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Time-dependent density-functional theory �TDDFT� is widely used in the study of linear response
properties of finite systems. However, there are difficulties in properly describing excited states,
which have double- and higher-excitation characters, which are particularly important in molecules
with an open-shell ground state. These states would be described if the exact TDDFT kernel were
used; however, within the adiabatic approximation to the exchange-correlation �xc� kernel, the
calculated excitation energies have a strict single-excitation character and are fewer than the real
ones. A frequency-dependent xc kernel could create extra poles in the response function, which
would describe states with a multiple-excitation character. We introduce a frequency-dependent xc
kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to
achieve this, we use the Bethe–Salpeter equation with a dynamically screened Coulomb interaction
W���, which can describe these excitations, and from this we obtain the xc kernel. Using a
two-electron model system, we show that the frequency dependence of W does indeed introduce the
double excitations that are instead absent in any static approximation of the electron-hole
screening. © 2009 American Institute of Physics. �DOI: 10.1063/1.3065669�

I. INTRODUCTION

Excitation energies in finite systems have been exten-
sively studied within time-dependent density-functional
theory �TDDFT�.1 In this approach the excitation energies of
the system are obtained from those of the noninteracting
Kohn–Sham �KS� system through the following Dyson-type
equation:

��x1,x2,�� = �s�x1,x2,�� +� dx3dx4�s�x1,x3,��

�� 1

�x3 − x4�
+ fxc�x3,x4,�����x4,x2,�� , �1�

where � and �s are the response functions of the interacting
and the KS systems, respectively. Here the set of variables
�x1� comprises position and spin coordinates: �x1�= �r1 ,�1�.
The poles of the true response function give the excitation
energies of the interacting system, where the excited states
can be a mixture of single, double, and higher-multiple ex-
citations, whereas the poles of the KS response function are
just at single KS excitation energies. Therefore �s has fewer
poles than �. The KS excitation energies are mapped to the
true excitation energies by the Coulomb potential and the
exchange-correlation �xc� kernel fxc. Hence, in principle, the
exact spectrum of the interacting system can be obtained.
However, in practice, both the ground-state xc potential and
the xc kernel have to be approximated. The most used ap-
proximation for fxc is the simple adiabatic local-density ap-

proximation �ALDA�, which is local in time and in space.
Although this approximation is surprisingly successful, there
are some deficiencies. In particular, ALDA fails to create
new poles, which would describe excited states with a
multiple-excitation character. This deficiency is a problem
particularly for open-shell systems.2 However, there are also
problems for closed-shell molecules: for example, the
lowest-lying singlet state of polyenes is not a simple highest
occupied molecular orbital–lowest unoccupied molecular or-
bital �HOMO-LUMO� one-electron excitation but has a
HOMO2-LUMO2 double-excitation character.3,4

Several solutions have been proposed in literature in the
framework of TDDFT. Wang and Ziegler5,6 used a noncol-
linear representation of the xc energy. This means that the xc
energy, instead of being a functional of the density alone or
of the spin-up and spin-down densities, is a functional of the
density and of the magnetization m=	i�i

†��i, where � is
the vector of Pauli matrices. This allows one to describe spin
flip in the systems and, hence, to formally include doubly
excited states into a linear response theory. In practice, how-
ever, only if the appropriate excited state is used as reference
can double excitations from the ground state be described.

Another possible solution is to go beyond the adiabatic
approximation. The inclusion of a frequency dependence in
the xc kernel can indeed create extra poles. Casida7 proposed
a nonadiabatic correction to the xc kernel by using the for-
malism of superoperators. As a central result, he obtained a
formal equation that gives the correction to the adiabatica�Electronic mail: pina.romaniello@polytechnique.edu.

THE JOURNAL OF CHEMICAL PHYSICS 130, 044108 �2009�

0021-9606/2009/130�4�/044108/11/$25.00 © 2009 American Institute of Physics130, 044108-1

http://dx.doi.org/10.1063/1.3065669
http://dx.doi.org/10.1063/1.3065669


kernel used in TDDFT. The correction term comes from a
Bethe–Salpeter-type equation �BSE�, which contains one-
electron excitation contributions and higher-excitation con-
tributions. The general formula introduced includes as a spe-
cial case the “dressed TDDFT” derived by Maitra et al.8 for
closed-shell systems. These authors showed that near states
with a double-excitation character, the exact xc kernel has a
strong dependence on frequency. They derived the exact
frequency-dependent kernel for the case of a double excita-
tion mixed with a single excitation and well separated from
the other excitations, and calculated the first excited state of
butadiene and hexatriene, which is largely dominated by a
double excitation.4 However, for the application of the
dressed treatment, the mixing single and double excitations
must be identified a priori, which is not straightforward
based on TDDFT results only. Recently Giesbertz et al.9 for-
mulated an adiabatic time-dependent density-matrix-
functional theory in which double excitations can be ac-
counted for. In this paper we wish to remain in the TDDFT
framework and go beyond the adiabatic approximation and
to have a general formulation in which the frequency-
dependent kernel can reproduce double excitations. In order
to obtain this, we exploit the BSE, where the kernel can be
approximated in a more systematic and transparent way. The
BSE approach has already been used to find better approxi-
mations to the xc kernel of TDDFT in the case of solids.10–15

In all these previous studies, the BSE kernel has been taken
to be static. There are some works in which a dynamical
screening is employed.16,17 Recently Marini and Del Sole18

discussed the effects of a frequency-dependent BSE kernel
on the absorption spectra of copper, silver, and silicon. They
showed that dynamical effects are important for metals and
that a good description of the spectral intensity of their ab-
sorption spectra can be obtained if both dynamical excitonic
and self-energy effects are taken into account in the calcula-
tion of the response functions. In this article we are inter-
ested in the number and position of the poles of the response
function in finite systems. Therefore we will start by consid-
ering dynamical effects only in the kernel. Once the suitable
BSE kernel is found, we can obtain the xc kernel for
TDDFT.19,20

The paper is organized as follows. In Sec. II first we give
a brief introduction to the main equations used in TDDFT for
the calculation of excitation energies in molecules, known
also as Casida’s equations, and we show the problems that
arise if ALDA is used. Then we introduce the BSE, where
the kernel is approximated by the frequency-dependent
screened Coulomb interaction W���. We show that this BSE
kernel can describe double excitations by calculating excita-
tion energies of a two-electron model system. However, this
kernel, in the current formulation based on the random phase
approximation �RPA�, produces also unphysical poles, which
we attribute to the self-screening problem that the descrip-
tion of the screening suffers from. From this BSE kernel, we
derive the frequency-dependent xc kernel. Finally in Sec. IV
we draw our conclusions.

