g ( 7) 6 N y [ 2 - 5 ]/2 Interatomic separations (in Angstrom): -------------------------------------- N _1 N _2 ------ ------ N _1: 0.000000 N _2: 1.852120 0.000000 Max interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr) between atoms 2 and 1, "N _2" and "N _1". Min YX interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr) Bond distances (Angstrom): -------------------------- atom 1 atom 2 distance ------ ------ -------- Principal moments of inertia (u*A**2) and principal axes -------------------------------------------------------- IA 0.000000 0.000000 0.000000 1.000000 IB 24.017718 0.000000 1.000000 0.000000 IC 24.017718 1.000000 0.000000 0.000000 Rotational constants -------------------- @ The molecule is linear. B = 21041.92 MHz ( 0.701883 cm-1) @ Nuclear repulsion energy : 14.000000000000 Hartree Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 16 8 8 3 16 8 8 3 Symmetry Ag ( 1) 1 N s 1 + 2 2 N s 3 + 4 3 N s 5 + 6 4 N s 7 + 8 5 N pz 13 - 14 6 N pz 19 - 20 7 N pz 25 - 26 8 N dxx 27 + 28 9 N dyy 33 + 34 10 N dzz 37 + 38 11 N dxx 39 + 40 12 N dyy 45 + 46 13 N dzz 49 + 50 14 N fxxz 55 - 56 15 N fyyz 65 - 66 16 N fzzz 69 - 70 Symmetry B3u( 2) 17 N px 9 + 10 18 N px 15 + 16 19 N px 21 + 22 20 N dxz 31 - 32 21 N dxz 43 - 44 22 N fxxx 51 + 52 23 N fxyy 57 + 58 24 N fxzz 61 + 62 Symmetry B2u( 3) 25 N py 11 + 12 26 N py 17 + 18 27 N py 23 + 24 28 N dyz 35 - 36 29 N dyz 47 - 48 30 N fxxy 53 + 54 31 N fyyy 63 + 64 32 N fyzz 67 + 68 Symmetry B1g( 4) 33 N dxy 29 + 30 34 N dxy 41 + 42 35 N fxyz 59 - 60 Symmetry B1u( 5) 36 N s 1 - 2 37 N s 3 - 4 38 N s 5 - 6 39 N s 7 - 8 40 N pz 13 + 14 41 N pz 19 + 20 42 N pz 25 + 26 43 N dxx 27 - 28 44 N dyy 33 - 34 45 N dzz 37 - 38 46 N dxx 39 - 40 47 N dyy 45 - 46 48 N dzz 49 - 50 49 N fxxz 55 + 56 50 N fyyz 65 + 66 51 N fzzz 69 + 70 Symmetry B2g( 6) 52 N px 9 - 10 53 N px 15 - 16 54 N px 21 - 22 55 N dxz 31 + 32 56 N dxz 43 + 44 57 N fxxx 51 - 52 58 N fxyy 57 - 58 59 N fxzz 61 - 62 Symmetry B3g( 7) 60 N py 11 - 12 61 N py 17 - 18 62 N py 23 - 24 63 N dyz 35 + 36 64 N dyz 47 + 48 65 N fxxy 53 - 54 66 N fyyy 63 - 64 67 N fyzz 67 - 68 Symmetry Au ( 8) 68 N dxy 29 - 30 69 N dxy 41 - 42 70 N fxyz 59 + 60 Symmetries of electric field: B3u(2) B2u(3) B1u(5) Symmetries of magnetic field: B3g(7) B2g(6) B1g(4) .---------------------------------------. | Starting in Integral Section (HERMIT) | `---------------------------------------' *************************************************************************************** ****************** Output from **INTEGRALS input processing (HERMIT) ****************** *************************************************************************************** ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 * Nuclear model: Point charge Calculation of one- and two-electron Hamiltonian integrals. The following one-electron property integrals are calculated as requested: - overlap integrals - dipole length integrals - Geometrical derivatives of overlap integrals - Geometrical derivatives of one-electron Hamiltonian integrals Center of mass (bohr): 0.000000000000 0.000000000000 0.000000000000 Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000 Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000 Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000 ************************************************************************ ************************** Output from HERINT ************************** ************************************************************************ Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Threshold for neglecting two-electron integrals: 1.00D-12 HERMIT - Number of two-electron integrals written: 405067 ( 13.1% ) HERMIT - Megabytes written: 4.644 Time used in TWOINT is 0.31 seconds Total CPU time used in HERMIT: 0.33 seconds Total wall time used in HERMIT: 0.10 seconds .----------------------------------. | End of Integral Section (HERMIT) | `----------------------------------' .--------------------------------------------. | Starting in Wave Function Section (SIRIUS) | `--------------------------------------------' NCCEXCI for singlet: 3 3 3 3 3 3 3 3 NCCEXCI for triplet: 3 3 3 3 3 3 3 3 *** Output from Huckel module : Using EWMO model: F Using EHT model: T Number of Huckel orbitals each symmetry: 3 1 1 0 3 1 1 0 Huckel EHT eigenvalues for symmetry : 1 -15.668002 -1.105505 -0.551277 Huckel EHT eigenvalues for symmetry : 2 -0.557398 Huckel EHT eigenvalues for symmetry : 3 -0.557398 Huckel EHT eigenvalues for symmetry : 5 -15.668055 -0.894753 -0.390008 Huckel EHT eigenvalues for symmetry : 6 -0.460002 Huckel EHT eigenvalues for symmetry : 7 -0.460002 ********************************************************************** *SIRIUS* a direct, restricted step, second order MCSCF program * ********************************************************************** Date and time (Linux) : Wed Oct 9 09:36:10 2019 Host name : nazare079.cluster Title lines from ".mol" input file: N2/Scan Dalton Run w/o symmetry Print level on unit LUPRI = 2 is 0 Print level on unit LUW4 = 2 is 5 @ (Integral direct) CC calculation. @ This is a combination run starting with @ a restricted, closed shell Hartree-Fock calculation Initial molecular orbitals are obtained according to ".MOSTART EHT " input option Wave function specification ============================ For the specification of the Coupled Cluster: see later. @ Wave function type --- CC --- @ Number of closed shell electrons 14 @ Number of electrons in active shells 0 @ Total charge of the molecule 0 @ Spin multiplicity and 2 M_S 1 0 @ Total number of symmetries 8 (point group: D2h) @ Reference state symmetry 1 (irrep name : Ag ) Orbital specifications ====================== @ Abelian symmetry species All | 1 2 3 4 5 6 7 8 @ | Ag B3u B2u B1g B1u B2g B3g Au --- | --- --- --- --- --- --- --- --- @ Total number of orbitals 70 | 16 8 8 3 16 8 8 3 @ Number of basis functions 70 | 16 8 8 3 16 8 8 3 ** Automatic occupation of RHF orbitals ** -- Initial occupation of symmetries is determined from extended Huckel guess. -- Initial occupation of symmetries is : @ Occupied SCF orbitals 7 | 3 1 1 0 2 0 0 0 Maximum number of Fock iterations 0 Maximum number of DIIS iterations 60 Maximum number of QC-SCF iterations 60 Threshold for SCF convergence 1.00D-06 Changes of defaults for CC: --------------------------- -Iterative triple excitations included -Implicit frozen core calculation -Excitation energies calculated *********************************************** ***** DIIS acceleration of SCF iterations ***** *********************************************** C1-DIIS algorithm; max error vectors = 8 Automatic occupation of symmetries with 14 electrons. Iter Total energy Error norm Delta(E) SCF occupation ----------------------------------------------------------------------------- Calculating AOSUPINT (Precalculated AO two-electron integrals are transformed to P-supermatrix elements. Threshold for discarding integrals : 1.00D-12 ) @ 1 -108.362717951 1.27D+00 -1.08D+02 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.007726 @ MULPOP N _1 -0.00; N _2 -0.00; 1 Level shift: doubly occupied orbital energies shifted by -2.00D-01 ----------------------------------------------------------------------------- @ 2 -108.441093644 2.15D-01 -7.84D-02 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.012352 @ MULPOP N _1 -0.00; N _2 -0.00; 2 Level shift: doubly occupied orbital energies shifted by -5.00D-02 ----------------------------------------------------------------------------- @ 3 -108.443961760 5.30D-02 -2.87D-03 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.011077 @ MULPOP N _1 0.00; N _2 0.00; 3 Level shift: doubly occupied orbital energies shifted by -1.25D-02 ----------------------------------------------------------------------------- @ 4 -108.444300066 1.14D-02 -3.38D-04 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.010820 @ MULPOP N _1 -0.00; N _2 -0.00; ----------------------------------------------------------------------------- @ 5 -108.444316898 1.71D-03 -1.68D-05 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.010707 @ MULPOP N _1 0.00; N _2 0.00; ----------------------------------------------------------------------------- @ 6 -108.444317185 4.45D-04 -2.87D-07 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.010724 @ MULPOP N _1 0.00; N _2 0.00; ----------------------------------------------------------------------------- @ 7 -108.444317208 6.37D-05 -2.35D-08 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.010719 @ MULPOP N _1 -0.00; N _2 -0.00; ----------------------------------------------------------------------------- @ 8 -108.444317209 6.19D-06 -4.30D-10 3 1 1 0 2 0 0 0 Virial theorem: -V/T = 2.010719 @ MULPOP N _1 0.00; N _2 0.00; ----------------------------------------------------------------------------- @ 9 -108.444317209 5.98D-07 -4.80D-12 3 1 1 0 2 0 0 0 @ *** DIIS converged in 9 iterations ! @ Converged SCF energy, gradient: -108.444317208859 5.98D-07 - total time used in SIRFCK : 0.00 seconds *** SCF orbital energy analysis *** Only the 20 lowest virtual orbital energies printed in each symmetry. Number of electrons : 14 Orbital occupations : 3 1 1 0 2 0 0 0 Sym Hartree-Fock orbital energies 1 Ag -15.82164536 -1.12970334 -0.51439889 0.38388916 0.63009766 1.14522193 1.38620684 1.77526304 2.60464122 3.93540504 4.08090296 4.70727847 5.06690965 5.78312434 8.00638229 11.49999935 2 B3u -0.42793467 0.56965583 1.06145748 2.55029159 3.94768096 4.15631017 4.74800296 5.46662014 3 B2u -0.42793467 0.56965583 1.06145748 2.55029159 3.94768096 4.15631017 4.74800296 5.46662014 4 B1g 1.14522193 4.08090296 4.70727847 5 B1u -15.82127118 -0.95676752 0.07789783 0.47666708 0.75773195 1.30084512 1.86439095 1.96383424 3.31822002 4.25595737 4.72801265 4.79906218 5.47574730 6.89048792 8.66908412 11.74977705 6 B2g -0.07200415 0.64404538 1.60480406 2.72190763 4.17481788 4.44339758 5.14412363 5.64653979 7 B3g -0.07200415 0.64404538 1.60480406 2.72190763 4.17481788 4.44339758 5.14412363 5.64653979 8 Au 1.30084512 4.25595737 4.79906218 E(LUMO) : -0.07200415 au (symmetry 6) - E(HOMO) : -0.42793467 au (symmetry 2) ------------------------------------------ gap : 0.35593053 au --- Writing SIRIFC interface file CPU and wall time for SCF : 0.135 0.026 .-----------------------------------. | --- Final results from SIRIUS --- | `-----------------------------------' @ Spin multiplicity: 1 @ Spatial symmetry: 1 ( irrep Ag in D2h ) @ Total charge of molecule: 0 @ Final HF energy: -108.444317208859 @ Nuclear repulsion: 14.000000000000 @ Electronic energy: -122.444317208859 @ Final gradient norm: 0.000000597989 Date and time (Linux) : Wed Oct 9 09:36:10 2019 Host name : nazare079.cluster INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs File label for MO orbitals: 9Oct19 FOCKDIIS (Only coefficients > 0.0100 are printed.) Molecular orbitals for symmetry species 1 (Ag ) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 N :s 0.7048 -0.0040 0.0039 0.0217 0.0047 -0.0000 0.0442 2 N :s -0.0103 0.6731 0.1605 -0.2463 0.0265 -0.0000 0.3460 3 N :s 0.0026 0.0091 0.0012 -0.5700 0.0999 0.0000 0.0740 4 N :s 0.0006 -0.0475 0.0560 2.3342 -0.1817 -0.0000 -0.3842 5 N :pz -0.0024 -0.0625 0.6366 -0.0408 -0.0151 0.0000 -0.2517 6 N :pz 0.0013 -0.0136 0.0022 -0.1011 -1.2275 -0.0000 -0.3841 7 N :pz 0.0006 0.0055 0.0052 0.1607 0.9799 -0.0000 0.4284 8 N :dxx 0.0008 0.0002 0.0014 -0.0636 0.0084 0.0084 0.0109 9 N :dyy 0.0008 0.0002 0.0014 -0.0636 0.0084 -0.0084 0.0109 10 N :dzz 0.0008 0.0025 -0.0040 -0.0650 0.0157 0.0000 -0.0097 11 N :dxx 0.0014 -0.0006 0.0013 -0.4109 0.0449 -0.3479 0.2268 12 N :dyy 0.0014 -0.0006 0.0013 -0.4109 0.0449 0.3479 0.2268 13 N :dzz 0.0015 0.0087 -0.0185 -0.4271 0.1536 0.0000 -0.3174 14 N :fxxz 0.0001 0.0013 -0.0007 0.0101 0.0792 0.0055 0.0325 15 N :fyyz 0.0001 0.0013 -0.0007 0.0101 0.0792 -0.0055 0.0325 16 N :fzzz 0.0000 0.0001 0.0007 0.0061 0.0824 0.0000 0.0217 Orbital 8 9 10 11 12 13 1 N :s 0.5415 0.0662 0.2351 0.0000 -0.0000 -0.1540 2 N :s 2.6853 0.2083 0.8066 0.0000 -0.0000 -0.4901 3 N :s -0.9496 -0.0282 -0.3207 -0.0000 0.0000 0.2696 4 N :s 1.0818 -0.0414 -0.0427 0.0000 -0.0000 -0.0886 5 N :pz 0.0064 3.0987 -0.5089 -0.0000 -0.0000 0.5278 6 N :pz -0.0291 -4.7147 1.2988 0.0000 0.0000 -2.0942 7 N :pz -0.0637 -0.2487 -0.0803 -0.0000 -0.0000 0.1966 8 N :dxx -0.1329 -0.0094 -0.0993 -0.0283 0.4106 -0.1924 9 N :dyy -0.1329 -0.0094 -0.0993 0.0283 -0.4106 -0.1924 10 N :dzz -0.1401 -0.0043 0.0095 0.0000 0.0000 0.5053 11 N :dxx -0.8613 0.0615 -0.1085 -0.0015 -0.1987 0.2584 12 N :dyy -0.8613 0.0615 -0.1085 0.0015 0.1987 0.2584 13 N :dzz -0.7072 -0.1207 -0.1527 -0.0000 0.0000 -0.1690 14 N :fxxz 0.0110 0.3201 0.1357 -0.3498 -0.0296 0.2176 15 N :fyyz 0.0110 0.3201 0.1357 0.3498 0.0296 0.2176 16 N :fzzz 0.0014 0.3066 -0.3022 -0.0000 0.0000 0.2693 Molecular orbitals for symmetry species 2 (B3u) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 N :px 0.6285 -0.2006 0.1680 -3.1018 -0.3043 0.0000 -0.0889 2 N :px -0.0381 -1.0825 -0.1569 4.7979 0.3331 0.0000 0.2405 3 N :px 0.0709 0.9028 0.0379 0.3940 0.0482 0.0000 0.0273 4 N :dxz -0.0034 -0.0033 -0.0069 0.0086 -0.0513 -0.0000 -0.8187 5 N :dxz -0.0243 0.0333 0.6347 0.0505 -0.0437 0.0000 0.3748 6 N :fxxx 0.0023 0.0764 0.0124 -0.3404 0.1026 -0.1442 -0.0369 7 N :fxyy 0.0023 0.0764 0.0124 -0.3404 0.1026 0.4327 -0.0369 8 N :fxzz 0.0046 0.0728 0.0029 -0.3057 -0.4371 -0.0000 0.0188 Orbital 8 1 N :px -0.8638 2 N :px 4.8809 3 N :px -0.2501 4 N :dxz 0.0118 5 N :dxz 0.0164 6 N :fxxx -0.6801 7 N :fxyy -0.6801 8 N :fxzz -0.7339 Molecular orbitals for symmetry species 3 (B2u) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 N :py 0.6285 -0.2006 0.1680 -3.1018 -0.3043 0.0000 -0.0889 2 N :py -0.0381 -1.0825 -0.1569 4.7979 0.3331 -0.0000 0.2405 3 N :py 0.0709 0.9028 0.0379 0.3940 0.0482 0.0000 0.0273 4 N :dyz -0.0034 -0.0033 -0.0069 0.0086 -0.0513 -0.0000 -0.8187 5 N :dyz -0.0243 0.0333 0.6347 0.0505 -0.0437 0.0000 0.3748 6 N :fxxy 0.0023 0.0764 0.0124 -0.3404 0.1026 0.4327 -0.0369 7 N :fyyy 0.0023 0.0764 0.0124 -0.3404 0.1026 -0.1442 -0.0369 8 N :fyzz 0.0046 0.0728 0.0029 -0.3057 -0.4371 0.0000 0.0188 Orbital 8 1 N :py -0.8638 2 N :py 4.8809 3 N :py -0.2501 4 N :dyz 0.0118 5 N :dyz 0.0164 6 N :fxxy -0.6801 7 N :fyyy -0.6801 8 N :fyzz -0.7339 Molecular orbitals for symmetry species 4 (B1g) ------------------------------------------------ Orbital 1 2 3 1 N :dxy -0.0168 0.0566 0.8211 2 N :dxy 0.6957 0.0030 -0.3974 3 N :fxyz -0.0109 0.6995 -0.0592 Molecular orbitals for symmetry species 5 (B1u) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 N :s 0.7048 -0.0008 0.0083 0.0325 0.1381 0.0000 0.3629 2 N :s -0.0104 0.7303 -0.2308 -0.0841 0.6519 0.0000 1.9182 3 N :s 0.0027 0.0164 -0.0349 -0.4933 0.5953 -0.0000 -1.0852 4 N :s -0.0004 -0.0362 -0.1422 2.0440 -4.7869 0.0000 3.7773 5 N :pz -0.0027 0.1275 0.7429 -0.2857 -0.0773 -0.0000 0.0815 6 N :pz 0.0025 -0.0055 -0.1105 -0.4652 -0.8059 -0.0000 -0.0083 7 N :pz 0.0011 -0.0094 0.3393 0.6200 2.3024 -0.0000 -1.2851 8 N :dxx 0.0008 0.0020 -0.0069 -0.0578 0.0439 0.0043 -0.1340 9 N :dyy 0.0008 0.0020 -0.0069 -0.0578 0.0439 -0.0043 -0.1340 10 N :dzz 0.0009 0.0004 0.0001 -0.0491 0.0629 -0.0000 -0.1278 11 N :dxx 0.0016 0.0045 -0.0216 -0.3411 0.4913 -0.3662 -1.1040 12 N :dyy 0.0016 0.0045 -0.0216 -0.3411 0.4913 0.3662 -1.1040 13 N :dzz 0.0013 0.0012 -0.0119 -0.4211 0.4491 0.0000 -0.6052 14 N :fxxz -0.0001 0.0002 0.0079 0.0263 0.0484 -0.0044 0.0022 15 N :fyyz -0.0001 0.0002 0.0079 0.0263 0.0484 0.0044 0.0022 16 N :fzzz -0.0000 0.0004 0.0067 0.0340 0.0499 0.0000 0.0117 Orbital 8 9 10 11 12 1 N :s -0.4110 0.0123 -0.0000 -0.0182 0.0000 2 N :s -1.8020 0.2278 -0.0000 -0.1520 0.0000 3 N :s 0.2557 -0.1074 -0.0000 0.1754 -0.0000 4 N :s 2.0638 0.6261 0.0000 -1.0510 0.0000 5 N :pz -0.9918 -2.8863 0.0000 0.4374 0.0000 6 N :pz 1.2929 4.3279 -0.0000 -0.0190 -0.0000 7 N :pz -1.2397 0.4372 -0.0000 0.3099 -0.0000 8 N :dxx 0.0581 0.0078 -0.0562 -0.1548 0.4130 9 N :dyy 0.0581 0.0078 0.0562 -0.1548 -0.4130 10 N :dzz 0.0450 -0.0162 -0.0000 0.3843 -0.0000 11 N :dxx -0.0457 -0.1133 0.0147 0.2670 -0.2238 12 N :dyy -0.0457 -0.1133 -0.0147 0.2670 0.2238 13 N :dzz 0.8175 -0.4790 0.0000 -0.0421 0.0000 14 N :fxxz -0.0888 -0.1612 0.3523 0.0952 0.0542 15 N :fyyz -0.0888 -0.1612 -0.3523 0.0952 -0.0542 16 N :fzzz -0.0821 -0.3093 0.0000 -0.1841 0.0000 Molecular orbitals for symmetry species 6 (B2g) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 N :px 0.6998 -0.1637 -0.1123 -3.1888 -0.0000 -0.1595 -0.0614 2 N :px -0.0786 -1.1196 0.3087 4.9113 0.0000 -0.1279 0.7354 3 N :px 0.1412 1.2412 -0.3629 0.2092 0.0000 0.0643 -0.2608 4 N :dxz 0.0016 0.0063 0.0006 0.0054 -0.0000 -0.3963 -0.7614 5 N :dxz 0.0107 0.0146 0.8612 -0.0097 0.0000 0.1323 0.6128 6 N :fxxx 0.0058 0.0754 -0.0237 -0.3222 -0.1444 -0.0500 -0.0495 7 N :fxyy 0.0058 0.0754 -0.0237 -0.3222 0.4333 -0.0500 -0.0495 8 N :fxzz 0.0043 0.0786 0.0002 -0.3561 -0.0000 0.4376 -0.3482 Orbital 8 1 N :px -1.2121 2 N :px 5.5013 3 N :px -0.3175 4 N :dxz 0.0953 5 N :dxz -0.1237 6 N :fxxx -0.7617 7 N :fxyy -0.7617 8 N :fxzz -0.6240 Molecular orbitals for symmetry species 7 (B3g) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 N :py 0.6998 -0.1637 -0.1123 -3.1888 -0.0000 -0.1595 -0.0614 2 N :py -0.0786 -1.1196 0.3087 4.9113 0.0000 -0.1279 0.7354 3 N :py 0.1412 1.2412 -0.3629 0.2092 0.0000 0.0643 -0.2608 4 N :dyz 0.0016 0.0063 0.0006 0.0054 -0.0000 -0.3963 -0.7614 5 N :dyz 0.0107 0.0146 0.8612 -0.0097 0.0000 0.1323 0.6128 6 N :fxxy 0.0058 0.0754 -0.0237 -0.3222 0.4333 -0.0500 -0.0495 7 N :fyyy 0.0058 0.0754 -0.0237 -0.3222 -0.1444 -0.0500 -0.0495 8 N :fyzz 0.0043 0.0786 0.0002 -0.3561 -0.0000 0.4376 -0.3482 Orbital 8 1 N :py -1.2121 2 N :py 5.5013 3 N :py -0.3175 4 N :dyz 0.0953 5 N :dyz -0.1237 6 N :fxxy -0.7617 7 N :fyyy -0.7617 8 N :fyzz -0.6240 Molecular orbitals for symmetry species 8 (Au ) ------------------------------------------------ Orbital 1 2 3 1 N :dxy -0.0086 -0.1124 0.8261 2 N :dxy 0.7323 0.0295 -0.4476 3 N :fxyz 0.0089 0.7047 0.1085 Total CPU time used in SIRIUS : 0.17 seconds Total wall time used in SIRIUS : 0.03 seconds Date and time (Linux) : Wed Oct 9 09:36:10 2019 Host name : nazare079.cluster NOTE: 1 informational messages have been issued. Check output, result, and error files for "INFO". .---------------------------------------. | End of Wave Function Section (SIRIUS) | `---------------------------------------' .------------------------------------------. | Starting in Coupled Cluster Section (CC) | `------------------------------------------' ******************************************************************************* ******************************************************************************* * * * * * START OF COUPLED CLUSTER CALCULATION * * * * * ******************************************************************************* ******************************************************************************* I am freezing! Freezing HF-orbital 1 of symmetry 1 and with orbital energy -15.8216 Freezing HF-orbital 36 of symmetry 5 and with orbital energy -15.8213 In total frozen-core per symmetry-class: 1 0 0 0 1 0 0 0 CCR12 ANSATZ = 0 CCR12 APPROX = 0 ******************************************************************* * * *---------- >---------* *---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------* *---------- >---------* * * ******************************************************************* The Direct Coupled Cluster Energy Program ----------------------------------------- Number of t1 amplitudes : 54 Number of t2 amplitudes : 6861 Total number of amplitudes in ccsd : 6915 Iter. 1: Coupled cluster MP2 energy : -109.2134087326886487 Iter. 1: Coupled cluster CC2 energy : -109.2064380348800654 Iter. 2: Coupled cluster CC2 energy : -109.2756486174575343 Iter. 3: Coupled cluster CC2 energy : -109.3042498283112707 Iter. 4: Coupled cluster CC2 energy : -109.3059229312630549 Iter. 5: Coupled cluster CC2 energy : -109.3065152750227469 Iter. 6: Coupled cluster CC2 energy : -109.3063896408445430 Iter. 7: Coupled cluster CC2 energy : -109.3063932773979161 Iter. 8: Coupled cluster CC2 energy : -109.3064073500886053 Iter. 9: Coupled cluster CC2 energy : -109.3064041061790022 Iter. 10: Coupled cluster CC2 energy : -109.3064050294324545 Iter. 11: Coupled cluster CC2 energy : -109.3064045747782984 Iter. 12: Coupled cluster CC2 energy : -109.3064046115925265 Iter. 13: Coupled cluster CC2 energy : -109.3064046006499268 Iter. 14: Coupled cluster CC2 energy : -109.3064046004472516 CC2 energy converged to within 0.10D-07 is -109.306404600447 Final 2-norm of the CC vector function: 3.75954697D-08 +-------------------------------------------------------+ ! Final results from the Coupled Cluster energy program ! +-------------------------------------------------------+ Total SCF energy: -108.4443172089 Total MP2 energy: -109.2134087327 Total CC2 energy: -109.3064046004 +--------------------------------------------+ ! Calculating singlet intermediates for CCLR ! +--------------------------------------------+ E-intermediates calculated Fock-intermediate calculated ******************************************************************* * * *---------- OUTPUT FROM COUPLED CLUSTER LINEAR RESPONSE >---------* * * *---------- CALCULATION OF EXCITATION ENERGIES >---------* * * ******************************************************************* +--------------------------+ ! CC2 Excitation Energies ! +--------------------------+ -------------------------- Symmetry class Nr.: 1 Multiplicity : 1 -------------------------- Length of Excitation vectors in this class is: 6915 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 1 MULTIPLICITY 1 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.5392980843 14.6750473753 2 0.5969639258 16.2442147453 3 0.6321048920 17.2004490782 Total excited state energies for states of symmetry/spin 1 1 Excitation no. Energy (Hartree) ------------------------------------- @@ 1 1 -108.767106516158947 @@ 1 2 -108.709440674616047 @@ 1 3 -108.674299708409634 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 14.6750 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 72.9290 % Double Excitation Contribution : 27.0710 % ||T1||/||T2|| : 1.6413 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 5 5 | 1 1 | 41 | | -0.825736 | +-----------------------------------------------------------------------------+ | 5 5 1 1 | 1 1 2 1 | 15 1 | 3349 | -0.141656 | | 5 5 1 1 | 1 1 2 2 | 15 15 | 3363 | -0.142642 | | 6 5 2 1 | 1 1 1 1 | 29 1 | 3650 | -0.156782 | | 6 5 2 1 | 1 1 1 2 | 29 15 | 3664 | -0.236980 | | 7 5 3 1 | 1 1 1 1 | 37 1 | 3910 | -0.156781 | | 7 5 3 1 | 1 1 1 2 | 37 15 | 3924 | -0.236979 | | 7 6 3 2 | 1 1 1 1 | 37 29 | 3938 | -0.117030 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9473 Printed all single excitations greater than 0.170797 Printed all double excitations greater than 0.104060 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 16.2442 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 41.2603 % Double Excitation Contribution : 58.7397 % ||T1||/||T2|| : 0.8381 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 1 | 1 2 | 14 | | -0.267861 | | 2 2 | 1 1 | 27 | | 0.353471 | | 3 3 | 1 1 | 34 | | 0.353433 | | 5 5 | 1 1 | 41 | | -0.261056 | +-----------------------------------------------------------------------------+ | 6 6 2 2 | 1 1 1 1 | 29 29 | 3678 | 0.328359 | | 7 6 3 2 | 1 1 1 1 | 37 29 | 3938 | 0.563444 | | 7 7 3 3 | 1 1 1 1 | 37 37 | 3946 | 0.328326 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9606 Printed all single excitations greater than 0.128468 Printed all double excitations greater than 0.153284 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 17.2004 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 35.1793 % Double Excitation Contribution : 64.8207 % ||T1||/||T2|| : 0.7367 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 2 | 1 1 | 27 | | 0.408781 | | 3 3 | 1 1 | 34 | | -0.408780 | +-----------------------------------------------------------------------------+ | 6 6 2 2 | 1 1 1 1 | 29 29 | 3678 | 0.542812 | | 7 7 3 3 | 1 1 1 1 | 37 37 | 3946 | -0.542810 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9610 Printed all single excitations greater than 0.118624 Printed all double excitations greater than 0.161023 -------------------------- Symmetry class Nr.: 1 Multiplicity : 3 -------------------------- Length of Excitation vectors in this class is: 13776 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 1 MULTIPLICITY 3 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.4984245006 13.5628205849 2 0.6217672960 16.9191487804 3 0.6420694940 17.4715996918 Total excited state energies for states of symmetry/spin 1 3 Excitation no. Energy (Hartree) ------------------------------------- @@ 1 1 -108.807980099869695 @@ 1 2 -108.684637304457510 @@ 1 3 -108.664335106407918 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 13.5628 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 92.6197 % Double Excitation Contribution (+/-): 2.4422 % / 4.9381 % ||T1||/||T2|| : 3.5425 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 5 5 | 1 1 | 41 | | -0.937422 | +-----------------------------------------------------------------------------+ | 6 5 2 1 | 1 1 1 1 | 29 1 | (+) 3650 | -0.057811 | | 6 5 2 1 | 1 1 1 1 | 29 1 | (-) 3650 | -0.084545 | | 6 5 2 1 | 1 1 1 2 | 29 15 | (+) 3664 | -0.083175 | | 6 5 2 1 | 1 1 1 2 | 29 15 | (-) 3664 | -0.105377 | | 7 5 3 1 | 1 1 1 1 | 37 1 | (+) 3910 | -0.057811 | | 7 5 3 1 | 1 1 1 1 | 37 1 | (-) 3910 | -0.084545 | | 7 5 3 1 | 1 1 1 2 | 37 15 | (+) 3924 | -0.083175 | | 7 5 3 1 | 1 1 1 2 | 37 15 | (-) 3924 | -0.105377 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9674 Printed all single excitations greater than 0.192478 Printed all double excitations greater than 0.054333 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 16.9191 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 93.7018 % Double Excitation Contribution (+/-): 4.0091 % / 2.2891 % ||T1||/||T2|| : 3.8572 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 1 | 1 1 | 1 | | 0.207396 | | 1 1 | 1 2 | 14 | | 0.894492 | +-----------------------------------------------------------------------------+ | 6 5 2 1 | 1 2 1 2 | 29 16 | (+) 3665 | -0.057724 | | 6 5 2 1 | 1 2 1 2 | 29 16 | (-) 3665 | -0.053703 | | 7 5 3 1 | 1 2 1 2 | 37 16 | (+) 3925 | -0.057724 | | 7 5 3 1 | 1 2 1 2 | 37 16 | (-) 3925 | -0.053703 | | 7 6 3 2 | 1 1 1 1 | 37 29 | (+) 3938 | 0.153913 | | 1 6 5 2 | 1 1 1 1 | 45 29 | (-) 4262 | -0.056106 | | 1 7 5 3 | 1 1 1 1 | 45 37 | (-) 4270 | -0.056106 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9410 Printed all single excitations greater than 0.193599 Printed all double excitations greater than 0.050192 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 17.4716 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 53.4733 % Double Excitation Contribution (+/-): 1.1375 % / 45.3893 % ||T1||/||T2|| : 1.0721 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 2 | 1 1 | 27 | | 0.503990 | | 3 3 | 1 1 | 34 | | -0.503990 | +-----------------------------------------------------------------------------+ | 7 6 3 2 | 1 1 1 1 | 37 29 | (-) 3938 | 0.656197 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9688 Printed all single excitations greater than 0.146251 Printed all double excitations greater than 0.136421 ******************************************************************************* -------------------------- Symmetry class Nr.: 2 Multiplicity : 1 -------------------------- Length of Excitation vectors in this class is: 6244 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 2 MULTIPLICITY 1 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.4530115040 12.3270700869 2 0.6796299318 18.4936711961 3 0.7164797467 19.4964056665 Total excited state energies for states of symmetry/spin 2 1 Excitation no. Energy (Hartree) ------------------------------------- @@ 2 1 -108.853393096447405 @@ 2 2 -108.626774668599765 @@ 2 3 -108.589924853733919 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 12.3271 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 67.4644 % Double Excitation Contribution : 32.5356 % ||T1||/||T2|| : 1.4400 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 1 | 1 2 | 8 | | -0.179632 | | 6 5 | 1 1 | 31 | | -0.786915 | +-----------------------------------------------------------------------------+ | 6 5 1 1 | 7 1 2 1 | 15 1 | 2941 | -0.120701 | | 6 5 1 1 | 5 13 1 1 | 5 13 | 3411 | -0.315050 | | 6 5 1 1 | 5 13 2 1 | 13 13 | 3419 | -0.264315 | | 5 5 2 1 | 13 1 1 1 | 29 1 | 2955 | -0.214338 | | 8 5 3 1 | 1 12 1 1 | 31 12 | 3397 | -0.164180 | | 2 5 5 1 | 4 1 1 1 | 37 1 | 2963 | -0.163493 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9669 Printed all single excitations greater than 0.164273 Printed all double excitations greater than 0.114080 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 18.4937 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 90.9480 % Double Excitation Contribution : 9.0520 % ||T1||/||T2|| : 3.1697 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 2 | 1 1 | 15 | | -0.951475 | +-----------------------------------------------------------------------------+ | 1 1 2 1 | 9 8 1 2 | 23 21 | 783 | 0.060862 | | 6 5 1 1 | 6 12 1 2 | 6 26 | 3932 | 0.134823 | | 5 5 2 1 | 5 10 1 2 | 21 24 | 3867 | 0.082093 | | 5 5 2 1 | 13 10 1 2 | 29 24 | 3875 | 0.068694 | | 5 5 2 1 | 8 11 1 2 | 24 25 | 3910 | 0.095868 | | 2 5 5 1 | 5 11 1 2 | 38 25 | 3924 | 0.145605 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9844 Printed all single excitations greater than 0.190733 Printed all double excitations greater than 0.060173 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 19.4964 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 70.3522 % Double Excitation Contribution : 29.6478 % ||T1||/||T2|| : 1.5404 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 1 | 1 2 | 8 | | 0.722471 | | 6 5 | 1 1 | 31 | | -0.389682 | +-----------------------------------------------------------------------------+ | 6 5 1 1 | 5 13 1 1 | 5 13 | 3411 | 0.325232 | | 6 5 1 1 | 5 13 2 1 | 13 13 | 3419 | 0.287413 | | 5 5 2 1 | 13 1 1 1 | 29 1 | 2955 | -0.137229 | | 5 5 2 1 | 6 14 1 1 | 22 14 | 3468 | -0.118373 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9461 Printed all single excitations greater than 0.167752 Printed all double excitations greater than 0.108900 ******************************************************************************* -------------------------- Symmetry class Nr.: 2 Multiplicity : 3 -------------------------- Length of Excitation vectors in this class is: 12450 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 2 MULTIPLICITY 3 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.4163896123 11.3305377214 2 0.6599655454 17.9585760201 3 0.6908244531 18.7982896147 Total excited state energies for states of symmetry/spin 2 3 Excitation no. Energy (Hartree) ------------------------------------- @@ 2 1 -108.890014988144102 @@ 2 2 -108.646439055086816 @@ 2 3 -108.615580147355885 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 11.3305 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 91.6824 % Double Excitation Contribution (+/-): 2.0865 % / 6.2311 % ||T1||/||T2|| : 3.3200 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 6 5 | 1 1 | 31 | | 0.941344 | +-----------------------------------------------------------------------------+ | 6 5 1 1 | 7 1 2 1 | 15 1 | (-) 2941 | -0.068444 | | 6 5 1 1 | 5 13 1 1 | 5 13 | (-) 3411 | -0.106095 | | 6 5 1 1 | 5 13 2 1 | 13 13 | (+) 3419 | 0.101948 | | 6 5 1 1 | 5 13 2 1 | 13 13 | (-) 3419 | -0.126025 | | 5 5 2 1 | 13 1 1 1 | 29 1 | (-) 2955 | -0.064355 | | 8 5 3 1 | 1 12 1 1 | 31 12 | (-) 3397 | -0.080315 | | 2 5 5 1 | 4 1 1 1 | 37 1 | (+) 2963 | 0.062566 | | 2 5 5 1 | 4 1 1 1 | 37 1 | (-) 2963 | -0.091462 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9753 Printed all single excitations greater than 0.191502 Printed all double excitations greater than 0.057680 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 17.9586 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 96.6869 % Double Excitation Contribution (+/-): 1.0371 % / 2.2761 % ||T1||/||T2|| : 5.4021 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 2 | 1 1 | 15 | | -0.957659 | +-----------------------------------------------------------------------------+ | 6 5 1 1 | 5 13 1 1 | 5 13 | (-) 3411 | 0.046534 | | 6 5 1 1 | 5 13 2 1 | 13 13 | (+) 3419 | -0.037674 | | 6 5 1 1 | 5 13 2 1 | 13 13 | (-) 3419 | 0.038936 | | 6 5 1 1 | 6 12 1 2 | 6 26 | (+) 3932 | 0.058165 | | 6 5 1 1 | 6 12 1 2 | 6 26 | (-) 3932 | -0.063491 | | 5 5 2 1 | 13 10 1 2 | 29 24 | (-) 3875 | -0.036843 | | 5 5 2 1 | 8 11 1 2 | 24 25 | (+) 3910 | 0.042309 | | 5 5 2 1 | 8 11 1 2 | 24 25 | (-) 3910 | -0.044946 | | 2 5 5 1 | 5 11 1 2 | 38 25 | (-) 3924 | -0.058486 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9686 Printed all single excitations greater than 0.196659 Printed all double excitations greater than 0.036404 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 18.7983 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 82.8384 % Double Excitation Contribution (+/-): 4.2098 % / 12.9519 % ||T1||/||T2|| : 2.1970 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 2 | 1 1 | 15 | | -0.254807 | | 2 1 | 1 2 | 8 | | 0.792505 | | 6 5 | 1 1 | 31 | | -0.328816 | +-----------------------------------------------------------------------------+ | 6 5 1 1 | 5 13 1 1 | 5 13 | (-) 3411 | -0.266768 | | 6 5 1 1 | 5 13 2 1 | 13 13 | (+) 3419 | 0.185468 | | 6 5 1 1 | 5 13 2 1 | 13 13 | (-) 3419 | -0.183791 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9698 Printed all single excitations greater than 0.182031 Printed all double excitations greater than 0.082853 ******************************************************************************* -------------------------- Symmetry class Nr.: 3 Multiplicity : 1 -------------------------- Length of Excitation vectors in this class is: 6244 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 3 MULTIPLICITY 1 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.4530115970 12.3270726162 2 0.6796299727 18.4936723077 3 0.7164796228 19.4964022938 Total excited state energies for states of symmetry/spin 3 1 Excitation no. Energy (Hartree) ------------------------------------- @@ 3 1 -108.853393003494872 @@ 3 2 -108.626774627748077 @@ 3 3 -108.589924977676745 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 12.3271 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 67.4644 % Double Excitation Contribution : 32.5356 % ||T1||/||T2|| : 1.4400 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 3 1 | 1 2 | 8 | | -0.179632 | | 7 5 | 1 1 | 31 | | -0.786915 | +-----------------------------------------------------------------------------+ | 7 5 1 1 | 7 1 2 1 | 15 1 | 2941 | -0.120702 | | 7 5 1 1 | 5 13 1 1 | 5 13 | 3411 | -0.264315 | | 7 5 1 1 | 5 13 2 1 | 13 13 | 3419 | -0.315050 | | 5 5 3 1 | 10 1 1 1 | 29 1 | 2955 | -0.163493 | | 5 5 3 1 | 12 12 1 1 | 31 12 | 3397 | -0.164175 | | 3 5 5 1 | 4 1 1 1 | 37 1 | 2963 | -0.214341 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9669 Printed all single excitations greater than 0.164273 Printed all double excitations greater than 0.114080 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 18.4937 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 90.9477 % Double Excitation Contribution : 9.0523 % ||T1||/||T2|| : 3.1697 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 3 | 1 1 | 18 | | -0.951473 | +-----------------------------------------------------------------------------+ | 3 1 1 1 | 2 13 1 2 | 2 26 | 952 | 0.060863 | | 5 5 3 1 | 13 14 1 2 | 32 28 | 4038 | 0.068692 | | 3 5 5 1 | 7 14 1 2 | 40 28 | 4046 | 0.082103 | | 7 6 1 2 | 1 2 2 1 | 9 30 | 4095 | 0.134828 | | 8 6 2 2 | 1 2 1 1 | 17 30 | 4103 | 0.145605 | | 3 6 5 2 | 2 1 1 1 | 35 29 | 4081 | 0.095869 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9844 Printed all single excitations greater than 0.190733 Printed all double excitations greater than 0.060174 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 19.4964 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 70.3514 % Double Excitation Contribution : 29.6486 % ||T1||/||T2|| : 1.5404 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 3 1 | 1 2 | 8 | | 0.722463 | | 7 5 | 1 1 | 31 | | -0.389682 | +-----------------------------------------------------------------------------+ | 7 5 1 1 | 5 13 1 1 | 5 13 | 3411 | 0.287407 | | 7 5 1 1 | 5 13 2 1 | 13 13 | 3419 | 0.325244 | | 5 5 3 1 | 11 14 1 1 | 30 14 | 3476 | -0.118379 | | 3 5 5 1 | 4 1 1 1 | 37 1 | 2963 | -0.137242 