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Abstract The random-phase approximation (RPA) as an
approach for computing the electronic correlation energy is

reviewed. After a brief account of its basic concept and

historical development, the paper is devoted to the theo-
retical formulations of RPA, and its applications to realistic

systems. With several illustrating applications, we discuss

the implications of RPA for computational chemistry and
materials science. The computational cost of RPA is also

addressed which is critical for its widespread use in future

applications. In addition, current correction schemes going
beyond RPA and directions of further development will be

discussed.

Introduction

Computational materials science has developed into an
indispensable discipline complementary to experimental

materials science. The fundamental aim of computational

materials science is to derive understanding entirely from
the basic laws of physics, i.e., quantum mechanical first

principles, and increasingly also to make predictions of
new properties or new materials for specific tasks. The

rapid increase in available computer power together with

new methodological developments are major factors in the
growing impact of this field for practical applications to

real materials.

Density-functional theory (DFT) [1] has shaped the
realm of first-principles materials science like no other

method today. This success has been facilitated by the

computational efficiency of the local-density [2] or gen-
eralized gradient approximation [3–5] (LDA and GGA) of

the exchange-correlation functional that make DFT appli-

cable to polyatomic systems containing up to several
thousand atoms. However, these approximations are sub-

ject to several well-known deficiencies. In the quest for

finding an ‘‘optimal’’ electronic-structure method, that
combines accuracy and tractability with transferability

across different chemical environments and dimensionali-

ties (e.g., molecules/clusters, wires/tubes, surfaces, solids)
many new approaches, improvements and refinements have

been proposed over the years. These have been classified

by Perdew in his ‘‘Jacob’s ladder’’ hierarchy [6].
In this context, the treatment of exchange and correla-

tion in terms of ‘‘exact-exchange plus correlation in the

random-phase approximation’’ [7, 8] offers a promising
avenue. This is largely due to three attractive features. The

exact-exchange energy cancels the spurious self-interaction
error present in the Hartree energy exactly (although the

RPA correlation itself does contain some ‘‘self-correlation’’

and is non-zero for one-electron systems). The RPA cor-
relation energy is fully non-local and includes long-range

van der Waals (vdW) interactions automatically and

seamlessly. Moreover, dynamic electronic screening is
taken into account by summing up a sequence of ‘‘ring’’

diagrams to infinite order, which makes RPA applicable to

small-gap or metallic systems where finite-order many-
body perturbation theories break down [8–10].

The random-phase approximation actually predates

DFT, but it took until the late 1970s to be formulated in
the context of DFT [11] and until the early years of this

millennium to be applied as a first-principles electronic-
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structure method [12, 13]. We take the renewed and

widespread interest of the RPA [12–42] as motivation for
this review article. To illustrate the unique development of

this powerful physical concept, we will put the RPA into its

historical context before reviewing the basic theory. A
summary of recent RPA results demonstrates the strength

of this approach, but also its current limitations. In addition

we will discuss some of the most recent schemes going
beyond RPA, including renormalized second-order pertur-

bation theory (r2PT), which is particularly promising in our
opinion. We will also address the issue of computational

efficiency which, at present, impedes the widespread use of

RPA, and indicate directions for further development.

Early history

During the 1950s, quantum many-body theory underwent a

major transformation, as concepts and techniques originat-

ing from quantum electrodynamics (QED)—in particular
Feynman–Dyson diagrammatic perturbation theory—were

extended to the study of solids and nuclei. A particularly

important contribution at an early stage of this development
was the RPA, a technique introduced by Bohm and Pines in a

series of papers published in 1951–1953 [7, 43–45]. In recent

years, the RPA has gained importance well beyond its initial
realm of application, in computational condensed-matter

physics, materials science, and quantum chemistry. While

the RPA is commonly used within its diagrammatic formu-
lation given by Gell-Mann and Brueckner [46], it is never-

theless instructive to briefly discuss the history of its original

formulation by Bohm and Pines. Some of the cited references
are reprinted in [47], which also recounts the history of the

RPA until the early 1960s. Historical accounts of the work of

Bohm and Pines can be found in Refs. [48–50] as well as in
Refs. [35, 40].