II. THEORY

A. TDDFT within Casida’s formulation

Excitation energies are obtained in TDDFT as a solution
of the following eigenvalue equation:21


 A B

− B� − A� �
X

Y
� = �
X

Y
� , �2�

with

Aia�,jb� = ����ab�ij��a� − �i�� + Kia�,jb�, �3�

Bia�,jb� = Kia�,bj�, �4�

Kia�,jb� =� � �i�
� �r��a��r�� 1

�r − r��

+ fxc
���r,r�,����b�

� �r��� j��r��drdr�. �5�

Here a ,b , . . . are indices for virtual orbitals, i , j , . . . are indi-
ces for occupied orbitals, � and � are indices for the spin, �
and � are the KS energies and orbitals, and fxc

���r ,r� ,�� is
the xc kernel. Although the matrix above spans only the
single KS excitations, in principle the eigenvalue equation
yields all the excitation energies of the interacting system.
However, for the number of eigenvalues to be larger than the
size of the matrix �i.e., the number of single KS excitations�,
the kernel K must be frequency dependent. Hence, within the
adiabatic approximation, TDDFT can only account for singly
excited configurations. This means that excited states with a
double-excitation character are, in general, not described
with the correct energy or are even completely absent. In
particular, the problem is evident in open-shell systems if
using the three-orbital model of Ref. 2, with one orbital dou-
bly occupied, another one singly occupied, and the third one

empty. If �Ĥ , Ŝz�= �Ĥ , Ŝ2�=0, then the Hamiltonian Ĥ and the

spin operators Ŝz and Ŝ2 of the system have common eigen-
states. Single Slater determinants of KS orbitals, with the
same spatial behavior for different spins �restricted formula-

tion�, are always eigenfunctions of Ŝz but not, in general, of

Ŝ2. In this case one can produce spin-adapted wave functions
by a linear combination of Slater determinants using
Clebsch–Gordan coefficients. In Ref. 2 it is shown that exci-
tations in which the singly occupied molecular orbital is a
spectator are problematic. In this case, indeed, among the

possible eigenstates of Ŝ2, there are a quartet and a doublet
state, which can be described only if double excitations are
included. Hence these two excited states will not be de-
scribed using a frequency-independent xc kernel. In place of
these two states, ALDA yields instead only one state, a com-
bination of two singly excited determinants, which is un-
physical.

Our aim is hence to go beyond the adiabatic approxima-
tion and include in the xc kernel a frequency dependence
which can produce double-excitation energies. We will de-
rive this kernel from the kernel of the BSE. Passing through
many-body perturbation theory �MBPT� has the advantage
that excitations of the system enter the formulation explicitly.
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Therefore approximations with a clear physical meaning can
be more easily designed than in the context of DFs and in-
troduced into TDDFT in a second step.

B. Reduced space

In general, an �m�m� eigenvalue problem can be re-
duced to a lower-dimensional one by writing it as


 S C1

C2 D
�
e1

e2
� = �
e1

e2
� , �6�

where S is an n�n matrix, D is a t� t matrix, and m=n+ t.
In fact, solving for e2= ��1−D�−1C2e1 and substituting into
the equation for e1, one gets

�S + C1��1 − D�−1C2�e1 = �e1, �7�

provided that ��1−D� is invertible. The latter is an �n�n�
eigenvalue problem for a frequency-dependent matrix. In
particular, the eigenvalues obtained from Eq. �7� are the
same as those of Eq. �6�.

This conversion of spatial degrees of freedom into fre-
quency dependence is very general.20 For example, when
solving the BSE in the space of single excitations, the
frequency-dependent kernel has folded in it all the many-
excitation effects. We are interested, in particular, in double
excitations. In this case, the matrix S spans the space of
single excitations, and it has the same structure reported in
Eq. �2� within a static approximation to the kernel; the matrix
D spans the space of double excitations, and the matrices C1

and C2 represent the interaction between single and double
excitations. Equation �7� shows that an eigenvalue problem
formulated in the basis of single and double excitations can
be solved in the space of single excitations only by adding to
a general static matrix an �-dependent matrix, which takes
into account double excitations. It is this frequency depen-
dence representing additional excitations that we are inter-
ested in.

It should be noticed that the kernel acquires an addi-
tional �-dependence when one transforms the four-point
BSE to the two-point TDDFT equation. In this case the
�-dependence represents simply the reduction in space.