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9461 Printed all single excitations greater than 0.167751 Printed all double excitations greater than 0.108901 ******************************************************************************* -------------------------- Symmetry class Nr.: 3 Multiplicity : 3 -------------------------- Length of Excitation vectors in this class is: 12450 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 3 MULTIPLICITY 3 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.4163902139 11.3305540921 2 0.6599659614 17.9585873412 3 0.6908265333 18.7983462211 Total excited state energies for states of symmetry/spin 3 3 Excitation no. Energy (Hartree) ------------------------------------- @@ 3 1 -108.890014386530964 @@ 3 2 -108.646438639047091 @@ 3 3 -108.615578067108217 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 11.3306 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 91.6824 % Double Excitation Contribution (+/-): 2.0865 % / 6.2311 % ||T1||/||T2|| : 3.3200 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 7 5 | 1 1 | 31 | | 0.941344 | +-----------------------------------------------------------------------------+ | 7 5 1 1 | 7 1 2 1 | 15 1 | (-) 2941 | -0.068444 | | 7 5 1 1 | 5 13 1 1 | 5 13 | (-) 3411 | -0.126025 | | 7 5 1 1 | 5 13 2 1 | 13 13 | (-) 3419 | -0.106096 | | 5 5 3 1 | 10 1 1 1 | 29 1 | (-) 2955 | -0.091460 | | 5 5 3 1 | 12 12 1 1 | 31 12 | (-) 3397 | -0.080316 | | 3 5 5 1 | 4 1 1 1 | 37 1 | (-) 2963 | -0.064354 | | 6 6 3 1 | 2 2 1 2 | 16 10 | (+) 5447 | -0.062565 | | 4 6 5 1 | 2 2 1 2 | 24 10 | (+) 5455 | -0.101948 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9753 Printed all single excitations greater than 0.191502 Printed all double excitations greater than 0.057680 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 17.9586 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 96.6871 % Double Excitation Contribution (+/-): 1.0367 % / 2.2762 % ||T1||/||T2|| : 5.4023 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 3 | 1 1 | 18 | | 0.957654 | +-----------------------------------------------------------------------------+ | 7 5 1 1 | 5 13 1 1 | 5 13 | (-) 3411 | -0.038942 | | 7 5 1 1 | 5 13 2 1 | 13 13 | (-) 3419 | -0.046524 | | 5 5 3 1 | 13 14 1 2 | 32 28 | (-) 4038 | 0.036867 | | 7 6 1 2 | 1 2 2 1 | 9 30 | (-) 4095 | 0.063496 | | 8 6 2 2 | 1 2 1 1 | 17 30 | (-) 4103 | 0.058489 | | 3 6 5 2 | 2 1 1 1 | 35 29 | (+) 4081 | -0.042308 | | 3 6 5 2 | 2 1 1 1 | 35 29 | (-) 4081 | 0.044945 | | 4 6 5 1 | 2 2 1 2 | 24 10 | (+) 5455 | -0.037680 | | 8 5 1 2 | 3 8 1 1 | 3 24 | (+) 5784 | 0.058171 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9686 Printed all single excitations greater than 0.196659 Printed all double excitations greater than 0.036403 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 18.7983 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 82.8383 % Double Excitation Contribution (+/-): 4.2097 % / 12.9520 % ||T1||/||T2|| : 2.1970 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 1 3 | 1 1 | 18 | | 0.254795 | | 3 1 | 1 2 | 8 | | -0.792507 | | 7 5 | 1 1 | 31 | | 0.328822 | +-----------------------------------------------------------------------------+ | 7 5 1 1 | 5 13 1 1 | 5 13 | (-) 3411 | 0.183791 | | 7 5 1 1 | 5 13 2 1 | 13 13 | (-) 3419 | 0.266778 | | 4 6 5 1 | 2 2 1 2 | 24 10 | (+) 5455 | 0.185469 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9698 Printed all single excitations greater than 0.182031 Printed all double excitations greater than 0.082853 ******************************************************************************* -------------------------- Symmetry class Nr.: 4 Multiplicity : 1 -------------------------- Length of Excitation vectors in this class is: 5734 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 4 MULTIPLICITY 1 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.6321046476 17.2004424272 2 0.6398613060 17.4115118381 3 0.7112952892 19.3553294024 Total excited state energies for states of symmetry/spin 4 1 Excitation no. Energy (Hartree) ------------------------------------- @@ 4 1 -108.674299952828761 @@ 4 2 -108.666543294469179 @@ 4 3 -108.595109311203231 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 17.2004 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 22.0823 % Double Excitation Contribution : 77.9177 % ||T1||/||T2|| : 0.5324 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 3 | 1 1 | 14 | | 0.323854 | | 3 2 | 1 1 | 7 | | 0.323884 | +-----------------------------------------------------------------------------+ | 8 5 1 1 | 1 2 2 2 | 4 16 | 4665 | 0.460025 | | 6 5 3 1 | 7 1 1 2 | 21 15 | 4657 | 0.400123 | | 8 6 1 2 | 2 6 1 1 | 2 34 | 5113 | 0.459990 | | 7 6 2 2 | 4 6 1 1 | 10 34 | 5121 | 0.400088 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9763 Printed all single excitations greater than 0.093984 Printed all double excitations greater than 0.176542 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 17.4115 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 21.2346 % Double Excitation Contribution : 78.7654 % ||T1||/||T2|| : 0.5192 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 3 | 1 1 | 14 | | 0.317363 | | 3 2 | 1 1 | 7 | | -0.317341 | +-----------------------------------------------------------------------------+ | 8 5 1 1 | 1 2 2 2 | 4 16 | 4665 | -0.434159 | | 6 5 3 1 | 7 1 1 2 | 21 15 | 4657 | -0.434161 | | 8 6 1 2 | 2 6 1 1 | 2 34 | 5113 | 0.434194 | | 7 6 2 2 | 4 6 1 1 | 10 34 | 5121 | 0.434191 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9775 Printed all single excitations greater than 0.092162 Printed all double excitations greater than 0.177500 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 19.3553 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 0.0147 % Double Excitation Contribution : 99.9853 % ||T1||/||T2|| : 0.0121 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 3 | 5 1 | 18 | | 0.008575 | | 3 2 | 5 1 | 11 | | -0.008575 | +-----------------------------------------------------------------------------+ | 8 5 1 1 | 1 2 2 2 | 4 16 | 4665 | -0.499938 | | 6 5 3 1 | 7 1 1 2 | 21 15 | 4657 | 0.499984 | | 8 6 1 2 | 2 6 1 1 | 2 34 | 5113 | 0.499969 | | 7 6 2 2 | 4 6 1 1 | 10 34 | 5121 | -0.499959 | +=============================================================================+ Norm of Printed Amplitude Vector : 1.0000 Printed all single excitations greater than 0.002425 Printed all double excitations greater than 0.199985 ******************************************************************************* -------------------------- Symmetry class Nr.: 4 Multiplicity : 3 -------------------------- Length of Excitation vectors in this class is: 11445 Converging for 3 roots. Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** Start vector guessed from diagonal ... selected element no.