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Using Green’s-function many-body theory, we present the details of a formally exact adiabatic-connection
fluctuation-dissipation density-functional theory based on range separation, which was sketched in Toulouse
et al. [Phys. Rev. Lett. 102, 096404 (2009)]. Range-separated density-functional theory approaches combining
short-range density-functional approximations with long-range random-phase approximations (RPAs) are then
obtained as well-identified approximations on the long-range Green’s-function self-energy. Range-separated
RPA-type schemes with or without long-range Hartree-Fock exchange response kernel are assessed on rare-
gas and alkaline-earth-metal dimers and compared to range-separated second-order perturbation theory and
range-separated coupled-cluster theory.

DOI: 10.1103/PhysRevA.82.032502 PACS number(s): 31.15.E−, 31.15.A−, 31.50.Bc

I. INTRODUCTION

Range-separated density-functional theory has emerged as
a powerful approach for improving the accuracy of standard
Kohn-Sham (KS) density-functional theory [1,2] applied with
usual local or semilocal density-functional approximations, in
particular for electronic systems with strong (static) or weak
(van der Waals) correlation effects. Based on a separation of
the electron-electron interaction into long-range and short-
range components, it permits a rigorous combination of a
long-range explicit many-body approximation with a short-
range density-functional approximation (see, e.g., Ref. [3]
and references therein). Several many-body approximations
have been considered for the long-range part: configuration
interaction [4,5], multiconfiguration self-consistent-field the-
ory [6–8], second-order perturbation theory [9–13], coupled-
cluster theory [14–18], multireference second-order perturba-
tion theory [19], and several variants of the random-phase
approximation (RPA) [20–24].

In the context of the recent revived interest in RPA-type
approaches to the electron correlation problem in atomic,
molecular, and solid-state systems [25–48], several range-
separated approaches using long-range RPA-type approxima-
tions have indeed been proposed and show promising results,
in particular for describing weak intermolecular interactions.
Toulouse et al. [20] have presented a range-separated RPA-
type theory including the long-range Hartree-Fock exchange
response kernel. Janesko et al. [21–23] have proposed a
simpler range-separated RPA scheme with no exchange kernel
and in which the RPA correlation energy has been rescaled
by an empirical coefficient. Paier et al. [24] have added
the so-called second-order screened exchange to the latter
scheme, which appears to correct the self-interaction error.
In all these cases, range separation tends to improve the
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corresponding full-range RPA-type approach, avoiding the
inaccurate description and slow basis-set convergence of
short-range correlations in RPA.

In Ref. [20], only the main lines of range-separated density-
functional theory with long-range RPA were presented. In
this work, we give now all the missing details of the theory.
Using Green’s-function many-body theory, we construct a
formally exact adiabatic-connection fluctuation-dissipation
density-functional theory based on range separation, without
the need to maintain the one-particle density constant. Range-
separated RPA-type schemes are then obtained as well-
identified approximations on the long-range Green’s-function
self-energy. The range-separated RPA-type methods, with or
without long-range Hartree-Fock exchange response kernel,
are assessed on rare-gas and alkaline-earth-metal dimers and
compared to range-separated second-order perturbation theory
and range-separated coupled-cluster theory. The most tedious
details of the theory are given in the appendixes.

II. THEORY

A. Range-separated density-functional theory

In range-separated density-functional theory (see, e.g.,
Ref. [3]), the exact ground-state energy of an N -electron
system is expressed as the following minimization over
multideterminant wave functions �:

E = min
�

{〈�|T̂ + V̂ne + Ŵ lr
ee|�〉 + Esr

Hxc[n�]
}
, (1)

where T̂ is the kinetic energy operator, V̂ne is
the nuclei-electron interaction operator, Ŵ lr

ee =
(1/2)

∫∫
dr1dr2w

lr
ee(r12)n̂2(r1,r2) is a long-range (lr)

electron-electron interaction written with wlr
ee(r)=erf(µr)/r

and the pair-density operator n̂2(r1,r2), and Esr
Hxc[n]

is the corresponding µ-dependent short-range (sr)
Hartree-exchange-correlation (Hxc) density functional that
Eq. (1) defines. The parameter µ in the error function
controls the range of the separation. The minimizing wave
function, denoted by � lr, yields the exact density. Several
approximations [3,7,14,18,49–51] have been proposed for
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the short-range exchange correlation (xc) functional Esr
xc[n],

and an approximate scheme must be used for the long-range
wave-function part of the calculation.

In a first step, the minimization in Eq. (1) is restricted to
single-determinant wave functions �, leading to the range-
separated hybrid (RSH) approximation [9],

ERSH = min
�

{〈�|T̂ + V̂ne + Ŵ lr
ee|�〉 + Esr

Hxc[n�]
}
, (2)

which does not include long-range correlation. The mini-
mizing determinant �0 is given by the self-consistent Euler-
Lagrange equation,

Ĥ0|�0〉 = E0|�0〉, (3)

where E0 is the Lagrange multiplier for the normalization
constraint and Ĥ0 is the RSH reference Hamiltonian,

Ĥ0 = T̂ + V̂ne + V̂ lr
Hx,HF[�0] + V̂ sr

Hxc[n�0 ], (4)

which includes the Hartree-Fock (HF)-type long-range
Hartree-exchange (Hx) potential V̂ lr

Hx,HF[�0] and the short-
range local Hxc potential V̂ sr

Hxc[n]=∫
drvsr

Hxc[n](r)n̂(r), writ-
ten with vsr

Hxc[n](r) = δEsr
Hxc[n]/δn(r) and the density oper-

ator n̂(r). As usual, V̂ lr
Hx,HF is the sum of a local Hartree

part V̂ lr
H = ∫

dr1v
lr
H(r1)n̂(r1) with vlr

H(r1) = ∫
dr2w

lr
ee(r12)

〈�0|n̂(r2)|�0〉 and a nonlocal exchange part V̂ lr
x,HF =∫∫

dx1dx2v
lr
x (x1,x2)n̂1(x2,x1) written with vlr

x (x1,x2) =
−wlr

ee(r12)〈�0|n̂1(x1,x2)|�0〉 and the one-particle density-
matrix operator n̂1(x1,x2) expressed with space-spin coordi-
nates x1 = (r1,s1) and x2 = (r2,s2).

The RSH scheme does not yield the exact energy and
density, even with the exact short-range functional Esr

Hxc[n].
Nevertheless, the RSH approximation can be used as a
reference to express the exact energy as

E = ERSH + Elr
c , (5)

defining the long-range correlation energy Elr
c , for which

we now give an adiabatic connection formula. We introduce
the following energy expression with a formal coupling
constant λ:

Eλ = min
�

{〈�|T̂ + V̂ne + V̂ lr
Hx,HF[�0]

+ λŴ lr|�〉 + Esr
Hxc[n�]

}
, (6)

where the minimization is done over multideterminant wave
functions �, Ŵ lr is the long-range Møller-Plesset-type fluctu-
ation perturbation operator

Ŵ lr = Ŵ lr
ee − V̂ lr

Hx,HF[�0], (7)

and Esr
Hxc is the previously defined λ-independent short-range

Hxc functional. The minimizing wave function, denoted by
� lr

λ , is given by the self-consistent Euler-Lagrange equation

Ĥ lr
λ

∣∣� lr
λ

〉 = E lr
λ

∣∣� lr
λ

〉
, (8)

where E lr
λ is the Lagrange multiplier for the normalization

constraint and Ĥ lr
λ is the long-range interacting effective

Hamiltonian along the adiabatic connection

Ĥ lr
λ = T̂ + V̂ne + V̂ lr

Hx,HF[�0] + V̂ sr
Hxc[n� lr

λ
] + λŴ lr

= Ĥ0 + λŴ lr + (
V̂ sr

Hxc[n� lr
λ
] − V̂ sr

Hxc[n�0 ]
)
. (9)

For λ = 1, Eq. (6) reduces to Eq. (1), and so the physical
energy E = Eλ=1 and density are recovered. For λ = 0, the
minimizing wave function is the RSH determinant � lr

λ=0 = �0

and the Hamiltonian of Eq. (9) reduces to the RSH reference
Hamiltonian, Ĥ lr

λ=0 = Ĥ0. Note that, because the density at
λ = 0 is not exact, the density necessarily varies along this
adiabatic connection. Taking the derivative of Eλ with respect
to λ, noting that Eλ is stationary with respect to � lr