C. Bethe–Salpeter equation

We consider the BSE for the two-particle propagator L,22

L�1,2,1�,2�� = L0�1,2,1�,2�� +� d3d4d5d6L0�1,4,1�,3�

�	�3,5,4,6�L�6,2,5,2�� , �8�

where L0 is given in terms of one-particle Green’s functions
as L0�1,2 ,1� ,2��=−iG�1,2��G�2,1�� and the four-point ker-
nel 	�3,5 ,4 ,6� is given by

	�3,5,4,6� = i
��vH�3���3,4� + �
�3,4��

�G�6,5�
, �9�

with vH�1�=−i�d3v�1,3�G�3,3+� as the Hartree potential.
Here the set of variables �1� comprises position, spin, and
time coordinates: �1�= �x1 , t1�= �r1 ,�1 , t1�. For simplicity, in
the following the spatial and spin dependence will not be
specified, if not necessary. We will use the so-called GW
approximation to the self-energy, 
�1,2�= iG�1,2�W�1+,2�,
and hence the BSE kernel reduces to 	�3,5 ,4 ,6�
=��3,4���5,6�v�3,6�−��3,6���4,5�W�3,4�. Here we ne-
glected the term i�W /�G in the functional derivative of the
self-energy.23–25 In Ref. 26 it is shown that L naturally de-
pends on the symmetric combinations of time variables
��= �t1+ t1�� /2− �t2+ t2�� /2;�1= t1− t1� ;�2= t2− t2��. Usually
the screened Coulomb interaction W is taken to be instanta-
neous, i.e., W�3,4�=W�x3 ,x4���t3− t4�. In this case one can
contract the time variables t1�→ t1 and t2�→ t2 in Eq. �8�, and
thus the propagator L depends only on the time difference
�= t1− t2.27–32 Instead, if one takes into account the time de-
pendence of the screening, W�t3− t4�, the contraction
t1�→ t1 is not possible anymore. In Appendix A we show that
the Fourier transform of L�� ,�1 ,�2� with respect to �, �1, and
�2 is given by

L��,��,���

= L0��,��,��� − iG��� + �/2�G��� − �/2�v

�� d�̃

2�
L��,�̃,��� + iG��� + �/2�G��� − �/2�

�� d�̃

2�
W��� − �̃�L��,�̃,��� , �10�

with L0�� ,�� ,���=−2�i����−���G���+� /2�G���−� /2�.
In the following we approximate the one-particle Green’s
function as

G�x1,x2,�� = 	
n

�n�x1��n
��x2�

� − �n + i sgn��n − ��
, �11�

where �n�x� are a complete set of �orthonormal� single-
particle wave functions, �n are the quasiparticle energies, and
� is the chemical potential. Note that we neglect the fre-
quency dependence of the self-energy in the Green’s func-
tion, and we concentrate on the frequency dependence of the
screening W only. It has been shown that the two kinds of
dynamical effects tend to cancel each other with an improve-
ment of the spectral intensity and of the f-sum rule in
solids.15,33 In this paper, however, we are interested in the
effects of a dynamical screening.

1. Static screening W„�=0…

It is immediate to see that if we consider a static screen-
ing W��=0�, as it is done in most of current
calculations,29,31,32 Eq. �10� reduces to

L̃��� = L̃0��� + L̃0���KL̃��� , �12�

where K= �v−W�, L̃���=��d��d�� / �2��2�L�� ,�� ,��� and

analogously for L̃0���. Note that L̃��� is the quantity that is
usually calculated in nowadays applications.29,31,32 In this
work we are interested in the particle-hole portion of the
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propagator L �i.e., the part corresponding to the time order-
ings which describe the propagation of an electron and a
hole�; therefore in the following our discussion will refer
only to this contribution. Using the change of basis

L̃�n1�n1��n2n2��
=� dx1dx2dx1�dx2�L̃�x1,x2,x1�,x2�,��

��n1

� �x1��n1�
�x1���n2�

�x2���n2

� �x2� , �13�

the BSE �12� can be mapped into an effective two particle
equation,10,28,34

L̃�n1�n1��n2n2��
= �H2p − I���n1�n1��n2n2��

−1 �fn2
− fn2�

� , �14�

with the two-particle Hamiltonian H2p defined as

H�n1�n1��n2n2��
2p = ��n1

− �n1�
��n1,n2�

�n1�,n2

+ �fn1�
− fn1

�K�n1�n1��n2�n2�. �15�

Note that due to the orthonormality of the basis set wave

functions, L̃0�n1�n1��n2n2��
=�n1�n2

�n1n2�
�fn1�

− fn1
���− ��n1

−�n1�
�

+ i sgn��n1
−�n1�

��−1 is diagonal. Here fk are Fermi occupan-

cies �fk=1 if �k�� and fk=0 if �k��, with � as the chemi-
cal potential�. The presence of �fn2�

− fn2
� selects only a part

of the Hamiltonian H2p, which is referred to as excitonic
Hamiltonian H2p,exc,

H2p,exc = 
 H�vc��v�c��
2p,reso K�vc��c�v��

coupling

− �K�vc��c�v��
coupling �� − �H�vc��v�c��

2p,reso ��� , �16�

with v, v� and c, c� as occupied and unoccupied quasiparticle
states, respectively. The matrix H2p,reso only involves positive
energy transitions, and it is given by

H�vc��v�c��
2p,reso = ��c − �v��v,v��c,c� + v�vc��v�c�� − W�vc��v�c��,

�17�

with

v�vc��v�c�� =� dxdx��c
��x��v�x�

1

�x − x��
�c��x���v�

� �x�� ,

�18�

W�vc��v�c�� =� dxdx��c
��x��c��x�W�x,x���v�x���v�

� �x�� .

�19�

The lower-right block −�H�vc��v�c��
2p,reso �� is the antiresonant part

of the excitonic Hamiltonian, which only involves negative
energy solutions, while the off-diagonal terms couple the ei-
genvalue equations of the resonant and antiresonant Hamil-

tonians. The particle-hole propagator L̃ can be obtained as

L̃�x1,x2,x1�,x2�,��

= 	
���
� 	

n1n1�

A
�

�n1�n1�
�n1

�x1��n1�

� �x1��

�� − � + i sgn��n1�
− �n1

�

�S���
−1 	

n2n2�

A
��

��n2n2���n2
�x2��n2�

� �x2���fn2�
− fn2

�� , �20�

where A
�
�n1�n1� and �� are the eigenvectors and eigenvalues of

the excitonic Hamiltonian,

H�n1�n1��n2n2��
2p,exc A

�

�n2n2�� = ��A
�

�n1�n1�, �21�

and S���=	n1n1�
A

�
��n1�n1�A

��
�n1�n1�

is the overlap matrix. From

the particle-hole propagator, we can obtain the two-point po-

larizability ��x1 ,x2 ,��= L̃�x1 ,x2 ,x1 ,x2 ,��. �Note that all the
quantities we have defined so far are time ordered. Analytic
continuation to retarded quantities can eventually be per-
formed by replacing −i with i in the denominator of Eq.
�20� when �n1�

��n1
.� The excitonic Hamiltonian �Eq. �21��

has the same structure as the TDDFT eigenvalue equation
�Eq. �2��; hence also here a kernel that is frequency depen-
dent is needed in order to describe double excitations.