In 1933–1934, Wigner and Seitz published two papers

on the band structure of metallic sodium [51, 52] in which
they stressed the importance of the electronic correlation

energy correction to band-theory calculations of the cohe-

sive energy of metals. Wigner subsequently studied the
interaction of electrons in a homogeneous electron gas

(HEG) within a variational approach going beyond Har-

tree–Fock [53]. He initially provided estimates for the
correlation energy only in the low- and high-density limits,

but later interpolated to intermediate densities [54]. For

almost two decades, Wigner’s estimate remained the state
of the art in the prototypical many-body problem of the

HEG. According to a later statement by Herring,‘‘the

magnitude and role of correlation energy remained inade-
quately understood in a considerable part of the solid-state

community for many years.’’ [55, pp. 71–72]

Owing to the long-range nature of the Coulomb inter-
action and the resulting divergences, perturbative

approaches, so successful in other areas, had to be com-

plemented with approximations that accounted for the
screening of the charge of an electron by the other elec-

trons. Before the 1950s, these approximations commonly

drew on work on classical electrolytes by Debye and
Hückel [56, 57] and on work on heavy atoms by Thomas

[58] and Fermi [59, 60], as well as later extensions [61, 62].

As a reaction to work by Landsberg and Wohlfarth [63,
64], Bohm and Pines in 1950 reported to have been led

‘‘independently to the concept of an effective screened
Coulomb force as a result of a systematical classical and

quantum-mechanical investigation of the interaction of

charges in an electron gas of high density’’ [65, p. 103].
Their 1951–1953 series of papers [7, 43–45] presents this

systematical investigation. The RPA was one of several

physically motivated approximations in the treatment of
the HEG which allowed them to separate collective degrees

of freedom (plasma oscillations) from single-particle

degrees of freedom (which today would be called quasi-
particles or charged excitations) via a suitable canonical

transformation reminiscent of early work in QED [66–68].

A similar theory was developed rather independently for
nuclei by Bohr and Mottelson [69].

In their first paper, illustrating the fundamental idea of

separating single-particle and collective degrees of free-
dom, Bohm and Pines introduce RPA as one of the four

requirements [43]:

‘‘(3) We distinguish between two kinds of response of
the electrons to a wave. One of these is in phase with

the wave, so that the phase difference between the

particle response and the wave producing it is inde-
pendent of the position of the particle. This is the

response which contributes to the organized behavior
of the system. The other response has a phase dif-

ference with the wave producing it which depends on

the position of the particle. Because of the general
random location of the particles, this second response

tends to average out to zero when we consider a large

number of electrons, and we shall neglect the con-
tributions arising from this. This procedure we call

the random-phase approximation.’’

In their second paper [44], Bohm and Pines develop a
detailed physical picture for the electronic behavior in a

HEG due to the presence of Coulomb interactions. Only in

their third paper, Bohm and Pines treat the (Coulomb-)
interacting HEG quantum-mechanically [7]. The RPA

enables Bohm and Pines to absorb the long-range Coulomb

interactions into the collective behavior of the system,
leaving the single-particle degrees of freedom interacting

only via a short-range screened force. The RPA amounts to

neglecting the interaction between the collective and the
single-particle degrees of freedom. Consequently, the
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momentum transfers of the Coulomb potential in Fourier

space can be treated independently. The fourth paper [45]
applies the new method to the electron gas in metals, dis-

cussing both validity and consequences of the RPA, such as

the increase in electronic effective mass.
Within condensed-matter theory, the significance of the

Bohm–Pines approach quickly became apparent: renor-

malizing the long-range Coulomb interaction into an
effective screened interaction between new, effective sin-

gle-particle degrees of freedom allowed both to overcome
the divergences appearing in older theories of interacting

many-body systems and to explain the hitherto puzzling

success of the single-particle models of early condensed-
matter theory (see, e.g., [54]). An early application of the