λ , and
reintegrating between λ = 0 and λ = 1 gives

E = Eλ=0 +
∫ 1

0
dλ

〈
� lr

λ

∣∣Ŵ lr
∣∣� lr

λ

〉
, (10)

with Eλ=0 = 〈�0|T̂ + V̂ne + V̂ lr
Hx,HF[�0]|�0〉 + Esr

Hxc[n�0 ] =
ERSH − 〈�0|Ŵ lr|�0〉. Thus, the long-range correlation energy
is

Elr
c =

∫ 1

0
dλ

[〈
� lr

λ

∣∣Ŵ lr
∣∣� lr

λ

〉 − 〈�0|Ŵ lr|�0〉
]
, (11)

or, equivalently,

Elr
c = 1

2

∫ 1

0
dλ

∫
dx1dx2dx′

1dx′
2w

lr(x1,x2; x′
1,x

′
2)

×P lr
c,λ(x1,x2; x′

1,x
′
2), (12)

where wlr(x1,x2; x′
1,x

′
2) = wlr

ee(r12)δ(x1 − x′
1)δ(x2 − x′

2) −
1/(N − 1)[vlr

H(r1)δ(x1 − x′
1) + vlr

x (x1,x′
1)]δ(x2 − x′

2) is the
potential corresponding to the perturbation operator Ŵ lr and
P lr

c,λ(x1,x2; x′
1,x

′
2) is the correlation part of the two-particle

density matrix along the adiabatic connection.

B. Long-range many-body perturbation theory

We now derive a formally exact many-body perturbation
theory to calculate the long-range correlation two-particle
density matrix P lr

c,λ. Details are given in Appendix A.
The one-particle Green’s function Glr

λ(1,2) along the
adiabatic connection of Eq. (9) in terms of space-spin-time
coordinates 1 = (x1,t1) and 2 = (x2,t2) satisfies the following
Dyson equation:

(
Glr

λ

)−1
(1,2) = G−1

0 (1,2) − �lr
λ (1,2) − ��sr

λ (1,2), (13)

where G0(1,2) is the reference Green’s function corresponding
to the RSH Hamiltonian Ĥ0, �lr

λ (1,2) is the self-energy
corresponding to the long-range perturbation operator λŴ lr,
and ��sr

λ (1,2) is the self-energy correction associated with the
short-range potential variation term V̂ sr

Hxc[n� lr
λ
] − V̂ sr

Hxc[n�0 ]
due to the variation of the density [52]. The long-range self-
energy corresponding to the perturbation operator λ(Ŵ lr

ee −
V̂ lr

Hx,HF[�0]) is decomposed into Hartree, exchange, and
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correlation contributions as

�lr
λ (1,2) = �lr

Hxc,λ

[
Glr

λ

]
(1,2) − �lr

Hx,λ[G0](1,2)

= λ
{
�lr

Hx

[
Glr

λ

]
(1,2) − �lr

Hx[G0](1,2)
}

+�lr
c,λ

[
Glr

λ

]
(1,2), (14)

where �lr
Hx[G](1,2) is the sum of a long-range Hartree self-

energy,

�lr
H[G](1,2) = −i

∫
d3 d4 wlr

ee(1,3)δ(1,2)δ(3,4)G(4,3+)

= −iδ(1,2)
∫

d3 wlr
ee(1,3)G(3,3+)

= δ(1,2)
∫

dr3 wlr
ee(r13)n(r3)

= δ(1,2)vlr
H[n](r1), (15)

with the instantaneous electron-electron interaction
wlr

ee(1,3) = δ(t1 − t3)wlr
ee(r13) and the density extracted

from the Green’s function n(r3) = −i
∑

s3
G(3,3+) (where

3+ stands for x3t
+
3 with t+3 = t3 + η and η is an infinitesimal

positive shift), and a long-range exchange self-energy,

�lr
x [G](1,2) = i

∫
d3 d4 wlr

ee(1,3)δ(1,4)δ(2,3)G(4,3+)

= iwlr
ee(1,2)G(1,2+)

= −δ(t1 − t2)wlr
ee(r12)n1(x1,x2)

= δ(t1 − t2)vlr
x [n1](x1,x2), (16)

with the one-particle density matrix extracted from the Green’s
function n1(x1,x2) = −iG(x1t1,x2t

+
1 ). The short-range self-

energy correction corresponding to the operator V̂ sr
Hxc[n� lr

λ
] −

V̂ sr
Hxc[n�0 ] is written as

��sr
λ (1,2) = �sr

Hxc

[
Glr

λ

]
(1,2) − �sr

Hxc[G0](1,2), (17)

where �sr
Hxc[G](1,2) = δ(1,2)vsr

Hxc[n](r1) is the local short-
range Hxc self-energy.

The long-range four-point polarization propagator
χ lr

λ (1,2; 1′,2′) along the adiabatic connection is given by
the solution of the following Bethe-Salpeter-type equation,
which can be derived from the Dyson equation (13) by
considering variations with respect to Glr

λ [see Appendix A,
Eq. (A13)],(

χ lr
λ

)−1
(1,2; 1′,2′) = (

χ lr
IP,λ

)−1
(1,2; 1′,2′) − λf lr

Hx(1,2; 1′,2′)

− f lr
c,λ(1,2; 1′,2′), (18)

where χ lr
IP,λ(1,2; 1′,2′) = −iGlr

λ(1,2′)Glr
λ(2,1′) is an

independent-particle (IP) polarization propagator and
λf lr

Hx(1,2; 1′,2′) = iλ δ�lr
Hx[Glr

λ](1,1′)/δGlr
λ(2′,2) and

f lr
c,λ(1,2; 1′,2′) = i δ�lr

c,λ[Glr
λ](1,1′)/δGlr

λ(2′,2) are long-range
Hartree-exchange and correlation kernels. Note that these
kernels only stem from the self-energy term �lr

Hxc,λ[Glr
λ] in

Eq. (13) that corresponds to the two-electron interaction
λŴ lr

ee; the other self-energy contributions which come from

the one-electron terms are absorbed in the definition of
χ lr

λ (1,2; 1′,2′). The Hartree kernel is obtained from Eq. (15),

f lr
H (1,2; 1′,2′) = wlr

ee(1,2)δ(1,1′)δ(2,2′)

= wlr
ee(r12)δ(t1 − t2)δ(1,1′)δ(2,2′), (19)

while the HF-like exchange kernel is obtained from Eq. (16):

f lr
x (1,2; 1′,2′) = −wlr

ee(1,2)δ(1,2′)δ(1′,2)

= −wlr
ee(r12)δ(t1 − t2)δ(1,2′)δ(1′,2). (20)

The fluctuation-dissipation theorem is then used to express
P lr

c,λ as [see Appendix A, Eq. (A24)]

P lr
c,λ(x1,x2; x′

1,x
′
2)

= −
∫ ∞

−∞

dω

2πi
eiω0+[

χ lr
λ (x1,x2; x′

1,x
′
2; ω)

−χ0(x1,x2; x′
1,x

′
2; ω)

] + �lr
λ(x1,x2; x′

1,x
′
2), (21)

where χ lr
λ (x1,x2; x′

1,x
′
2; ω) is the frequency-dependent Fourier

transform of the one-time-interval polarization propaga-
tor χ lr

λ (x1,x2; x′
1,x

′
2; τ = t1 − t2) = χ lr

λ (x1t1,x2t2; x′
1t

+
1 ,x′

2t
+
2 ),

χ0(x1,x2; x′
1,x

′
2; ω) is the equivalent quantity for the RSH

reference Hamiltonian (at λ = 0), and �lr
λ(x1,x2; x′

1,x
′
2) is the

contribution coming from the variation of the one-particle
density matrix along the adiabatic connection. The expression
of �lr

λ in terms of the Green’s functions Glr
λ and G0 is

straightforward but it is sufficient to write it as �lr
λ = �[Glr

λ] −
�[G0], where � is a known functional given in Appendix A
[Eq. (A22)].

So far, the theory is, in principle, exact. In the follow-
ing we consider two possible approximations. The RPA
approximation,

�lr
xc,λ = 0, (22)

corresponds to neglecting long-range exchange and correlation
in all one-electron properties. Indeed, with this approximation,
one can check that Glr

λ = G0 is a solution of the Dyson
equation (13); that is, the Green’s function remains unchanged
along the adiabatic connection. It follows that �lr

λ = 0, f lr
xc,λ =

0 and χ lr
IP,λ(1,2; 1′,2′) = −iG0(1,2′)G0(2,1′) = χ0(1,2; 1′,2′).