2. Eigenvalue equation with a frequency-dependent
screening W

The mapping of the BSE with a frequency-dependent
screened Coulomb interaction W��� into an effective two
particle equation is not as straightforward as for the static
case. However, following Ref. 22, we can obtain an eigen-
value equation analogous to Eq. �21�,

H�n1�n1��n2n2��
2p,exc ����A

�

�n2n2������ = ��A
�

�n1�n1����� , �22�

where now

H�n1�n1��n2n2��
2p,exc ���� = ��n1

− �n1�
��n1�n2

�n1n2�
+ �fn1�

− fn1
�

��v�n1�n1��n2n2��
− W̃�n1�n1��n2n2��

����� ,

�23�

with

W̃�n1�n1��n2n2��
���� = i� d�

2�
W�n1�n1��n2n2��

���

�� 1

�� − � − ��n2�
− �n1�

� + i

+
1

�� + � − ��n1
− �n2

� + i� . �24�
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Note that Eq. �22� has been derived assuming spectra with
poles �� well isolated from each other. In the present study,
in which we deal with molecules, this hypothesis is not se-
vere. Furthermore it is assumed that the poles of L0 are dif-
ferent from ��.

We now approximate the screened electron-hole interac-
tion W�n1�n1��n2n2��

��� in Eq. �23�. In principle the screening

should self-consistently contain multiple excitations. How-
ever, as a starting point we can approximate it using only

single excitations, such as in RPA or using some static ap-
proximation. We, therefore, first solve Eq. �15� with a static
screening and use the corresponding eigenvalues and eigen-
vectors in Eq. �20� to obtain the two-point response function

��x1 ,x2 ,��= L̃�x1 ,x2 ,x1 ,x2 ,��. The poles of the response
function give the excitation energies of the system and,
within a static approximation to the screening, are as many
as the number of single e-h excitations �v ,c� and �c ,v�.
From the equation W=v+v�v, we then obtain

W�x1,x2,�� = v�x1,x2� + 	
�
� dx1�dx2�v�x1,x1��	vc,v�c�A�

�vc�,static�v
��x1���c�x1���v��x2���c�

� �x2��A�
��v�c��,static

� − ��
static + i

−
	cv,c�v�A�

�cv�,static�c
��x1���v�x1���c��x2���v�

� �x2��A�
��c�v��,static

� + ��
static − i

�v�x2�,x2� , �25�

from where it immediately follows that

W�n1�n1��n2n2��
��� = v�n2�n1��n2n1��

+ 	
�

	
ṽc̃,ṽ�c̃�

v�n2�n1��ṽc̃�
A�

�ṽc̃�,staticA�
��ṽ�c̃��,static

� − ��
static + i

v�ṽ�c̃���n2n1��

− 	
�

	
c̃ṽ,c̃�ṽ�

v�n2�n1��c̃ṽ�
A�

�c̃ṽ�,staticA�
��c̃�ṽ��,static

� + ��
static − i

v�c̃�ṽ���n2n1��
. �26�

Note that we used the notation �� for the positive energies and −�� for the negative energies. Furthermore we neglected the
coupling between positive and negative energy equations �Tamm–Dancoff approximation�. In this case, since the excitonic
Hamiltonian is Hermitian, the eigenstates A� are mutually orthogonal, and hence the overlap matrix S��� in Eq. �20� equals the
identity matrix.

Inserting Eq. �26� into Eq. �24�, we can solve analytically the frequency integration. We arrive at

W̃�n1�n1��n2n2��
���� = v�n2�n1��n2n1��

+ 	
��

	
ṽc̃,ṽ�c̃�

v�n2�n1��ṽc̃�

A��
�ṽc̃�,staticA��

��ṽ�c̃��,static

�� − ���
static − ��n2�

− �n1�
� + i

v�ṽ�c̃���n2n1��

+ 	
��

	
ṽc̃,ṽ�c̃�

v�n2�n1��c̃ṽ�

A��
�c̃ṽ�,staticA��

��c̃�ṽ��,static

�� − ���
static − ��n1

− �n2
� + i

v�c̃�ṽ���n2n1��
. �27�

Note that the frequency-dependent term on the right-hand
side of Eq. �27� has the same form as the term C1��1
−D�−1C2 in Eq. �7�, in which D plays the role of �static+��.
In Sec. III we will show, using a simple model system, that
this frequency-dependent kernel produces double excitations,
although with some deficiencies that we will explain later. In
the space of single excitations the TDDFT equation and the
BSE have the same four-point structure. In particular the xc
kernel and the BSE kernel play the same role �besides the
quasiparticle shift�. Therefore we can compare the kernel in

Eq. �27� with the xc kernel obtained by Maitra et al. in Ref.
8: within the single pole approximation and considering only
the resonant part of Eq. �27�, we obtain the same structure as
Eq. �15� of Ref. 8, with ��static− ��c−�v�� playing the role of
�HDD−H00�.