*** SYMMETRY CLASS NR. 4 MULTIPLICITY 3 CC2 right excitation energies: ==================================== (conversion factor used: 1 au = 27.2113957 eV) Excitation no. Hartree eV -------------- ------- -- 1 0.6388832366 17.3848972174 2 0.6420696962 17.4716051922 3 0.7117234725 19.3669808627 Total excited state energies for states of symmetry/spin 4 3 Excitation no. Energy (Hartree) ------------------------------------- @@ 4 1 -108.667521363812810 @@ 4 2 -108.664334904271001 @@ 4 3 -108.594681127899975 Analysis of the Coupled Cluster Excitation Vector Number : 1 ------------------------------------------------------------- Excitation Energy : 17.3849 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 51.4377 % Double Excitation Contribution (+/-): 1.0890 % / 47.4734 % ||T1||/||T2|| : 1.0292 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 3 | 1 1 | 14 | | 0.494158 | | 3 2 | 1 1 | 7 | | -0.494066 | +-----------------------------------------------------------------------------+ | 8 5 1 1 | 1 2 2 2 | 4 16 | (-) 4665 | 0.383965 | | 6 5 3 1 | 7 1 1 2 | 21 15 | (-) 4657 | 0.282214 | | 8 6 1 2 | 2 6 1 1 | 2 34 | (-) 5113 | -0.384029 | | 7 6 2 2 | 4 6 1 1 | 10 34 | (-) 5121 | -0.282269 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9708 Printed all single excitations greater than 0.143440 Printed all double excitations greater than 0.139373 Analysis of the Coupled Cluster Excitation Vector Number : 2 ------------------------------------------------------------- Excitation Energy : 17.4716 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 53.4733 % Double Excitation Contribution (+/-): 1.1380 % / 45.3887 % ||T1||/||T2|| : 1.0721 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 3 | 1 1 | 14 | | 0.504007 | | 3 2 | 1 1 | 7 | | 0.503975 | +-----------------------------------------------------------------------------+ | 8 5 1 1 | 1 2 2 2 | 4 16 | (-) 4665 | -0.355645 | | 6 5 3 1 | 7 1 1 2 | 21 15 | (-) 4657 | -0.300530 | | 8 6 1 2 | 2 6 1 1 | 2 34 | (-) 5113 | -0.355671 | | 7 6 2 2 | 4 6 1 1 | 10 34 | (-) 5121 | -0.300549 | +=============================================================================+ Norm of Printed Amplitude Vector : 0.9704 Printed all single excitations greater than 0.146251 Printed all double excitations greater than 0.136421 Analysis of the Coupled Cluster Excitation Vector Number : 3 ------------------------------------------------------------- Excitation Energy : 19.3670 eV CC_PRAM:Overall Contribution of the Different Components -------------------------------------------------------- Single Excitation Contribution : 0.0158 % Double Excitation Contribution (+/-): 0.0000 % / 99.9842 % ||T1||/||T2|| : 0.0126 Norm of Total Amplitude Vector : 1.0000 +=============================================================================+ | symmetry| orbital index | Excitation Numbers | Amplitude | | Index | a b i j | NAI NBJ | NAIBJ | | +=============================================================================+ | 2 3 | 5 1 | 18 | | 0.007941 | | 3 2 | 5 1 | 11 | | 0.007941 | +-----------------------------------------------------------------------------+ | 8 5 1 1 | 1 2 2 2 | 4 16 | (-) 4665 | -0.460799 | | 6 5 3 1 | 7 1 1 2 | 21 15 | (-) 4657 | 0.536212 | | 8 6 1 2 | 2 6 1 1 | 2 34 | (-) 5113 | -0.460846 | | 7 6 2 2 | 4 6 1 1 | 10 34 | (-) 5121 | 0.536286 | +=============================================================================+ Norm of Printed Amplitude Vector : 1.0000 Printed all single excitations greater than 0.002511 Printed all double excitations greater than 0.199984 ******************************************************************************* -------------------------- Symmetry class Nr.: 5 Multiplicity : 1 -------------------------- Length of Excitation vectors in this class is: 6750 Converging for 3 roots. Start vector guessed from diagonal ... selected element no. 29 Start vector guessed from diagonal ... selected element no. 37 Start vector guessed from diagonal ... selected element no. 15 2 3.72372983D-01 8.99901795D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72372983D-01-8.99901795D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785212 2 0.37237298 3 0.37237298 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00899902 3 -0.00899902 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72237854D-01 9.53974489D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72237854D-01-9.53974489D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37223785 3 0.37223785 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00953974 3 -0.00953974 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72224883D-01 9.60862394D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72224883D-01-9.60862394D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222488 3 0.37222488 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00960862 3 -0.00960862 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72234642D-01 9.66964909D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72234642D-01-9.66964909D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37223464 3 0.37223464 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00966965 3 -0.00966965 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72242048D-01 9.67392457D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72242048D-01-9.67392457D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37224205 3 0.37224205 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00967392 3 -0.00967392 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72233141D-01 9.68740808D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72233141D-01-9.68740808D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37223314 3 0.37223314 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00968741 3 -0.00968741 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72235722D-01 9.69319944D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72235722D-01-9.69319944D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37223572 3 0.37223572 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00969320 3 -0.00969320 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72229391D-01 9.69417845D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72229391D-01-9.69417845D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222939 3 0.37222939 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00969418 3 -0.00969418 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72228735D-01 9.69254500D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72228735D-01-9.69254500D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222873 3 0.37222873 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00969255 3 -0.00969255 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72228956D-01 9.69698195D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72228956D-01-9.69698195D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222896 3 0.37222896 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00969698 3 -0.00969698 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72223026D-01 9.70236181D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72223026D-01-9.70236181D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222303 3 0.37222303 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970236 3 -0.00970236 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72220938D-01 9.70759779D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72220938D-01-9.70759779D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222094 3 0.37222094 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970760 3 -0.00970760 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221165D-01 9.70649690D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221165D-01-9.70649690D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222116 3 0.37222116 