Similarly, the RPAx approximation,

�lr
c,λ = 0, (23)

corresponds to neglecting long-range correlation only in all
one-electron properties. Again, this approximation implies that
the Green’s function remains unchanged along the adiabatic
connection; that is, Glr

λ = G0 and it follows that �lr
λ = 0,

f lr
c,λ = 0 and χ lr

IP,λ = χ0. As different terminologies are used
in the quantum chemistry and condensed-matter physics
literature, let us stress that what we call RPA here corre-
sponds to a response Eq. (18) with no exchange-correlation
kernel (and it is also sometimes called linear-response time-
dependent Hartree theory or direct RPA), and what we call
RPAx corresponds to a response equation with an additional
HF-like exchange kernel (and it is also sometimes called
linear-response time-dependent Hartree-Fock theory or full
RPA).
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C. Expressions in an orbital basis

The RPA or RPAx equations in an orbital basis are derived
in detail in Appendix B. In the basis of RSH spin orbitals, the
long-range RPA or RPAx correlation energy is written

Elr
c = 1

2

∫ 1

0
dλ

∑
ia,jb

〈ib|ŵlr
ee|aj 〉(Plr

c,λ

)
ia,jb

, (24)

where i and j refer to occupied spin orbitals and a and b to
virtual spin orbitals, 〈ib|ŵlr

ee|aj 〉 are the two-electron integrals
with long-range interaction, and (Plr

c,λ)ia,jb are the matrix
elements of the correlation two-particle density matrix. The
one-electron terms vlr

H and vlr
x in the perturbation operator in

Eq. (12) do not contribute to Elr
c because of the occupied-

virtual-occupied-virtual structure of the two-particle density
matrix in RPA or RPAx. Following the technique proposed by
Furche [26], Plr

c,λ can be obtained as

Plr
c,λ = (

Alr
λ − Blr

λ

)1/2(
Mlr

λ

)−1/2(
Alr

λ − Blr
λ

)1/2 − 1, (25)

with Mlr
λ = (Alr

λ − Blr
λ)1/2(Alr

λ + Blr
λ)(Alr

λ − Blr
λ)1/2, and the

orbital rotation Hessians(
Alr

λ

)
ia,jb

= (εa − εi)δij δab

+ λ
[〈ib|ŵlr

ee|aj 〉 − ξ 〈ib|ŵlr
ee|ja〉] , (26a)(

Blr
λ

)
ia,jb

= λ
[〈ab|ŵlr

ee|ij 〉 − ξ 〈ab|ŵlr
ee|ji〉] , (26b)

where εi are the RSH orbital eigenvalues and ξ = 0 or ξ =
1 for RPA or RPAx, respectively. For spin-restricted closed-
shell calculations, the correlation energy is written, in terms
of spatial orbitals,

Elr
c = 1

2

∫ 1

0
dλ

∑
ia,jb

〈ib|ŵlr
ee|aj 〉(1

Plr
c,λ

)
ia,jb

, (27)

where i and j now refer to occupied spatial orbitals, a and b

refer to virtual spatial orbitals, and 1Plr
c,λ is the spin-singlet-

adapted correlation two-particle density matrix obtained as

1Plr
c,λ = 2

[(
1Alr

λ − 1Blr
λ

)1/2 (
1Mlr

λ

)−1/2 (
1Alr

λ − 1Blr
λ

)1/2 − 1
]
,

(28)

with 1Mlr
λ = (1Alr

λ − 1Blr
λ)1/2(1Alr

λ + 1Blr
λ)(1Alr

λ − 1Blr
λ)1/2, and

the singlet orbital rotation Hessians(
1Alr

λ

)
ia,jb

= (εa − εi)δij δab

+ λ
[
2〈ib|ŵlr

ee|aj 〉 − ξ 〈ib|ŵlr
ee|ja〉] , (29a)(1Blr

λ

)
ia,jb

= λ
[
2〈ab|ŵlr

ee|ij 〉 − ξ 〈ab|ŵlr
ee|ji〉] . (29b)

Only singlet excitations contribute to Eq. (27), since the
two-electron integrals involved vanish for triplet excitations.

In Eq. (25), it is assumed that Alr
λ + Blr

λ and Alr
λ − Blr

λ

are positive definite. In RPA, this is always the case. On
the contrary, in RPAx, this is not always the case; that is,
instabilities can be encountered, and Eq. (25) can fail. In
spin-restricted closed-shell formalism, one may encounter
singlet instabilities in the RPAx theory defined here, for
example, when dissociating a bond, but not triplet instabilities
since triplet excitations do not contribute at all. In practice,
singlet instabilities are usually not encountered for weakly

interacting closed-shell systems. Note that other variants of
RPA-type correlation energy expressions using a HF exchange
response kernel, such as the plasmon formula [38,53,54] or the
equivalent ring coupled-cluster-doubles theory [38], require
contributions from both singlet and triplet excitations and
are thus subject to triplet instabilities (e.g., in a system such as
Be2).

Similarly to the notation used in Ref. [20], the range-
separated method obtained by adding to the RSH energy the
long-range RPAx correlation energy [ξ = 1 in Eqs. (26) or
(29)] is referred to as RSH + lrRPAx. For consistency, the
range-separated method obtained by adding to the RSH energy
the long-range RPA correlation energy [ξ = 0 in Eqs. (26) or
(29)] is referred to as RSH + lrRPA, although it is equivalent
to the method called “LC-ωLDA + dRPA” in Refs. [21–24] in
the special case of the short-range LDA functional. At second
order in the electron-electron interaction, the RSH + lrRPAx
method reduces to the range-separated method of Ref. [9]
based on long-range second-order Møller-Plesset perturbation
theory, to which we refer as RSH + lrMP2. Since RPA
approaches can be seen as simple approximations to coupled-
cluster theory [38], the RSH + lrRPA and RSH + lrRPAx
methods bear some resemblance to the range-separated method
of Ref. [14], where the long-range correlation energy is
evaluated by coupled-cluster theory (with single, double,
and perturbative triple excitations), to which we refer as
RSH + lrCCSD(T).

We note that one can develop long-range many-body per-
turbation theories starting from references other than the RSH
reference. For example, starting from the usual (approximate)
KS reference could be appropriate for solid-state systems. For
the finite systems considered here, RSH is a good reference,
as confirmed by other authors [23].

III. COMPUTATIONAL DETAILS

All calculations have been performed with a development
version of MOLPRO 2008 [55], implementing Eqs. (27)–(29).
We first perform a self-consistent RSH calculation with
the short-range PBE xc functional of Ref. [14] (this RSH
calculation could also be referred to as “lrHF + srPBE,” a
notation closer to the one used by other authors [14]) and
add the long-range MP2, RPA, RPAx, or CCSD(T) correlation
energy calculated with RSH orbitals. For RPA or RPAx, the
λ integration in Eq. (27) is done by a seven-point Gauss-
Legendre quadrature [26]. The range separation parameter is
taken at µ = 0.5 bohr−1, in agreement with previous stud-
ies [56], without trying to adjust it for each system. To show
the dependence on the orbitals, the full-range RPA calculations
have been done with PBE [57] and HF orbitals, which are
denoted as PBE + RPA and HF + RPA, respectively [58].
The full-range MP2, RPAx, and CCSD(T) calculations have
been done with HF orbitals, and thus, for notation consistency,
are denoted as HF + MP2, HF + RPAx, and HF + CCSD(T),
respectively. We use large Dunning basis sets [59–65]. Core
electrons are kept frozen in all the full-range and range-
separated MP2, RPA, RPAx, and CCSD(T) calculations (i.e.,
only excitations of valence electrons are considered). The
basis-set superposition error (BSSE) is removed using the
counterpoise method. For the alkaline-earth-metal dimers,
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it has been checked that adding diffuse basis functions or
core excitations does not change significantly the results.
Extrapolations to the complete basis-set (CBS) limit have
also been considered for some systems. For the full-range
methods, the standard three-point exponential formula for
the HF (or KS) reference EHF(n) = EHF(CBS) + Ae−Bn with
the cardinal number n = 3,4,5 and two-point formula for the
correlation energy Ec(n) = Ec(CBS) + C/n3 with n = 4,5
have been used. For the range-separated methods, we have also
used these two formulas for the RSH reference and the long-
range correlation energy, even though in this case the depen-
dence on the cardinal number would deserve a detailed study.