D. From BSE to TDDFT

In transition space both the TDDFT equation and the
BSE are four-point equations. In this case, solving the TD-
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DFT equation costs as much as solving the BSE. In real
space, instead, the TDDFT equation is a two-point equation,
unlike the BSE, which remains four point. Therefore it is
worthwhile to try to derive an xc kernel from BSE. An ap-
proximate expression for the xc kernel in real space has been
obtained from the BSE kernel in several ways, all yielding
the same result.11,13–15,19,20,35,36 However, all these previous
derivations assume a static screening. Here, instead, we will

use a dynamical screening in order to obtain an xc kernel,
which can describe double excitations. We will follow Refs.
19 and 20. We are interested in positive frequencies. In this
case there is no difference between time-ordered and causal
response functions. We also assume that both in TDDFT and
BSE the starting point is L0, which already includes quasi-
particle corrections. Starting from Eq. �9� of Ref. 20, we then
arrive at

fxc�x1,x2,�� = −� dx3dx4dx5dx6�0
−1�x1,x3,���� d��d��

�2��2 L0�x3,x6,x3,x5,�,��,���

�� d��d�̃

�2��2 W�x5,x6,�� − �̃�L0�x5,x4,x6,x4,�,�̃,�����0
−1�x4,x2,�� , �28�

with �0�1,2�=L0�1,2 ,1 ,2�. As a dynamical screening W���− �̃� we insert the expression given in Eq. �25�, and we obtain

fxc�x1,x2,�� = 	
kk�,ss�

� dx3dx4dx5dx6�0
−1�x1,x3,��

�k�x3��k
��x5��k��x6��k�

� �x3�

� − ��k − �k�� + i sgn��k − �k��

�v�x5,x6� +� d��

2�
� 1

�� + �/2 − �k + i sgn��k − ��
−

1

�� − �/2 − �k� + i sgn��k� − ���
�	

�
� dx1�dx2�v�x5,x1��� d�̃

2�
�	ṽc̃,ṽ�c̃�A�

�ṽc̃�,static�ṽ
��x1���c̃�x1���ṽ��x2���c̃�

� �x2��A�
��ṽ�c̃��,static

�� − �̃ − ��
static + i

−
	c̃ṽ,c̃�ṽ�A�

�c̃ṽ�,static�c̃
��x1���ṽ�x1���c̃��x2���ṽ�

� �x2��A�
��c̃�ṽ��,static

�� − �̃ + ��
static − i

�v�x2�,x6�

�� 1

�̃ + �/2 − �s + i sgn��s − ��
−

1

�̃ − �/2 − �s� + i sgn��s� − ����
�

�s�x5��s
��x4��s��x4��s�

� �x6�

� − ��s − �s�� + i sgn��s − �s��
�0

−1�x4,x2,�� . �29�

Since we consider only positive energy solution, we select only the terms with �k, �s�� and �k�, �s���, and after integration
in �̃ and ��, we arrive at

fxc�x1,x2,�� = − 	
vc,v�c�

� dx3dx4dx5dx6�0
−1�x1,x3,��L̃0

vc�x3,x6,x3,x5,��W̃v�c�
vc �x5,x6,��L̃0

v�c��x5,x4,x6,x4,���0
−1�x4,x2,�� ,

�30�

where we defined

W̃v�c�
vc �x5,x6,�� = v�x5,x6� + 	

�
� dx1�dx2�v�x5,x1���	ṽc̃,ṽ�c̃�A�

�ṽc̃�,static�ṽ
��x1���c̃�x1���ṽ��x2���c̃�

� �x2��A�
��ṽ�c̃��,static

� − ��
static − ��c� − �v� + i

+
	c̃ṽ,c̃�ṽ�A�

�c̃ṽ�,static�c̃
��x1���ṽ�x1���c̃��x2���ṽ�

� �x2��A�
��c̃�ṽ��,static

� − ��
static − ��c − �v�� + i

�v�x2�,x6� , �31�
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which can be obtained from Eq. �27�, and L̃0
vc such that L̃0

=	vcL̃0
vc. Equation �30� is the central result of this article.

Unlike previous derivations based on the BSE, here we used
a BSE kernel which is frequency dependent.

It has been shown that a static approximation to the fac-
tor �0

−1L0 can reproduce good spectra for solids in the case
when a static screening is used.37 The same is observed for
the spectrum of silicon calculated using only two k points in
the Brillouin zone.13 The latter discrete case can be consid-
ered as a simulation of a calculation in a molecule. There-
fore, if we suppose the factor �0

−1L0
vc to be static, the xc

kernel in Eq. �30� will have the same poles of the screened

electron-hole interaction W̃, and hence it will have also the
same advantages and the same deficiencies, which will be
pointed out in the next section.

1. Exact constraints

Several exact properties of the xc kernel are known, and
it is desirable to satisfy as many of them as possible when
constructing an approximate kernel.38,39 In Ref. 40 van Leeu-
wen and Dahlen showed that, starting from the time-
dependent Sham–Schlüter equation,

� d2Gs�1,2�G�2,1�vxc�2� =� d2d3Gs�1,2�
�2,3�G�3,1� ,

�32�

its functional derivative with respect to the density yields an
xc kernel of TDDFT that satisfies important exact con-
straints. This is true also if the linearized form of Eq. �32� is
employed, where all Green’s functions, including those con-
tained in the expression for 
, are replaced by KS Green’s
functions.40,41 In this case, when the GW approximation to
the self-energy is used, the xc kernel is given by the diagram-
matic expression in Fig. 2 of Ref. 41. The class of xc kernels
used in the present paper differs from the conserving kernel
of Ref. 41 in three aspects:

• the derivative of W with respect to the total potential V
is neglected; i.e., W is treated as an externally given
interaction;

• the quasiparticle correction is included in the energies
of the independent polarizability �0, and it is not linear-
ized as part of the kernel;

• consequently all Green’s functions are built with quasi-
particle eigenvalues instead of KS eigenvalues.

The term �W /�V, which gives rise to the two last dia-
grams of the conserving kernel, is usually neglected in the
BSE without deteriorating the results, which is our motiva-
tion to adopt this approximation. The linearization of the
quasiparticle correction term would give the first four dia-
grams of the conserving kernel42 instead of dressed Green’s
functions throughout. However, the linearized quasiparticle
correction term is numerically unstable and gives rise to scat-
tered spectra;42 therefore it is preferable to use the nonlinear-
ized version. Finally, the use of KS Green’s functions instead
of quasiparticle Green’s functions in Eq. �28� is consistent

with that choice; this point is, moreover, not fundamental for
the discussion of this paper. Equation �28� gives the fifth
diagram of the conserving kernel when KS Green’s functions
are used.