RPA was Lindhard’s calculation of the dielectric function

of the electron gas [70]. Alternative approaches to and
extensions of the Bohm–Pines approach were formulated

by Tomonaga [71, 72], and by Mott [73], Fröhlich and

Pelzer [74], and Hubbard [75, 76].
In 1956, Landau’s Fermi liquid theory [77] delivered the

foundation for effective theories describing many-body

systems in terms of quasiparticles. Brueckner [78] already
in 1955 had introduced a ‘‘linked-cluster expansion’’ for

the treatment of nuclear matter (see also Ref. [79]). In

1957, Goldstone [80], using Feynman-like diagrams (based
on Ref. [81]), was able to show that Brueckner’s theory is

exact for the ground-state energy of an interacting many-

fermion system. This put the analogy between the QED
vacuum and the ground state of a many-body system on

firm ground. It had been introduced explicitly by Miyazawa

for nuclei [82] and by Salam for superconductors [83],
although the essence of the analogy dated back to the early

days of quantum-field theory in the 1930s.

In late 1956, Gell-Mann and Brueckner employed a
diagrammatic approach for treating the problem of the

interacting electron gas. Their famous 1957 paper [46]

eliminated the spurious divergences appearing in previous
approaches. Expressing the perturbation series for the

correlation energy of the HEG in terms of the Wigner–

Seitz radius rs, they found that the divergences within
earlier calculations (e.g., [84]) were mere artifacts: the

logarithmic divergence appearing in the perturbative

expansion of the correlation energy is canceled by similar
divergences in higher-order terms. Summing the diagrams

(which had a ring structure) to infinite-order yielded a

geometric series, and thus a convergent result. Gell-Mann
and Brueckner derived an expression for the ground-state

energy of the interacting electron gas in the high-density

limit. Their study, and Goldstone’s paper [80], are the
earliest examples of the application of Feynman-type dia-

grammatic methods in condensed-matter theory.

Many applications of the new quantum-field theoretical
methods followed: Gell-Mann calculated the specific heat

of the high-density HEG [85]; Hubbard [86, 87] provided a

description of the collective modes in terms of many-body
perturbation theory (MBPT); Sawada et al. [88, 89] dem-

onstrated that the Gell-Mann–Brueckner approach indeed

contained the plasma oscillations of Bohm and Pines [7], a
point around which there had been quite some confusion

initially [see, e.g., 90]. In addition, they demonstrated that

the RPA is exact in the high-density limit. In 1958, Noz-
ières and Pines formulated a many-body theory of the

dielectric constant and showed the equivalence of Gell-
Mann and Brueckner’s diagrammatic approach and the

RPA [91, 92].

RPA in modern times

Today, the concept of RPA has gone far beyond the domain
of the HEG, and has gained considerable importance in

computational physics and quantum chemistry. As a key

example, RPA can be introduced within the framework of
DFT [1] via the so-called adiabatic-connection fluctuation-

dissipation (ACFD) theorem [11, 93, 94]. Within this for-

mulation, the unknown exact exchange-correlation (XC)
energy functional in Kohn–Sham [2] DFT can be formally

constructed by adiabatically switching on the Coulomb

interaction between electrons, while keeping the electron-
density fixed at its physical value. This is formulated by a

coupling-strength integration under which the integrand is

related to the linear density-response function of fictitious
systems with scaled Coulomb interaction. Thus, an

approximation to the response function directly translates

into an approximate DFT XC energy functional. RPA in
this context is known as an orbital-dependent energy

functional [95] obtained by applying the time-dependent

Hartree approximation to the density-response function.
The versatility of RPA becomes apparent when considering

alternative formulations. For instance, the RPA correlation

energy may be understood as the shift of the zero-point plasmon
excitation energies between the non-interacting and the fully

interacting system, as shown by Sawada for the HEG [89], and

derived in detail by Furche [96] for general cases (see also Ref.
[31]). In quantum chemistry, RPA can also be interpreted as an

approximation to coupled-cluster-doubles (CCD) theory where

only diagrams of ‘‘ring’’ structure are kept [15, 97]. The
equivalence of the ‘‘plasmon’’ and ‘‘ring-CCD formulation’’ of

RPA has recently been established by Scuseria et al. [15].