For each dimer interaction energy curve, we choose 16–20
intermolecular distances, with denser sampling around the
equilibrium distance. A third-order polynomial is used for
interpolation. The hard-core radius is taken as the distance
where the interaction energy is 0 and the equilibrium distance
and binding energy are from the minimum of the interpolated
interaction energy curve. The harmonic vibrational frequency
is obtained from the second-order derivative of the energy
curve at the equilibrium distance. For C6 dispersion
coefficients, the interaction energy Eint is calculated at seven
extra distances Ri from 30 to 60 bohr, and the coefficient is
estimated by averaging with the following formula:

C6 = exp

(
1

7

7∑
i=1

[ln |Eint(Ri)| + 6 ln(Ri)]

)
, (30)

similar to what has been done in Ref. [22].

IV. APPLICATIONS

A. Basis-set dependence

The convergence of the equilibrium binding energy of
Ar2 with respect to the basis-set size up to the CBS
limit for the full-range methods HF + MP2, PBE + RPA,
HF + RPA, and HF + CCSD(T) and for the range-separated
methods RSH + lrMP2, RSH + lrRPA, RSH + lrRPAx, and
RSH + lrCCSD(T) is represented in Fig. 1. Full-range RPA
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FIG. 1. (Color online) Basis-set dependence of the equilibrium
binding energy of Ar2 for different full-range and range-separated
methods, presented as the percentage of the binding energy recovered
with respect to the CBS limit (aVTZ, aVQZ, and aV5Z stand for
aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z, respectively).

with PBE orbitals has a very strong dependence on the basis
size, as already noted (e.g., Refs. [20,26]). Full-range RPA
with HF orbitals has a bit weaker basis dependence, similar to
full-range HF + MP2, HF + RPAx, and HF + CCSD(T). All
the range-separated methods have essentially identical, very
favorable basis-set convergence. Since the slow convergence
of full-range methods is related to the explicit description of
short-range correlation, it is not surprising that range-separated
methods have a faster convergence because they leave the
description of short-range correlation to the short-range
density functional. These results are consistent with other
studies (e.g., Refs. [22,24]). Note that, with the aug-cc-pV5Z
basis set, all the range-separated methods are essentially
converged (98%–99% of the CBS binding energy); therefore,
we do not use CBS extrapolations in the following. However,
one should keep in mind that with this basis set the full-range
methods are not yet fully converged, with about 90% of the
CBS binding energy.

B. Rare-gas dimers

In Fig. 2, the interaction energy curves of He2, Ne2, Ar2, and
Kr2, obtained with the full-range and range-separated methods,
are compared. As already known, full-range HF + MP2
underestimates the interaction energy for the smallest systems
He2 and Ne2 and overestimates it for the largest systems Ar2

and Kr2. Full-range PBE + RPA gives an almost dissociative
curve for He2 and largely underestimates the interaction energy
for Ne2, Ar2, and Kr2. Using HF orbitals in full-range RPA
drastically improves the interaction energy curve for He2,
and to a least extend for Ne2, but gives less binding for Ar2

and Kr2. Full-range HF + RPAx significantly improves over
full-range HF + RPA but still gives underestimated interaction
energies. It can be noted that full-range HF + RPAx yields
interaction energy curves almost identical to the full-range
HF + MP2 curves for He2 and Ne2 and almost identical to
the full-range PBE + RPA curves for Ar2 and Kr2. Full-range
HF + CCSD(T) gives systematically quite accurate interac-
tion energies. Quite similarly to full-range HF + MP2, the
range-separated RSH + lrMP2 underestimates the interaction
energy for He2 and Ne2 and overestimates it for Ar2 and
Kr2. RSH + lrRPA tends to improve over both full-range
PBE + RPA and HF + RPA but still leads to significantly
underestimated interaction energies. RSH + lrRPAx improves
over both RSH + lrRPA and full-range HF + RPAx; it still
systematically underestimates the interaction energy at equi-
librium but appears quite accurate at medium and large
distances. On the contrary, RSH + lrCCSD(T) systematically
overestimates the interaction energy at medium and large
distances.

The hard-core radii, equilibrium distances, equilibrium
binding energies, harmonic vibrational frequencies, and dis-
persion coefficients C6 for ten homonuclear and heteronuclear
rare-gas dimers calculated with the full-range and range-
separated methods are given in Table I. The trends seen
in Fig. 2 are confirmed. Full-range RPA (with PBE or
HF orbitals) yields very inaccurate equilibrium properties.
Full-range HF + RPAx improves over full-range HF + RPA
(with the exception of C6 coefficients, which turn out to
be quite good in PBE + RPA for these systems), but the
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FIG. 2. (Color online) Interaction energy curves of He2, Ne2, Ar2, and Kr2 calculated using different full-range (left) and range-separated
(right) methods. The basis is aug-cc-pV5Z. The accurate curves are from Ref. [66].

errors remain large. Range separation largely improves RPA
and RPAx. RSH + lrRPAx gives much better equilibrium
properties than RSH + lrRPA, with mean absolute percent-
age errors smaller by more than a factor of two, while
these two methods give similar accuracy for C6 coefficients.
Full-range HF + MP2 is reasonably accurate, and range

separation has a much smaller impact on it. For these
systems, RSH + lrMP2 gives an overall similar accuracy than
RSH + RPAx, although the C6 coefficients tend to be globally
more accurate in RSH + lrRPAx. Full-range HF + CCSD(T)
gives the best results. Surprisingly, range separation tends
to deteriorate the accuracy of CCSD(T), especially for
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FIG. 3. (Color online) Interaction energy curves of Be2, Mg2, and Ca2 calculated by full-range (left) and range-separated (right) methods.
The basis is cc-pV5Z. The accurate curves are from Refs. [67–69].

C6 coefficients. Nevertheless, among the range-separated
methods, RSH + lrCCSD(T) still gives the best equilibrium
properties.

C. Alkaline-earth-metal dimers

In Fig. 3, the interaction energy curves of Be2, Mg2,
and Ca2, obtained with the full-range and range-separated
methods, are compared. These systems have static correlation
effects, especially Be2, and are thus more challenging for the
single-reference methods tested here. Full-range PBE + RPA
gives unphysical interaction energy curves, with a large bump
for Be2, and with essentially no bond for Mg2 and Ca2.
Full-range HF + RPA yields an almost dissociative curve
for Be2 with no bump (which is consistent with that seen
in Ref. [43]) and physically reasonable curves for Mg2 and
Ca2. Full-range HF + RPAx moderately improves over full-
range HF + RPA. Among the full-range methods, HF + MP2
and HF + CCSD(T) clearly give the best interaction energy

curves. As for rare-gas dimers, RSH + lrRPA always largely
underestimates the interaction energy. RSH + lrMP2 and
RSH + lrRPAx give much less underestimated interaction
energies, with RSH + lrMP2 being a bit more accurate for
Mg2 and Ca2. While RSH + lrCCSD(T) largely overestimates
the interaction energy for Be2, it is remarkably accurate for
Mg2 and Ca2. We note that RSH + lrCCSD(T) could be made
more accurate for Be2 by choosing a larger range-separation
parameter µ [71].

The hard-core radii, equilibrium distances, equilibrium
binding energies, harmonic vibrational frequencies, and dis-
persion coefficients C6 for Be2, Mg2, and Ca2 are given
in Table II. It is confirmed that range separation largely
improves the equilibrium properties of RPA and RPAx. Again,
RSH + lrRPAx is much more accurate than RSH + lrRPA,
with mean absolute percentage errors smaller by about a factor
of two. Range separation also overall brings a significant
improvement in MP2. Among the range-separated methods,
RSH + lrCCSD(T) gives the best equilibrium properties.
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TABLE I. Hard-core radii σ (bohr), equilibrium distances Re (bohr), equilibrium binding energies De (mhartree), harmonic vibrational
frequencies ωe (cm−1), and dispersion coefficients C6 for ten homonuclear and heteronuclear rare-gas dimers from different full-range and
range-separated methods with aug-cc-pV5Z basis. Mean absolute percentage errors (MA%E) are also given.