The kernel in Eq. �28� is, therefore, closely related to
conserving approximations to the xc kernel. In fact, if a static
screening is used, then the linearized form of Eq. �28� is
conserving.41 This is not sufficient to ensure that the kernel
�28� obeys the known exact constraints. However, although
the violation of these constraints can cause some
instabilities,43,44 the observance of them does not guarantee
that good results will be obtained.45,46 Indeed, the class of
kernels �28� has been derived from a pragmatic point of view
by imposing TDDFT to reproduce the two-point polarizabil-
ity of BSE in a limited frequency range: this is our con-
straint. The static version of Eq. �28� has been successfully
used in solids.11–13 In this work we release the static approxi-
mation, and we investigate the effect of a dynamical screen-
ing. As already stressed, other dynamical effects, which
might be important for the spectrum, are not taken into ac-
count since the goal of the present work is to elucidate the
contributions arising from the excitations contained in the
dynamically screened electron-hole interaction.

III. APPLICATIONS

We will now study a model system with two energy
levels, �v and �c, and two paired electrons.

A. Solution of the excitonic Hamiltonian

We calculate the eigenvalues of the Hamiltonian �22�,
within the Tamm–Dancoff approximation. These eigenvalues
give the poles of the four-point polarizability L and hence the
excitation energies of the system.

First we need to specify the spin structure of the exci-
tonic Hamiltonian.32 Since we neglect spin-orbit interaction
as well as spin flip, the basis set consists of the particle-hole
pairs with spin-up �v↑c↑� and of those with spin-down
�v↓c↓�. Furthermore, we will consider a spin-restricted
ground state, i.e., �i↑=�i↓. We then have to solve the follow-
ing eigenvalue problem:

��� + V − W̃ − ��2 − V2 = 0, �33�

where ��= ��c�−�v��, V=v�vc���vc���, and W̃=W̃�vc���vc��,
with �= ↑ ,↓. Using a static screening, we obtain two solu-
tions for this model: the singlet solution �1

static=��+2V
−Wstatic with eigenvector A1

static=1 /�2�11�T and the triplet so-
lution �2

static=��−Wstatic with eigenvector A2
static=1 /�2�1

−1�T. Using these solutions in Eq. �27�, one constructs the

frequency-dependent screening W̃=A+B / ��−�1
static−���,

with A=v�cc��vv� and B=2R�v�cc��vc�v�vc��vv��. From the struc-

ture of W̃, one can already anticipate that the eigenvalue of
Eq. �33� has four solutions, although one expects only three
for this system, i.e., a singlet single excitation, a triplet single
excitation, and a singlet double excitation. One of the four is
an unphysical state. We argue that the occurrence of this
extra pole is related to the self-screening interaction that the
GW approximation to the self-energy suffers from:47 W is the
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test charge–test charge screening, whereas the charges to be
screened are fermions, not classical charges.19 This could be
cured by a vertex correction to the self-energy. Indeed, if one
considers only one electron in this model system, then Eq.
�22� produces two poles, one corresponding to a single exci-
tation and the other one, unphysical, corresponding to a
double excitation. In this case, there are no dynamical self-
energy effects involved, and the extra pole arises, indeed,
from the fact that the electron screens itself. We can recog-
nize the spurious solution by solving Eq. �33� independently

of the dynamical structure of W̃. We then obtain two groups

of solutions: one for singlet states, �=��+2V−W̃, and one

for triplet states, �=��−W̃. Since the excited state involving
a double excitation is a singlet, the correct double-excitation
energy is that coming from the singlet-group solutions. The
four solutions ��1,2, the singlet solutions, and �3,4, the triplet
solutions� are

�1,2 =
2�� + �1

static + 2V − A � ���1
static − 2V + A�2 − 4B

2
,

�34�

�3,4 =
2�� + �1

static − A � ���1
static + A�2 − 4B

2
.

In order to analyze this result, we can assume that the system
has localized wave functions. In this case the overlap be-
tween valence and conduction orbitals can be small, and
therefore the term B=2R�v�cc��vc�v�vc��vv�� is such that
��1

static+A−2V�2�4B. The solutions become

�1 = �� + 2V − A ,

�2 = �� + �1
static = 2�� + 2V − Wstatic,

�3 = �� − A ,

�4 = �� + �1
static = 2�� + 2V − Wstatic.

The solutions �1 and �3 are the energies of the singlet and
triplet single excitations, respectively, already described us-
ing a static screening, �2 is identified as the energy of a
singlet double excitation, and �4 is the spurious energy.

To give a numerical example, we consider the He atom,
where we select only the HOMO, which is a 1s orbital, and
the LUMO, which is a 2s orbital. Equation �34� links the
singlet and triplet excitation energies ��1 and �3, respec-
tively� to the parameters A and B. Therefore we use the ex-
perimental values for ��, �1, and �3 from Refs. 48 and 49 to
evaluate A and B. Furthermore we approximate 2V=�1−�3,
which follows from Eq. �33� with a static screening, and we
use �1

static=�1
RPA=��+2V. All these values are then used in

Eq. �34� to calculate the double-excitation energy �2. In
Table I we reported the results. In particular, the double-
excitation energy is calculated to be �2=49.81 eV. This en-
ergy falls in the continuum; therefore we cannot compare our
result with experimental data. However, we can show that we
obtain a reasonable result by comparing it with the solution
of the exact Hamiltonian, which is described in the follow-
ing.