These new perspectives not only offer more insight into the
theory, but also help to devise more efficient algorithms to

reduce the computational cost, e.g., by applying the Cholesky

decomposition to the ‘‘ring-CCD’’ equations [15].
Following the early work on the HEG, other model elec-

tron systems were investigated, including the HEG surface

[98, 99], jellium slabs [24] and jellium spheres [100]. The
long-range behavior of RPA for spatially well-separated
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closed-shell subsystems was examined by Szabo and Ostl-

und [101], as well as by Dobson [102–104]. These authors
showed that RPA yields the correct 1/R6 asymptotic behavior

for the subsystem interaction. In addition, the long-range

dispersion interaction of RPA is fully consistent with the
monomer polarizability computed at the same level of the-

ory. This is one of the main reasons for the revival of the RPA

in recent years, because this long-range interaction is absent
from LDA, GGA, and other popular density-functionals.

Other reasons are the compatibility of the RPA correlation
with exact exchange (which implies the exact cancellation of

the self-interaction error present in the Hartree term) and the

applicability to metallic systems.
For the HEG it has been demonstrated that RPA is not

accurate for short-range correlation [105, 106], and hence for a

long time RPA was not considered to be valuable for realistic
systems. Perdew and co-workers investigated this issue [99,

107], and found that a local/semi-local correction to RPA has

little effect on iso-electronic energy differences, which sug-
gests that RPA might be accurate enough for many practical

purposes. The application of RPA to realistic systems

appeared slightly later, starting with the pioneering work of
Furche [12], and Fuchs and Gonze [13] for small molecules.

Accurate RPA total energies for closed-shell atoms were

obtained by Jiang and Engel [20]. Several groups investigated
molecular properties, in particular in the weakly bound

regime, with RPA and its variants [14, 17, 28, 30, 33, 34, 108,

109], while others applied RPA to periodic systems [19, 21–
23, 110–112]. Harl and Kresse in particular have performed

extensive RPA benchmark studies for crystalline solids of all

bonding types [21, 22, 112]. At the same time, the application
of RPA to surface adsorption problems has been reported [25–

27, 32, 113, 114], with considerable success in resolving the

‘‘CO adsorption puzzle’’.
Most practical RPA calculations in recent years have been

performed non-self-consistently based on a preceding LDA or

GGA reference calculation. In these calculations, the Cou-
lomb integrals are usually not antisymmetrized in the evalu-

ation of the RPA correlation energy, a practice sometimes

called direct RPA in the quantum-chemical literature. In this
paper, we will denote this common procedure ‘‘standard

RPA’’ to distinguish it from more sophisticated procedures.

While a critical assessment of RPA is emerging and a wide
variety of applications are pursued, certain shortcomings of

standard RPA have been noted. The most prominent is its

systematic underestimation of binding energies [12, 22, 34],
and the failure to describe stretched radicals [18, 115, 116].

Over the years several attempts have been made to improve

upon RPA. The earliest is RPA?, where, as mentioned above,
a local/semi-local correlation correction based on LDA or

GGA is added to the standard RPA correlation energy [99,

107]. Based on the observation that in molecules the corre-
lation hole is not sufficiently accurate at medium range in

RPA, this has recently been extended to a non-local correction

scheme [36, 37]. Similarly, range-separated frameworks [117]
have been tried, in which only the long-range part of RPA is

explicitly included [16, 17, 28, 118–122], whereas short/mid-

range correlation is treated differently. Omitting the short-
range part in RPA is also numerically beneficial whereby the

slow convergence with respect to the number of basis func-

tions can be circumvented. Due to this additional appealing
fact, range-separated RPA is now an active research domain

despite the empirical parameters that govern the range sepa-
ration. Another route to improve RPA in the framework of

ACFD is to add an fxc kernel to the response function and to

find suitable approximations for it [14, 35, 123, 124]. Last but
not least, the CCD perspective offers a different correction in

form of the second-order screened exchange (SOSEX) con-

tribution [18, 97, 125], whereas the MBPT perspective
inspired single-excitation (SE) corrections [34]. SOSEX and

SE are distinct many-body corrections and can also be com-

bined [126]. These corrections have a clear diagrammatic
representation and alleviate the above-mentioned under-

binding problem of standard RPA considerably [126]. Yet

another proposal to improve RPA by incorporating higher-
order exchange effects in various ways has also been dis-

cussed recently [121]. However, at this point in time, a con-

sensus regarding the ‘‘optimal’’ correction that combines both
efficiency and accuracy has not been reached.