HF + RSH + RSH + RSH + RSH + Estimated
HF + MP2 PBE + RPA HF + RPA HF + RPAx CCSD(T) lrMP2 lrRPA lrRPAx lrCCSD(T) exacta

He2

σ 5.20 6.81 5.34 5.18 5.03 5.35 5.39 5.25 5.17 5.02
Re 5.83 8.16 5.95 5.82 5.65 6.00 6.10 5.92 5.85 5.62
De 0.0208 0.0021 0.0145 0.0218 0.0313 0.0202 0.0183 0.0255 0.0309 0.0348
ωe 26.9 4.5 24.1 27.4 33.6 26.2 22.3 28.6 30.4 34.3
C6 1.13 1.36 0.88 1.14 1.46 1.42 1.34 1.67 1.91 1.461

He-Ne
σ 5.32 5.81 5.44 5.29 5.13 5.33 5.38 5.27 5.19 5.16
Re 5.95 6.37 6.08 5.91 5.77 5.99 6.07 5.93 5.87 5.76
De 0.0401 0.0064 0.0284 0.0410 0.0609 0.0458 0.0401 0.0533 0.0638 0.0660
ωe 28.8 13.0 23.8 29.5 34.3 28.4 26.2 30.9 33.5 36.1
C6 2.43 2.77 1.84 2.32 3.07 3.12 2.84 3.44 4.04 3.029

He-Ar
σ 6.02 6.31 6.27 6.11 5.92 6.01 6.14 5.99 5.87 5.92
Re 6.73 6.96 6.97 6.83 6.64 6.77 6.89 6.73 6.63 6.61
De 0.0736 0.0307 0.0424 0.0608 0.0874 0.0808 0.0616 0.0854 0.1071 0.0937
ωe 32.3 24.1 25.9 29.4 35.7 31.5 29.0 33.3 37.4 36.0
C6 9.1 9.1 6.1 7.6 11.6 10.6 8.7 10.8 12.6 9.538

He-Kr
σ 6.38 6.67 6.67 6.50 6.28 6.35 6.52 6.34 6.22 6.25
Re 7.15 7.37 7.42 7.26 7.05 7.14 7.31 7.13 7.03 6.98
De 0.0747 0.0337 0.0423 0.0606 0.0881 0.0833 0.0613 0.0857 0.1084 0.0996
ωe 30.1 22.3 23.4 26.3 32.4 30.7 25.9 31.2 34.2 33.7
C6 12.9 12.5 8.5 10.7 14.0 14.9 12.0 14.7 17.3 13.40

Ne2

σ 5.47 5.63 5.57 5.43 5.28 5.36 5.43 5.33 5.27 5.23
Re 6.11 6.18 6.19 6.07 5.90 6.03 6.10 5.98 5.93 5.84
De 0.079 0.037 0.056 0.077 0.118 0.102 0.088 0.111 0.131 0.134
ωe 22.8 18.7 19.7 22.6 28.8 23.8 22.9 25.9 28.3 29.4
C6 5.24 6.84 3.91 4.77 6.35 6.80 6.10 7.03 8.08 6.383

Ne-Ar
σ 6.02 6.21 6.28 6.13 5.94 5.92 6.06 5.93 5.84 5.89
Re 6.72 6.87 7.01 6.85 6.65 6.66 6.80 6.67 6.59 6.57
De 0.163 0.095 0.092 0.126 0.189 0.196 0.147 0.192 0.235 0.211
ωe 25.3 21.6 17.4 22.6 27.7 27.2 23.0 26.9 29.3 28.7
C6 19.2 18.9 12.5 15.2 18.2 22.6 18.3 21.8 25.3 19.50

Ne-Kr
σ 6.31 6.53 6.61 6.46 6.24 6.20 6.36 6.23 6.14 6.17
Re 7.08 7.21 7.36 7.20 6.98 6.97 7.13 7.01 6.91 6.89
De 0.174 0.104 0.096 0.131 0.201 0.212 0.153 0.201 0.248 0.224
ωe 22.4 19.0 17.0 19.8 24.5 24.4 20.7 23.1 26.5 25.3
C6 27.0 26.2 17.4 21.1 27.4 31.5 24.8 29.5 34.0 27.30

Ar2

σ 6.32 6.61 6.74 6.60 6.41 6.32 6.55 6.40 6.28 6.37
Re 7.10 7.36 7.52 7.37 7.17 7.11 7.34 7.18 7.07 7.10
De 0.483 0.269 0.215 0.289 0.414 0.484 0.308 0.420 0.542 0.454
ωe 32.7 25.5 21.4 25.5 30.7 32.1 25.5 30.0 33.5 32.1
C6 76.3 58.6 42.9 52.0 64.5 80.7 57.4 69.6 85.0 64.30

Ar-Kr
σ 6.55 6.85 7.00 6.85 6.65 6.55 6.80 6.64 6.52 6.59
Re 7.36 7.64 7.81 7.66 7.45 7.37 7.62 7.46 7.34 7.35
De 0.570 0.319 0.248 0.334 0.481 0.563 0.346 0.472 0.615 0.531
ωe 29.5 22.9 19.4 22.7 27.3 28.7 22.5 26.3 29.8 28.6
C6 109.9 82.1 60.7 73.6 94.8 114.1 80.0 97.4 117.1 91.13
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TABLE I. (Continued.)

HF + RSH + RSH + RSH + RSH + Estimated
HF + MP2 PBE + RPA HF + RPA HF + RPAx CCSD(T) lrMP2 lrRPA lrRPAx lrCCSD(T) exacta

Kr2

σ 6.77 7.09 7.24 7.10 6.88 6.77 7.05 6.88 6.75 6.79
Re 7.60 7.90 8.08 7.92 7.70 7.61 7.89 7.72 7.60 7.58
De 0.691 0.388 0.296 0.396 0.575 0.671 0.397 0.542 0.713 0.638
ωe 25.1 19.8 16.2 19.7 23.2 24.4 19.2 21.9 25.0 24.4
C6 159 116 86 105 132 162 109 134 163 129.6

MA%E (%)
σ 2.1 9.3 6.3 3.8 0.7 1.8 3.9 1.5 1.0 0.0
Re 2.1 9.4 6.1 3.9 1.0 2.2 4.5 2.2 1.0 0.0
De 23 62 56 39 10 16 36 14 11 0.0
ωe 12 36 33 21 3.4 9.5 23 10 4.6 0.0
C6 13 7.0 36 22 4.1 14 9.2 10 29 0.0

aFrom Ref. [66].

TABLE II. Hard-core radii σ (bohr), equilibrium distances Re (bohr), equilibrium binding energies De (mhartree), harmonic vibrational
frequencies ωe (cm−1), and dispersion coefficients C6 for Be2, Mg2, and Ca2 from different full-range and range-separated methods with
cc-pV5Z basis. Mean absolute percentage errors (MA%E) are also given.

HF + RSH + RSH + RSH + RSH + Estimated
HF + MP2 PBE + RPA HF + RPA HF + RPAx CCSD(T) lrMP2 lrRPA lrRPAx lrCCSD(T) exact

Be2

σ 4.44 4.34 5.59 5.30 4.16 4.25 4.50 4.27 3.87 4.01a

Re 5.15 4.60 7.48 7.17 4.71 4.92 5.08 4.92 4.54 4.63a

De 1.92 0.58 0.39 0.56 2.70 2.95 1.24 2.81 6.92 4.31a

ωe 139 297 34 37 242 199 152 198 315 267a

C6 256 164 138 180 195 232 149 213 274 214d

Mg2

σ 6.44 8.30 7.02 6.83 6.29 6.40 6.98 6.49 6.13 6.10b

Re 7.66 10.72 8.28 8.11 7.48 7.59 8.23 7.68 7.31 7.35b

De 1.62 0.09 0.70 0.96 1.67 1.43 0.65 1.24 1.92 1.93b

ωe 47 7.9 31 35 48 45 30 42 52 51.1b

C6 686 405 364 485 616 571 349 494 671 627d

Ca2

σ 7.29 – 7.57 7.49 7.07 7.04 7.33 7.11 6.85 6.88c

Re 8.57 – 8.76 8.72 8.30 8.25 8.47 8.30 8.05 8.09c

De 3.85 – 2.37 2.78 4.71 4.03 2.48 3.55 5.10 5.02c

ωe 56 – 44 47 64 60 50 57 68 63.7c

C6 2574 1335 1301 1710 2311 2090 1173 1617 2224 2221d

MA%E (%)
σ 7.4 – 22 18 3.2 4.4 11 5.4 1.5 0.0
Re 7.1 – 28 24 2.0 3.8 8.7 4.5 1.0 0.0
De 32 – 69 61 19 26 63 33 21 0.0
ωe 23 – 53 48 5.3 14 35 18 9.1 0.0
C6 15 33 40 21 5.0 7.7 41 16 12 0.0

aFrom Ref. [67].
bFrom Ref. [68].
cFrom Ref. [69].
dFrom Ref. [70].
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V. CONCLUSIONS

We have expounded the details of a formally ex-
act adiabatic-connection fluctuation-dissipation density-
functional theory based on range separation. Range-separated
density-functional theory with RPAs including or not the
long-range Hartree-Fock exchange response kernel (referred
to as RSH + lrRPA and RSH + lrRPAx, respectively) are then
obtained as well-identified approximations on the long-range
Green’s-function self-energy [Eqs. (22) and (23)]. The long-
range Green’s function does not vary along the adiabatic
connection at the RSH + lrRPA and RSH + lrRPAx levels,
which makes these schemes relatively simple compared to the
exact theory. In practice, RSH + lrRPA and RSH + lrRPAx
have been applied in a spin-restricted closed-shell formalism,
in which both schemes only include spin-singlet orbital
excitations, and thus are not subject to triplet instabilities.