B. Solution of the exact Hamiltonian

We can compare our result with the eigenstates and ei-
genvalues of the exact Hamiltonian

Ĥ = 	
i

ĥ�xi� +
1

2	
i�j

v�xi,xj� , �35�

where the terms on the right-hand side are the noninteracting
Hamiltonian and the two-electron interaction, respectively. In
Appendix B we show that in second quantization the eigen-
values and eigenvectors of our model can be obtained by
diagonalizing the following matrix:

Hexact =�
�v↑v↓� �v↑c↓� �v↓c↑� �c↑c↓�

�v↑v↓� 2�v + Vvvvv Vvvvc − Vvvvc Vvvcc

�v↑c↓� Vvvvc �v + �c + Vcvvc − Vvvcc Vcvcc

�v↓c↑� − Vvvvc − Vvvcc �v + �c + Vcvvc − Vcvcc

�c↑c↓� Vvvcc Vcvcc − Vcvcc 2�c + Vcccc

� , �36�

TABLE I. Excitation energies �1, �2, and �3 calculated for He atom using the excitonic Hamiltonian and the exact Hamiltonian. All the quantities are given
in eV.

H2p,exc ���IP-EA�a �1
static V A B �1

a �2 �3
a

24.507 25.304 0.398 4.689 �0 20.615 49.811 19.818

Hexact �v �c Vvvvv Vvvvc Vvvcc Vcvvc Vcvcc Vcccc �1 �2 �3

�54.40 �13.60 34.01 4.86 1.19 11.42 0.47 8.18 23.77 58.02 19.22

aExperimental values taken from Refs. 48 and 49.
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where �i=�dx�i
��x�h�x��i�x�, Vijkl=�dxdx��i

��x�� j
��x��

�v�x ,x���k�x���l�x�, and �i are the eigenstates of the non-
interacting Hamiltonian. Note that here the terms such as
�v↑c↓� indicate Slater determinants and not electron-hole ex-
citations �v↑c↓�. To keep contact with the notation used in
the rest of the paper, we notice that Vijkl=v�li��jk�. In our
model the valence orbital v and the conduction orbital c are
the hydrogenic wave functions 1s, i.e., �n=1l=0m=0�r�
= �Z3/2 /�1/2�exp�−Zr�, and 2s, i.e., �n=2l=0m=0�r�
= �Z3/2 / �32��1/2��2−Zr�exp�−Zr /2�, respectively. Note that
since the orbitals are real, then Vijkl=Vklij and, in particular,
Vcvvc=Vvvcc. The one-electron energies are computed from
the Bohr model, i.e., En=−13.6Z2 /n2 eV, with Z as the
atomic number and n as the principal quantum number. The
two-electron repulsion integrals Vijkl are evaluated analyti-
cally. Direct and exchange terms are checked against analyti-
cal ones reported in Refs. 50 and 51. Diagonalization of ma-
trix �36� produces four eigenvalues: one at �76.99 eV
corresponding mainly to the singlet state �1s↑1s↓�, one at
�57.77 eV corresponding mainly to the triplet combination
��1s↑2s↓�+ �1s↓2s↑�� �note that the symmetric combination
of the two determinants implies an antisymmetric combina-
tion of the spatial orbitals and a symmetric combination of
the spin functions and vice versa for the antisymmetric com-
bination of the two determinants�, one at �53.23 eV corre-
sponding mainly to the singlet combination ��1s↑2s↓�
− �1s↓2s↑��,27 and the last one at �18.98 eV corresponding
mainly to the singlet state �2s↑2s↓�. The excitation energies
for the transitions from the ground state �1s↑1s↓� to the
other �excited� states are reported in Table I. In particular the
double-excitation energy is �3=58.02 eV, which, although
larger than the value calculated with the excitonic Hamil-
tonian, has the same order of magnitude. We also observe
that the singlet-triplet splitting and the singlet single excita-
tion are larger than the experimental values. Therefore we
can consider the two double-excitation energies calculated
with the two methods to be consistent.

IV. CONCLUSIONS

In this article we derive a frequency-dependent xc ker-
nel, which can reproduce, within TDDFT, double excitations
in finite systems. In order to achieve this, we get insight from
MBPT, where the excitations of the system enter the formu-
lation explicitly and approximations with a clear physical
meaning can be more easily designed. We use the BSE, and
we approximate the kernel with the dynamically screened
Coulomb interaction W���. From this BSE kernel, we can
derive a frequency-dependent xc kernel. The frequency de-
pendence of this xc kernel has a double origin: it stems from
the frequency dependence of the BSE kernel, which has

folded in it the effect of double excitations, and from the
folding of the four-point BSE to the two-point TDDFT equa-
tion. If the latter �-dependence is neglected, the xc kernel
exhibits the same frequency dependence as the BSE kernel.
This frequency dependence indeed introduces excitations be-
yond the singles. In particular, we show that in a two-
electron model system, the dynamical screening can repro-
duce double excitations. We obtain also an unphysical
excitation energy. We analyze the origin of this spurious ex-
citation, and we relate it to the self-screening problem that
the GW approximation to the self-energy suffers from. Ver-
tex corrections are needed in order to overcome the problems
of the test charge–test charge approximation to the kernel.

APPENDIX A: BETHE–SALPETER IN FREQUENCY
SPACE

Let us consider a four-point function as depicted in Fig.
1�a�. At each time variable is associated a frequency. For the
energy-conservation principle, we must have �1−�1�=�2�
−�2, which can be satisfied by the following choices:

�1 =
�

2
+ ��, �1� = −

�

2
+ ��,

�A1�

�2� =
�

2
+ ��, �2 = −

�

2
+ ��,

i.e., only three frequencies are needed to be specified �Fig.
1�b��. Therefore the function C�t1 , t2 , t1� , t2�� can be written
as

C�t1,t2,t1�,t2�� =� d�d��d��

�2��3 C��,��,���e−i���/2+���t1+�−�/2+���t2−�−�/2+���t1�−��/2+���t2��

=� d�d��d��

�2��3 C��,��,���e−i��e−i���1e−i���2, �A2�

FIG. 1. �a� A generic four-point function C�1,2 ,1� ,2�� in Fourier �fre-
quency� space. �b� Due to energy conservation, only three frequencies need
to be specified �see Eqs. �A1� and �A2��.
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with �= ��t1+ t1�� /2− �t2+ t2�� /2�, �1= t1− t1�, and �2= t2− t2�.
Note that choice �A1� is done in order to obtain the time
combinations of Eq. �A2�. If we have two four-point func-
tions �C1C2��� ,�1 ,�2�, as in Fig. 2, the corresponding func-
tion �C1C2��� ,�� ,��� in frequency space is

�C1C2���,��,��� =� d��
2�

C1��,��,���C2��,��,��� .