Although the majority of practical RPA calculations are

performed as post-processing of a preceding DFT calculation,
self-consistent RPA calculations have also been performed

within the optimized effective potential (OEP) framework.

OEP is a procedure to find the optimal local multiplicative
potential that minimizes orbital-dependent energy function-

als. The first RPA-OEP calculations actually date back more

than 20 years, but were not recognized as such. Godby et al.
[127, 128] solved the Sham–Schlüter equation for the GW
self-energy, which is equivalent to the RPA-OEP equation, for

the self-consistent RPA KS potential of bulk silicon and other
semiconductors, but did not calculate RPA ground-state

energies. Similar calculations for other bulk materials fol-

lowed later by Kotani [129] and Grüning et al. [130, 131].
Hellgren and von Barth [132] and then later Verma and

Bartlett [42] have looked at closed-shell atoms and observed

that the OEP-RPA KS potential there reproduces the exact
asymptotic behavior in the valence region, although its

behavior near the nucleus is not very accurate. Extensions to

diatomic molecules have also appeared recently [41, 42]. Our
own work on the SE correction to RPA indicates that the input-

orbital dependence in RPA post-processing calculations is a

significant issue. Some form of self-consistency would
therefore be desirable. However, due to the considerable

numerical effort associated with OEP-RPA calculations,

practical RPA calculations will probably remain of the post-
processing type in the near future.
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Despite RPA’s appealing features its widespread use in

chemistry and materials science is impeded by its computa-
tional cost, which is considerable compared to conventional

(semi) local DFT functionals. Furche’s original implementa-

tion based on a molecular particle-hole basis scales as O(N6)
[12]. This can be reduced to O(N5) using the plasmon-pole

formulation of RPA [96], or to O(N4) [30] when the resolu-

tion-of-identity (RI) technique is employed. Scuseria et al.
[15] pointed out even slightly earlier that a O(N4) scaling can

be achieved by combining the ‘‘ring-CCD’’ RPA formulation
and the Cholesky decomposition technique. Our own RPA

implementation [133] in FHI-aims [134], which has been used

in production calculations [26, 34, 126] before, is based on
localized numeric atom-centered orbitals and the RI tech-

nique, and hence naturally scales as O(N4). Plane-wave-based

implementations [13, 112] also automatically have O(N4)
scaling. However, in standard implementations the conver-

gence with respect to unoccupied states is slow. Proposals to

eliminate the dependence on the unoccupied states [135, 136]
in context of plane wave bases, by obtaining the response

function from density-functional perturbation theory [137],

have not been explored so far for local-orbital based imple-
mentations. In local-orbital-based approaches the O(N4)

scaling can certainly be reduced by exploiting matrix sparsity,

as demonstrated recently in the context of GW [138] or sec-
ond-order Møller–Plesset perturbation theory (MP2) [139].

Also approximations to RPA [31] or effective screening

models [140] might significantly improve the scaling and the
computational efficiency. Recently, RPA has been cast into

the continuum mechanics formulation of DFT [141] with

considerable success in terms of computational efficiency
[142]. In general, there is still room for improvement, which,

together with the rapid increase in computer power makes us

confident that RPA-type approaches will become a powerful
technique in computational chemistry and materials science in

the future. It would thus be desirable, if the material science

community would start to build up benchmark sets for mate-
rials science akin to the ones in quantum chemistry (e.g., G2

[143] or S22 [144]). These should include prototypical bulk

crystals, surfaces, and surface adsorbates and would aid the
development of RPA-based approaches.

Theory and concepts

RPA can be formulated within different theoretical
frameworks. One particularly convenient approach to

derive RPA is the so-called adiabatic connection (AC),

which is a powerful mathematical technique to obtain the
ground-state total energy of an interacting many-particle

system. Starting with the AC approach, the interacting

ground-state energy can be retrieved either by coupling to
the fluctuation–dissipation theorem in the DFT context, or

by invoking the Green-function-based MBPT. RPA can be

derived within both frameworks. In addition, RPA is also
intimately linked to the coupled-cluster (CC) theory. In this

section, we will present the theoretical aspects of RPA

from several different perspectives.