These range-separated RPA-type schemes have been
tested on rare-gas and alkaline-earth-metal dimers, featur-
ing challenging weak (van der Waals) interactions. Both
range separation and inclusion of the exact Hartree-Fock
response kernel largely improve the accuracy of RPA. The
RSH + lrRPAx method appears as a reasonably accurate
method for weak interactions but globally less accurate for
equilibrium properties than the more intensive range-separated
coupled-cluster method. Although for the small systems
considered here, range-separated second-order perturbation
theory (RSH + lrMP2) turns out to yield results similar in
accuracy to those from RSH + lrRPAx (and in fact more
accurate for Mg2 and Ca2), a recent investigation [72] shows
that RSH + lrRPAx corrects the overestimation of the binding
energy in RSH + lrMP2 for larger weakly interacting stacked
complexes, such as the benzene dimer.
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APPENDIX A: ADIABATIC-CONNECTION
FLUCTUATION-DISSIPATION DENSITY-FUNCTIONAL

THEORY

In this appendix, we outline a general, formally
exact adiabatic-connection fluctuation-dissipation density-
functional theory, using Green’s-function many-body theory.
For further details on standard Green’s function theory, see,
for example, Refs. [73–76].

A. Adiabatic connection

We consider the following adiabatic connection defined by
the λ-dependent energy:

Eλ = min
�

{〈�|K̂0 + λŴ |�〉 + F [n�]}, (A1)

where K̂0 is an arbitrary one-particle Hamiltonian, Ŵ is a
perturbation operator (generally, the sum of a two-particle
operator Ŵee and an one-particle operator), and F [n] is
a λ-independent density functional. The minimizing multi-
determinant wave function �λ satisfies the Euler-Lagrange
equation,

Ĥλ|�λ〉 = Eλ|�λ〉, (A2)

where Eλ is the Lagrange multiplier for the normalization
constraint and Ĥλ is the effective Hamiltonian along the
adiabatic connection,

Ĥλ = K̂0 + λŴ + V̂λ, (A3)

where V̂λ = ∫
dr δF [n�λ

]/δn(r) n̂(r) is a self-consistent one-
particle potential operator. Note that Ĥλ=1 is not necessarily
the physical Hamiltonian. This adiabatic connection links
the energy of interest Eλ=1 to the reference energy Eλ=0 =
〈�0|K̂0|�0〉 + F [n�0 ] calculated with the single-determinant
wave function �0 = �λ=0 of the reference Hamiltonian Ĥ0 =
K̂0 + V̂0. The one-particle density is not kept constant with
respect to λ.

An adiabatic connection formula for Eλ=1 is found by
taking the derivative of Eλ with respect to λ, noting that Eλ is
stationary with respect to �λ, and reintegrating between λ = 0
and λ = 1:

Eλ=1 = Eλ=0 +
∫ 1

0
dλ 〈�λ|Ŵ |�λ〉. (A4)

The correlation energy, defined as Ec = Eλ=1 − Eλ=0 −
(dEλ/dλ)λ=0, where (dEλ/dλ)λ=0 = 〈�0|Ŵ |�0〉 is the first-
order energy correction, is thus given by

Ec =
∫ 1

0
dλ[〈�λ|Ŵ |�λ〉 − 〈�0|Ŵ |�0〉], (A5)

or, equivalently, in the representation of space-spin coordinates
x = (r,s),

Ec = 1

2

∫ 1

0
dλ

∫
dx1dx2dx′

1dx′
2w(x1,x2; x′

1,x
′
2)

×Pc,λ(x1,x2; x′
1,x

′
2), (A6)

where w(x1,x2; x′
1,x

′
2) is the interaction potential correspond-

ing to the operator Ŵ and Pc,λ(x1,x2; x′
1,x

′
2) is the correlation

part of the two-particle density matrix along the adiabatic
connection.

This exposition encompasses both standard full-range
many-body theory and range-separated density-functional
theory. Indeed, if K̂0 is the Hartree-Fock Hamiltonian (i.e.,
K̂0 = T̂ + V̂ne + V̂Hx,HF), Ŵ is the standard Møller-Plesset
fluctuation perturbation operator (i.e., Ŵ = Ŵee − V̂Hx,HF) and
F [n] = 0, then Eq. (A6) yields the full-range many-body
correlation energy, defined with respect to the Hartree-Fock
energy. Similarly, with the corresponding long-range op-
erators K̂0 = T̂ + V̂ne + V̂ lr

Hx,HF and Ŵ = Ŵ lr
ee − V̂ lr

Hx,HF and
the short-range density functional F [n] = Esr

Hxc[n], Eq. (A6)
yields now the long-range correlation energy, defined with
respect to the RSH energy [Eq. (5)].
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B. One-particle Green’s function

The one-particle Green’s function along the adiabatic
connection is defined as

Gλ(1,2) = −i〈�λ|T [ψ̂λ(1)ψ̂†
λ(2)]|�λ〉, (A7)

where 1 = (x1,t1) and 2 = (x2,t2) refer to space-spin and
time coordinates, ψ̂λ(1) = eiĤλt1ψ̂(x1)e−iĤλt1 and ψ̂

†
λ(2) =

eiĤλt2ψ̂†(x2)e−iĤλt2 are the annihilation and creation operators
in the Heisenberg picture, and T is the Wick time-ordering
operator.

A Dyson-type equation connects the inverse of Gλ to
the inverse of the Green’s function associated with the one-
electron Hamiltonian K̂0 + V̂λ, denoted by GV,λ,

G−1
λ (1,2) = G−1

V,λ(1,2) − �λ(1,2), (A8)

which can be considered as the definition of the self-energy �λ.
In turn, the inverse of GV,λ can be expressed from the inverse
of the Green’s function G0 of the reference Hamiltonian Ĥ0 =
K̂0 + V̂0 as G−1

V,λ = G−1
0 − (vλ − v0), where vλ and v0 are the

one-electron potentials associated with V̂λ and V̂0, respectively.
For time-independent Hamiltonians, the Green’s function

only depends on the time difference τ = t1 − t2, so one
defines Gλ(x1,x2; τ ) = Gλ(x1t1,x2t2), which has a disconti-
nuity at τ = 0. The one-particle density matrix n1,λ(x1,x2) =
〈�λ|n̂1(x1,x2)|�λ〉, with n̂1(x1,x2) = ψ̂†(x2)ψ̂(x1), can be
obtained from the limit τ → 0−,

n1,λ(x1,x2) = −iGλ(x1,x2; τ = 0−). (A9)

C. Four-point polarization propagator

The four-point polarization propagator along the adiabatic
connection is defined as

χλ(1,2; 1′,2′) = i[G2,λ(1,2; 1′,2′) − Gλ(1,1′)Gλ(2,2′)],
(A10)

where G2,λ is the two-particle Green’s function,

G2,λ(1,2; 1′,2′) = −〈�λ|T [ψ̂λ(1)ψ̂λ(2)ψ̂†
λ(2′)ψ̂†

λ(1′)]|�λ〉.
(A11)

Alternatively, using the Schwinger derivative technique, χλ can
be expressed as the functional derivative of the one-particle
Green’s function with respect to the two-point potential vλ

(see, e.g., Refs. [73,76]):

χλ(1,2; 1′,2′) = −i
δGV,λ(1,1′)
δvλ(2′,2)

. (A12)

The four-point polarization propagator satisfies a so-called
Bethe-Salpeter equation that directly stems from the Dyson
equation of Eq. (A8). Considering variations with respect to
iGλ (achieved through variations of vλ) yields

−i
δG−1

λ (1,1′)
δGλ(2′,2)

= −i
δG−1

V,λ(1,1′)
δGλ(2′,2)

+ i
δ�λ(1,1′)
δGλ(2′,2)