�A3�

Something similar can be obtained for three four-point func-
tions and so on. In particular, if we consider the BSE with
the frequencies as in Fig. 1�b�, then we have

L��,��,��� = L0��,��,��� +� d��d�iv

�2��2 L0��,��,���

�	��,��,�iv�L��,�iv,��� . �A4�

Using for the single-particle Green’s functions the inverse
Fourier transform,

G�1,2� = G�x1,x2,t1 − t2� =� d�

2�
G�x1,x2,��e−i��t1−t2�,

�A5�

one can show that

L0��,��,��� = − 2�i���� − ���G��� + �/2�G��� − �/2� .

�A6�

It then follows that

L��,��,��� = − 2�i���� − ���G��� + �/2�G��� − �/2�

− iG��� + �/2�G��� − �/2�

�� d�̃

2�
	��,��,�̃�L��,�̃,��� . �A7�

If we choose 	�3,5 ,4 ,6�=��3,4���5,6�v�3,6�

−��3,6���4,5�W�3,4�, then it is easy to see in Fig. 3 that in
order for the energy to be conserved, the exchange v should
bring the frequency �, while the Coulomb term W should
bring the frequency ��− �̃. Within this approximation to the
kernel, the BSE is given by Eq. �10�.

APPENDIX B: EXACT SOLUTION

One can compute the ground and excited states and rela-
tive energies for the two-level–two-electron model system by
starting from the exact Hamiltonian

Ĥ = 	
i

ĥ�xi� +
1

2	
i�j

v�xi,xj� , �B1�

where the first term on the right-hand side is the noninteract-
ing Hamiltonian

Ĥ0 = 	
i

−

1

2
�i

2 + v�xi�� , �B2�

with

Ĥ0�i = �i�i, �B3�

and the second term is the two-electron interaction. Hamil-
tonian �B1� can be written in second quantization as

Ĥ = 	
ij

hijâi
†âj +

1

2	
ijkl

Vijklâi
†âj

†âkâl, �B4�

with

hij =� dx�i
��x�h�x�� j�x� = � j�ij ,

�B5�

Vijkl =� dxdx��i
��x�� j

��x��v�x,x���k�x���l�x� ,

and Vijkl=Vklij
� . Note that as a complete set of orthonormal

one-particle orbitals in which the creation and annihilation
operators are expressed, we used the eigenstates �i’s of the
noninteracting Hamiltonian. We can construct any state of

the noninteracting Hamiltonian Ĥ0 by acting with the cre-
ation operators on the vacuum: âi

†âj
†�0�, with i� j. The ener-

gies of the interacting Hamiltonan �B1� can be found by
evaluating matrix elements of the form

�ârâs�Ĥ�âs�
† âr�

† � = 	
i

�i�ârâsâi
†âiâs�

† âr�
† �

+
1

2	
ijkl

Vijkl�ârâsâi
†âj

†âkâlâs�
† âr�

† � . �B6�

We can now use Wick’s theorem and rewrite the strings of
annihilation and creation operators as an expansion of
normal-ordered strings. However, the only terms that need to
be retained in this expansion are those that are fully con-
tracted. For the first string on the right-hand side, we get

FIG. 2. Frequency convolution of two four-point functions, such as those
entering the BSE with a frequency-dependent kernel �see Eqs. �A3� and
�A4��.

FIG. 3. The Bethe–Salpeter kernel 	�3,5 ,4 ,6�=��3,4���5,6�v�3,6�
−��3,6���4,5�W�3,4�, explicitly showing frequency arguments in its ex-
change and Coulomb terms �see Eqs. �10� and �A7��.
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ârâsâi
†âiâs�

† âr�
† = �ri�ss��ir� − �ri�sr��is� + �rr��si�is�

− �rs��si�ir�, �B7�

while for the second one we have

ârâsâi
†âj

†âkâlâs�
† âr�

† = �ri�sj�ks��lr� − �ri�sj�kr��ls�

− �rj�si�ks��lr� + �rj�si�kr��ls�. �B8�

The Hamiltonian Ĥ0 is diagonal on the basis of its eigen-
states; i.e., the nonzero matrix elements are those with r
=r� and s=s� as

	
i

�i�ârâsâi
†âiâs�

† âr�
† � = ��r + �s��rr��ss�. �B9�

For the electron-electron interaction, we have

1

2	
ijkl

Vijkl�ârâsâi
†âj

†âkâlâs�
† âr�

† � = Vrss�r� − Vrsr�s�, �B10�

where we considered Vsrr�s�=Vrss�r� and Vsrs�r�=Vrsr�s�. Since
the model system we are considering has only two electrons
and two energy levels, which will be called v �valence� and c
�conduction�, we will have the energy matrix of Eq. �36�.

Note that since we are not considering spin flip, we have
not considered the Slater determinants �v↑c↑� and �v↓c↓� in
the evaluation of the matrix elements �B6�. Notice that here
the notation �v↑c↑� is a Slater determinant, and it indicates a
state with an electron in the valence orbital with spin up and
the other electron in the conduction electron with spin up.
This is different from the notation �v↑c↑� used so far in the
paper, which means that an electron with spin up is promoted
from the valence orbital to the conduction orbital, thus lead-
ing to a state �v↓c↑�.
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