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970650 3 -0.00970650 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72220562D-01 9.70577219D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72220562D-01-9.70577219D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222056 3 0.37222056 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970577 3 -0.00970577 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72220674D-01 9.70564975D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72220674D-01-9.70564975D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222067 3 0.37222067 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970565 3 -0.00970565 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72220794D-01 9.70573527D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72220794D-01-9.70573527D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222079 3 0.37222079 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970574 3 -0.00970574 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221004D-01 9.70545753D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221004D-01-9.70545753D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222100 3 0.37222100 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970546 3 -0.00970546 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221823D-01 9.70675276D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221823D-01-9.70675276D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222182 3 0.37222182 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970675 3 -0.00970675 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72220709D-01 9.70589754D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72220709D-01-9.70589754D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222071 3 0.37222071 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970590 3 -0.00970590 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221200D-01 9.70549957D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221200D-01-9.70549957D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222120 3 0.37222120 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970550 3 -0.00970550 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221331D-01 9.70444085D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221331D-01-9.70444085D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222133 3 0.37222133 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970444 3 -0.00970444 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221540D-01 9.70423324D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221540D-01-9.70423324D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222154 3 0.37222154 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970423 3 -0.00970423 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222340D-01 9.70323018D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222340D-01-9.70323018D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222234 3 0.37222234 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970323 3 -0.00970323 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222860D-01 9.70423142D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222860D-01-9.70423142D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222286 3 0.37222286 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970423 3 -0.00970423 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222862D-01 9.70416020D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222862D-01-9.70416020D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222286 3 0.37222286 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970416 3 -0.00970416 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222409D-01 9.70352252D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222409D-01-9.70352252D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222241 3 0.37222241 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970352 3 -0.00970352 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221527D-01 9.70294055D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221527D-01-9.70294055D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222153 3 0.37222153 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970294 3 -0.00970294 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72221715D-01 9.70278452D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72221715D-01-9.70278452D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222172 3 0.37222172 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970278 3 -0.00970278 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222548D-01 9.70364369D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222548D-01-9.70364369D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222255 3 0.37222255 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970364 3 -0.00970364 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222421D-01 9.70329371D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222421D-01-9.70329371D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222242 3 0.37222242 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970329 3 -0.00970329 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222366D-01 9.70325036D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222366D-01-9.70325036D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785159 2 0.37222237 3 0.37222237 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970325 3 -0.00970325 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222858D-01 9.70316844D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222858D-01-9.70316844D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785161 2 0.37222286 3 0.37222286 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970317 3 -0.00970317 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222826D-01 9.70334295D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222826D-01-9.70334295D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785162 2 0.37222283 3 0.37222283 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970334 3 -0.00970334 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72222774D-01 9.70303466D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72222774D-01-9.70303466D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785161 2 0.37222277 3 0.37222277 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970303 3 -0.00970303 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. 2 3.72223280D-01 9.70335287D-03 *** CCRED WARNING **** COMPLEX VALUE. 3 3.72223280D-01-9.70335287D-03 *** CCRED WARNING **** COMPLEX VALUE. REDUCED EIGENVALUES real part: Column 1 1 0.33785160 2 0.37222328 3 0.37222328 ==== End of matrix output ==== REDUCED EIGENVALUES imaginary part: Column 1 2 0.00970335 3 -0.00970335 ==== End of matrix output ==== **WARNING CCRED: COMPLEX EIGENVALUES. *** CCEQ_SOL-MAXIMUM NUMBER OF MICROITERATIONS 40 REACHED. --- SEVERE ERROR, PROGRAM WILL BE ABORTED --- Date and time (Linux) : Wed Oct 9 09:36:25 2019 Host name : nazare079.cluster Reason: *** CCEQ_SOL-MAX. MICROITERATIONS REACHED Total CPU time used in DALTON: 2 minutes 25 seconds Total wall time used in DALTON: 15.19 seconds QTRACE dump of internal trace stack ======================== level module ======================== 6 CCEQ_SOL 5 CC_EXCI 4 CC_DRV 3 CC 2 DALTON 1 DALTON main ========================