. (A13)

The term on the left-hand side of Eq. (A13) gives straightfor-
wardly

−i
δG−1

λ (1,1′)
δGλ(2′,2)

= iG−1
λ (1,2′)G−1

λ (2,1′)

= χ−1
IP,λ(1,2; 1′,2′), (A14)

where χIP,λ(1,2; 1′,2′) = −iGλ(1,2′)Gλ(2,1′) is a so-called
independent-particle (IP) polarization propagator [77]. The
first term on the right-hand side of Eq. (A13) gives the
inverse of the four-point polarization propagator, according
to Eq. (A12),

−i
δG−1

V,λ(1,1′)
δGλ(2′,2)

= i
δvλ(1,1′)
δGλ(2′,2)

= χ−1
λ (1,2; 1′,2′), (A15)

and the second term is the so-called Bethe-Salpeter four-point
kernel,

i
δ�λ(1,1′)
δGλ(2′,2)

= fλ(1,2; 1′,2′), (A16)

and finally, using Eqs. (A14)–(A16) in Eq. (A13), the Bethe-
Salpeter equation for χλ is written

χ−1
λ (1,2; 1′,2′) = χ−1

IP,λ(1,2; 1′,2′) − fλ(1,2; 1′,2′). (A17)

D. Fluctuation-dissipation theorem

Similarly to the expression of the one-particle density
matrix in terms of the one-particle Green’s function [Eq. (A9)],
the two-particle density matrix can be extracted from
the polarization propagator. Defining χλ(x1,x2; x′

1,x
′
2; τ ) =

χλ(x1t1,x2t2; x′
1t

+
1 ,x′

2t
+
2 ), that is, the polarization propagator

with times t ′1 → t+1 and t ′2 → t+2 which depends only on the
time difference τ = t1 − t2, it is easy to check that in the
limit τ → 0−, after applying the time-ordering operator in
Eq. (A11) and using Eq. (A9), one has the following relation:

iχλ(x1,x2; x′
1,x

′
2; τ = 0−)

= 〈�λ|n̂1(x2,x′
2)n̂1(x1,x′

1)|�λ〉 − n1,λ(x1,x′
1)n1,λ(x2,x′

2).

(A18)

The two-particle density matrix n2,λ(x1,x2; x′
1,x

′
2) =

〈�λ|ψ̂†(x′
2)ψ̂†(x′

1)ψ̂(x1)ψ̂(x2)|�λ〉 can thus be expressed as

n2,λ(x1,x2; x′
1,x

′
2)

= 〈�λ|n̂1(x2,x′
2)n̂1(x1,x′

1)|�λ〉 − δ(x′
1 − x2)n1,λ(x1,x′

2)

= iχλ(x1,x2; x′
1,x

′
2; τ = 0−) + n1,λ(x1,x′

1)n1,λ(x2,x′
2)

− δ(x′
1 − x2)n1,λ(x1,x′

2). (A19)

The correlation part of the two-particle density matrix Pc,λ =
n2,λ − n2,λ=0 is thus

Pc,λ(x1,x2; x′
1,x

′
2)

= iχλ(x1,x2; x′
1,x

′
2; τ = 0−) − iχ0(x1,x2; x′

1,x
′
2; τ = 0−)

+�λ(x1,x2; x′
1,x

′
2), (A20)

where χ0 is the polarization propagator of the noninteracting
reference system for λ = 0 and �λ is a term coming from the
variation of the one-particle density matrix along the adiabatic
connection,

�λ(x1,x2; x′
1,x

′
2)

= n1,λ(x1,x′
1)n1,λ(x2,x′

2) − δ(x′
1 − x2)n1,λ(x1,x′

2)

− n1,0(x1,x′
1)n1,0(x2,x′

2) + δ(x′
1 − x2)n1,0(x1,x′

2). (A21)
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Using Eq. (A9), one can also express this term with the
Green’s function as �λ = �[Gλ] − �[G0], where we define
the functional � as

�[G] = −G(x1,x′
1; τ = 0−)G(x2,x′

2; τ = 0−)

+ δ(x′
1 − x2)iG(x1,x′

2; τ = 0−). (A22)

Finally, introducing the Fourier transform of
χλ(x1,x2; x′

1,x
′
2; τ ) in terms of the frequency ω,

iχλ(x1,x2; x′
1,x

′
2; τ = 0−) = −

∫ ∞

−∞

dω

2πi
eiω0+

×χλ(x1,x2; x′
1,x

′
2; ω), (A23)

we arrive at the form of the fluctuation dissipation that we use:

Pc,λ(x1,x2; x′
1,x

′
2)

= −
∫ ∞

−∞

dω

2πi
eiω0+

[χλ(x1,x2; x′
1,x

′
2; ω)

−χ0(x1,x2; x′
1,x

′
2; ω)] + �λ(x1,x2; x′

1,x
′
2). (A24)

APPENDIX B: RANDOM-PHASE APPROXIMATION
IN AN ORBITAL BASIS

In this appendix, we give the working equations in an
orbital basis resulting from the many-body theory outlined in
Appendix A in the special case of a RPA-type simplification.
For further details, see, for example, Refs. [26,53,78,79].

A. Expressions in a spin-orbital basis

In the RPA and RPAx approximations, the Green’s func-
tion does not vary along the adiabatic connection, that is,
Gλ = G0, which implies that the IP polarization propaga-
tor [Eq. (A14)] is just the noninteracting reference polar-
ization propagator, χIP,λ(1,2; 1′,2′) = −iG0(1,2′)G0(2,1′) =
χ0(1,2; 1′,2′), and in the fluctuation-dissipation theorem of
Eq. (A24) the term coming from the variation of the one-
particle density matrix vanishes, �λ = 0.

The frequency-dependent noninteracting polarization prop-
agator has the following well-known Lehmann representation:

χ0(x1,x2; x′
1,x

′
2; ω) =

∑
ia

φ∗
i (x′

1)φa(x1)φ∗
a (x′

2)φi(x2)

ω − (εa − εi) + i0+

−
∑
ia

φ∗
i (x′

2)φa(x2)φ∗
a (x′

1)φi(x1)

ω + (εa − εi) − i0+ ,

(B1)

where φp(x) and εp are the spin orbitals and corresponding
eigenvalues of the reference system, and i and a run over
occupied and virtual spin orbitals, respectively. Hence, χ0 can
be completely represented in the basis of spin-orbital products,
φ∗

p(x′
1)φq(x1), where p refers to an occupied orbital and q to a

virtual orbital, and vice versa, with matrix elements

[�0(ω)]pq,rs =
∫

dx1dx2dx′
1dx′

2φp(x′
1)φ∗

q (x1)

×χ0(x1,x2; x′
1,x

′
2; ω)φ∗

r (x2)φs(x′
2). (B2)

Assuming orthonormality of the spin orbitals, the matrix
elements are easily calculated,

[�0(ω)]ia,jb = δij δab

ω − (εa − εi) + i0+ , (B3a)

[�0(ω)]ai,bj = − δij δab

ω + (εa − εi) − i0+ , (B3b)

[�0(ω)]ai,jb = [�0(ω)]ia,bj = 0, (B3c)

where both i and j refer to occupied orbitals and both a and b

to virtual orbitals. The matrix is thus diagonal, and the inverse
of χ0 has the following 2 × 2 supermatrix representation:

�0(ω)−1 = −
[(

�ε 0

0 �ε

)
− ω

(
1 0

0 −1

)]
, (B4)

where �εia,jb = (εa − εi)δij δab, each block matrix being
reindexed with the composite indices ia and jb.