Adiabatic connection

The ground-state total energy of an interacting many-body

Hamiltonian can formally be obtained via the AC tech-
nique, in which a continuous set of coupling-strength (k)-

dependent Hamiltonians is introduced

ĤðkÞ ¼ Ĥ0 þ kĤ1ðkÞ; ð1Þ

that ‘‘connect’’ a reference Hamiltonian Ĥ0 ¼ Ĥðk ¼ 0Þ with

the target many-body Hamiltonian Ĥ ¼ Ĥðk ¼ 1Þ: For the

electronic systems considered here, ĤðkÞ has the following

form:

ĤðkÞ ¼
XN

i¼1

& 1

2
r2

i þ vext
k ðiÞ

! "
þ
XN

i [ j¼1

k
jri & rjj

; ð2Þ

where N is the number of electrons, vk
ext is a k-dependent

external potential with vk=1
ext (r) = vext(r) being the physical

external potential of the fully interacting system. Note that
in general vk

ext can be non-local in space for k = 1. Hartree

atomic units !h ¼ e ¼ me ¼ 1 are used here and in the
following. The reference Hamiltonian H0, given by Eq. (2)

for k = 0, is of the mean-field (MF) type, i.e., a simple

summation over single-particle Hamiltonians:

Ĥ0 ¼
XN

i¼1

& 1

2
r2

i þ vext
k¼0ðiÞ

! "

¼
XN

i¼1

& 1

2
r2

i þ vextðriÞ þ vMFðiÞ
! "

:

ð3Þ

In Eq. (3), vMF is a certain (yet-to-be-specified) mean-

field potential arising from the electron–electron
interaction. It can be the Hartree–Fock (HF) potential vHF

or the Hartree plus exchange-correlation potential vHxc in

DFT. Given Eqs. (2) and (3), the perturbative Hamiltonian

Ĥ1ðkÞ in Eq. (1) becomes

Ĥ1ðkÞ ¼
XN

i [ j¼1

1

jri & rjj
þ 1

k

XN

i¼1

vext
k ðriÞ & vext

k¼0ðiÞ
# $

;

¼
XN

i [ j¼1

1

jri & rjj
þ 1

k

XN

i¼1

vext
k ðriÞ & vextðriÞ & vMFðiÞ

# $
:

ð4Þ

In the AC construction of the total energy, we introduce
the ground-state wave function jWki for the k-dependent

system such that
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HðkÞjWki ¼ EðkÞjWki: ð5Þ

Adopting the normalization condition hWkjWki ¼ 1; the

interacting ground-state total energy can then be obtained

with the aid of the Hellmann–Feynman theorem,

Eðk ¼ 1Þ ¼E0 þ
Z1

0

dk

' hWkj Ĥ1ðkÞ þ k
dĤ1ðkÞ

dk

% &
jWki;

ð6Þ

where

E0 ¼ Eð0Þ ¼ hW0jH0jW0i ð7Þ

is the zeroth-order energy. We note that the choice of the

adiabatic-connection path in Eq. (6) is not unique. In DFT, the

path is chosen such that the electron density is kept fixed at its
physical value along the way. This implies a non-trivial (not

explicitly known) k-dependence of Ĥ1ðkÞ: In MBPT, one

often chooses a linear connection path—Ĥ1ðkÞ ¼ Ĥ1 (and

hence dĤ1ðkÞ=dk ¼ 0). In this case, a Taylor expansion of

jWki in terms of k in Eq. (6) leads to standard Rayleigh-

Schrödinger perturbation theory (RSPT) [145].

RPA derived from ACFD

Here we briefly introduce the concept of RPA in the con-

text of DFT, which serves as the foundation for most

practical RPA calculations in recent years. In Kohn–Sham
(KS) DFT, the ground-state total energy for an interacting

N-electron system is an (implicit) functional of the electron

density n(r) and can be conveniently split into four terms:

E½nðrÞ) ¼ Ts½wiðrÞ) þ Eext½nðrÞ) þ EH½nðrÞ) þ Exc½wiðrÞ):
ð8Þ

Ts is the kinetic energy of the KS independent-particle
system, Eext the energy due to external potentials, EH the

classic Hartree energy, and Exc the exchange-correlation

energy. In the KS framework, the electron density is
obtained from the single-particle KS orbitals wi(r) via

n(r) =
P

i
occ |wi(r)|2. Among the four terms in Eq. (8), only

Eext[n(r)] and EH[n(r)] are explicit functionals of n(r). Ts is
treated exactly in KS-DFT in terms of the single-particle

orbitals wi(r) which themselves are functionals of n(r).

All the many-body complexity is contained in the
unknown XC energy term, which is approximated as an

explicit functional of n(r) (and its local gradients) in con-

ventional functional (LDA and GGAs), and as a functional
of the wi(r)’s in more advanced functionals (hybrid den-

sity-functionals, RPA, etc.). Different existing approxima-

tions to Exc can be classified into a hierarchical scheme
known as ‘‘Jacob’s ladder’’ [6] in DFT. However, what if

one would like to improve the accuracy of Exc in a more

systematic way? For this purpose it is illuminating to start
with the formally exact way of constructing Exc using the

AC technique discussed above. As alluded to before, in

KS-DFT the AC path is chosen such that the electron
density is kept fixed. Equation (6) for the exact ground-

state total-energy E = E(k = 1) then reduces to

E ¼ E0 þ
Z1

0

dkhWkj
1

2

XN

i6¼j¼1

1

jri & rjj
jWki

þ
Z1

0

dkhWkj
XN

i¼1

d

dk
vext
k ðriÞjWki

¼ E0 þ
1

2

Z1

0

dk
ZZ

drdr0

' hWkj
n̂ðrÞ n̂ðr0Þ & dðr& r0Þ½ )

jr& r0j jWki

þ
Z

drnðrÞ vext
k¼1ðrÞ & vext

k¼0ðrÞ
# $

;

ð9Þ

where

n̂ðrÞ ¼
XN

i¼1

dðr& riÞ ð10Þ

is the electron-density operator, and nðrÞ ¼ hWkjn̂ðrÞjWki
for any 0 B k B 1.

For the KS reference state jW0i (given by the Slater
determinant of the occupied single-particle KS orbitals

{wi(r)}) we obtain

E0 ¼ hW0j
XN

i¼1

& 1

2
r2 þ vext

k¼0ðriÞ
! "

jW0i

¼ Ts wiðrÞ½ ) þ
Z

drnðrÞvext
k¼0ðrÞ;

ð11Þ

and thus

E ¼Ts wiðrÞ½ ) þ
Z

drnðrÞvext
k¼1ðrÞ

þ 1

2

Z1

0

dk
ZZ

drdr0hWkj
n̂ðrÞ n̂ðr0Þ & dðr& r0Þ½ )

jr& r0j
jWki:

ð12Þ

Equating (8) and (12), and noticing

EH½nðrÞ) ¼
1

2

Z
drdr0

nðrÞnðr0Þ
jr& r0j ð13Þ

Eext½nðrÞ) ¼
Z

drnðrÞvext
k¼1ðrÞ; ð14Þ

one obtains the formally exact expression for the XC
energy
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Exc ¼
1

2

Z
dk
ZZ

drdr0
nk

xcðr; r0ÞnðrÞ
jr& r0j

: ð15Þ

Here

nk
xcðr; r

0Þ ¼ hWkjdn̂ðrÞdn̂ðr0ÞjWki
nðrÞ & dðr& r0Þ; ð16Þ

is the formal expression for the so-called XC hole, with

dn̂ðrÞ ¼ n̂ðrÞ & nðrÞ being the ‘‘fluctuation’’ of the density

operator n̂ðrÞ around its expectation value n(r). Equation
(16) shows that the XC hole is related to the density–

density correlation function. In physical terms, it describes

how the presence of an electron at point r depletes the
density of all other electrons at another point r0.