In the RPA and RPAx approximations, the Bethe-Salpeter
kernel of Eq. (A16) is approximated as the frequency-
independent Hartree(-Fock) form [Eqs. (19) and (20)],

fλ(x1,x2; x′
1,x

′
2) = λwee(r12)[δ(x1 − x′

1)δ(x2 − x′
2)

− ξδ(x1 − x′
2)δ(x′

1 − x2)], (B5)

where wee(r12) is a two-particle interaction and ξ = 0 or ξ = 1
for RPA or RPAx, respectively. This kernel has the following
supermatrix elements:

(Fλ)pq,rs =
∫

dx1dx2dx′
1dx′

2φp(x′
1)φ∗

q (x1)

×fλ(x1,x2; x′
1,x

′
2)φ∗

r (x2)φs(x′
2)

= λ [〈qr|ŵee|ps〉 − ξ 〈qr|ŵee|sp〉] , (B6)

where 〈qr|ŵee|ps〉 are the two-electron integrals. The su-
permatrix representation of the interacting polarization prop-
agator χλ is then found from the Bethe-Salpeter equation
[Eq. (A17)] written in the spin-orbital basis,

�λ(ω)−1 = �0(ω)−1 − Fλ

= −
[(

Aλ Bλ

B∗
λ A∗

λ

)
− ω

(
1 0

0 −1

)]
, (B7)

where Aλ and Bλ are the so-called orbital rotation Hessians:

(Aλ)ia,jb = (εa − εi)δij δab

+ λ [〈ib|ŵee|aj 〉 − ξ 〈ib|ŵee|ja〉] , (B8a)
(Bλ)ia,jb = λ [〈ab|ŵee|ij 〉 − ξ 〈ab|ŵee|ji〉] . (B8b)

We need to consider the linear-response non-Hermitian eigen-
value equation(

Aλ Bλ

B∗
λ A∗

λ

)(
Xn,λ

Yn,λ

)
= ωn,λ

(
1 0

0 −1

) (
Xn,λ

Yn,λ

)
, (B9)

whose solutions come in pairs: positive excitation ener-
gies ωn,λ with eigenvectors (Xn,λ,Yn,λ) and opposite (de-)
excitation energies −ωn,λ with eigenvectors (Y∗

n,λ,X
∗
n,λ).

Choosing the normalization of the eigenvectors so that
X†

n,λXm,λ − Y†
n,λYm,λ = δnm, the supermatrix �λ(ω) can be
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expressed as the following spectral representation (where the
sum is over eigenvectors with positive excitation energies):

�λ(ω) =
∑

n

[
1

ω − ωn,λ + i0+

(
Xn,λ

Yn,λ

) (
X†

n,λ Y†
n,λ

)
(B10)

− 1

ω + ωn,λ − i0+

(
Y∗

n,λ

X∗
n,λ

) (
Y∗†

n,λ X∗†
n,λ

) ]
. (B11)

The fluctuation-dissipation theorem [Eq. (A24)] leads to
the supermatrix representation of the correlation part of the
two-particle density matrix Pc,λ (using contour integration in
the upper half of the complex plane),

Pc,λ = −
∫ ∞

−∞

dω

2πi
eiω0+

[�λ(ω) − �0(ω)]

=
∑

n

(
Y∗

n,λY∗†
n,λ Y∗

n,λX∗†
n,λ

X∗
n,λY∗†

n,λ X∗
n,λX∗†

n,λ

)
−

(
0 0

0 1

)
, (B12)

the simple contribution coming from �0(ω) resulting from
its diagonal form [Eqs. (B3)], and the correlation energy
[Eq. (A6)] has the following expression in spin-orbital basis:

Ec = 1

2

∫ 1

0
dλ

∑
pq,rs

〈ps|ŵ|qr〉(Pc,λ)pq,rs

= 1

2

∫ 1

0
dλ

∑
ia,jb

∑
n

{〈ib|ŵee|aj 〉(Yn,λ)∗ia(Yn,λ)jb

+〈ij |ŵee|ab〉(Yn,λ)∗ia(Xn,λ)jb

+〈ab|ŵee|ij 〉(Xn,λ)∗ia(Yn,λ)jb

+〈aj |ŵee|ib〉[(Xn,λ)∗ia(Xn,λ)jb − δij δab]}, (B13)

where out of the integrals 〈ps|ŵ|qr〉 associated with the
general perturbation operator only the integrals of the type
〈ib|ŵee|aj 〉 associated with the two-electron contribution of
the perturbation operator survive because of the occupied-
virtual-occupied-virtual structure of the two-particle density
matrix. Using now real spin orbitals, the correlation energy
can be simplified to

Ec = 1

2

∫ 1

0
dλ

∑
ia,jb

〈ib|ŵee|aj 〉(Pc,λ)ia,jb, (B14)

where

(Pc,λ)ia,jb =
∑

n

(Xn,λ + Yn,λ)ia(Xn,λ + Yn,λ)jb − δij δab,

(B15)

or, in matrix form,

Pc,λ =
∑

n

(Xn,λ + Yn,λ)(Xn,λ + Yn,λ)T − 1. (B16)

Using the well-known fact that if Aλ + Bλ and Aλ − Bλ are
positive definite, the non-Hermitian eigenvalue equation (B9)
with real spin orbitals can be transformed into the half-size
symmetric eigenvalue equation

MλZn,λ = ω2
n,λZn,λ, (B17)

where Mλ = (Aλ − Bλ)1/2(Aλ + Bλ)(Aλ − Bλ)1/2 and with
eigenvectors Zn,λ = √

ωn,λ(Aλ − Bλ)−1/2(Xn,λ + Yn,λ), and

using the spectral decomposition M−1/2
λ = ∑

n ω−1
n,λZn,λZT

n,λ,
the correlation two-particle density matrix Pc,λ can be ex-
pressed as

Pc,λ = (Aλ − Bλ)1/2 M−1/2
λ (Aλ − Bλ)1/2 − 1. (B18)

B. Expressions for spin-restricted closed-shell calculations

For spin-restricted closed-shell calculations, the eigenvec-
tors (Xn,λ,Yn,λ) can be transformed into spin-singlet excitation
and diexcitation vectors,

(1xn,λ)ia = 1√
2

[(Xn,λ)i↑a↑ + (Xn,λ)i↓a↓], (B19a)

(1yn,λ)ia = 1√
2

[(Yn,λ)i↑a↑ + (Yn,λ)i↓a↓], (B19b)

and spin-triplet excitation and diexcitation vectors,

(3,0xn,λ)ia = 1√
2

[(Xn,λ)i↑a↑ − (Xn,λ)i↓a↓], (B20a)

(3,0yn,λ)ia = 1√
2

[(Yn,λ)i↑a↑ − (Yn,λ)i↓a↓], (B20b)

(3,−1xn,λ)ia = (Xn,λ)i↑a↓, (B20c)

(3,−1yn,λ)ia = (Yn,λ)i↓a↑, (B20d)

(3,1xn,λ)ia = (Xn,λ)i↓a↑, (B20e)

(3,1yn,λ)ia = (Yn,λ)i↑a↓, (B20f)

the indices i, a, j , b referring now to spatial orbitals. With this
transformation, the linear-response eigenvalue equation (B9)
decouples into a singlet eigenvalue equation,

(
1Aλ

1Bλ

1B∗
λ

1A∗
λ

)(
1xn,λ

1yn,λ

)
= 1ωn,λ

(
1 0

0 −1

)(
1xn,λ

1yn,λ

)
, (B21)

with the singlet orbital rotation Hessians,

(1Aλ)ia,jb = (εa − εi)δij δab

+ λ [2〈ib|ŵee|aj 〉 − ξ 〈ib|ŵee|ja〉] , (B22a)

(1Bλ)ia,jb = λ [2〈ab|ŵee|ij 〉 − ξ 〈ab|ŵee|ji〉] , (B22b)

and three identical triplet eigenvalue equations,

(
3Aλ

3Bλ

3B∗
λ

3A∗
λ

) (
3xn,λ

3yn,λ

)
= 3ωn,λ

(
1 0

0 −1

) (
3xn,λ

3yn,λ

)
,

(B23)

with the triplet orbital rotation Hessians,

(3Aλ)ia,jb = (εa − εi)δij δab − λξ 〈ib|ŵee|ja〉, (B24a)

(3Bλ)ia,jb = −λξ 〈ab|ŵee|ji〉. (B24b)
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Performing the sums over spins in the correlation energy
expression of Eq. (B14), one gets, for real spatial orbitals,

Ec = 1

2

∫ 1

0
dλ

∑
ia,jb

〈ib|ŵee|aj 〉(1Pc,λ)ia,jb, (B25)

where remains only the contribution from the spin-singlet-
adapted correlation two-particle density matrix (1Pc,λ)ia,jb =∑

σ1=↑,↓
∑

σ2=↑,↓(Pc,λ)iσ1aσ1,jσ2bσ2 , which can be calculated

similarly as before,

1Pc,λ = 2

[∑
n

(1xn,λ + 1yn,λ)(1xn,λ + 1yn,λ)T − 1

]

= 2[(1Aλ − 1Bλ)1/21M−1/2
λ (1Aλ − 1Bλ)1/2 − 1],

(B26)

where 1Mλ = (1Aλ − 1Bλ)1/2(1Aλ + 1Bλ)(1Aλ − 1Bλ)1/2.
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