In the second step, the density–density correlations (fluc-
tuations) in Eq. (16) are linked to the response properties

(dissipation) of the system through the zero-temperature

‘‘fluctuation–dissipation’’ theorem (FDT). The FDT is a
powerful technique in statistical physics. It states that the

response of a system at thermodynamic equilibrium to a small

external perturbation is the same as its response to the spon-
taneous internal fluctuations in the absence of the perturbation

[146]. The FDT is manifested in many physical phenomena

and applies to both thermo and quantum-mechanical fluctu-
ations. The dielectric formulation of the many-body problem

by Nozieres and Pines [147] is a key example of the latter. In

this context, the zero-temperature FDT leads to [147]

hWkjdn̂ðrÞdn̂ðr0ÞjWki ¼ &
1

p

Z1

0

dxImvkðr; r0;xÞ; ð17Þ

where vk (r, r0, x) is the linear density-response function
of the (k-scaled) system. Using Eqs. (15-17) and

v(r, r0) = 1/|r - r0|, we arrive at the renowned ACFD

expression for the XC energy in DFT

Exc ¼
1

2

Z1

0

dk
ZZ

drdr0vðr; r0Þ

' & 1

p

Z1

0

dxImvkðr; r0;xÞ & dðr& r0ÞnðrÞ

2

4

3

5

¼ 1

2p

Z1

0

dk
ZZ

drdr0vðr; r0Þ

' & 1

p

Z1

0

dxvkðr; r0; ixÞ & dðr& r0ÞnðrÞ

2

4

3

5:

ð18Þ

The reason that the above frequency integration can be

performed along the imaginary axis originates from the

analytical structure of vk (r, r0, x) and the fact that it

becomes real on the imaginary axis. The ACFD expression

in Eq. (18) transforms the problem of computing the XC
energy to one of computing the response functions of a

series of fictitious systems along the AC path, which in

practice have to be approximated as well.
In this context the ‘‘random–phase approximation’’ is a

particularly simple approximation of the response function:

vk
RPAðr; r

0; ixÞ ¼v0ðr; r0; ixÞ þ
Z

dr1dr2v0ðr; r1; ixÞ

' kvðr1 & r2Þvk
RPAðr2; r

0;xÞ:
ð19Þ

v0(r, r1, ix) is the independent-particle response function

of the KS reference system at k = 0 and is known
explicitly in terms of the single-particle KS orbitals

wi(r), orbital energies !i and occupation factors fi

v0ðr; r0; ixÞ ¼
X

ij

ðfi & fjÞw*i ðrÞwjðrÞw*j ðr0Þwiðr0Þ
!i & !j & ix

: ð20Þ

From equations (18) and (19), the XC energy in RPA

can be separated into an exact exchange (EX) and the RPA
correlation term,

ERPA
xc ¼ EEX

x þ ERPA
c ; ð21Þ

where

EEX
x ¼

1

2

ZZ
drdr0vðr; r0Þ

' & 1

p

Z1

0

dxv0ðr; r0; ixÞ & dðr& r0ÞnðrÞ

2

4

3

5

¼ &
X

ij

fifj

ZZ
drd0w*i ðrÞwjðrÞvðr; 0Þw*j ðr

0Þwiðr0Þ

ð22Þ

and

ERPA
c ¼ & 1

2p

ZZ
drdr0vðr; r0Þ

'
Z1

0

dx
Z1

0

dkvk
RPAðr; r

0; ixÞ & v0ðr; r0; ixÞ

2

4

3

5

¼ 1

2p

Z1

0

dxTr lnð1& v0ðixÞvÞ þ v0ðixÞv
# $

:

ð23Þ

For brevity the following convention

Tr AB½ ) ¼
ZZ

drdr0Aðr; r0ÞBðr0; rÞ ð24Þ

has been used in Eq. (23).
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RPA derived from MBPT

An alternative to ACFD is to compute the interacting
ground-state energy by performing an order-by-order

expansion of Eq. (6). To this end, it is common to choose a

linear AC path, i.e., in Eq. (4) vk
ext = vext ? (1 - k)vMF

such that

Ĥ1ðkÞ ¼ Ĥ1 ¼
XN

i [ j¼1

1

jri & rjj
&
XN

i¼1

vMF
i : ð25Þ

Now Eq. (6) reduces to

E ¼ E0 þ
Z1

0

dkhWkjĤ1jWki: ð26Þ

A Taylor expansion of jWki and a subsequent k
integration lead to an order-by-order expansion of the

interacting ground-state total energy, e.g., the first-order

correction to E0 is given by

Eð1Þ ¼
Z1

0

dkhW0jĤ1jW0i

¼ hW0jĤ1jW0i
¼ EH þ EEX

x & EMF;

ð27Þ

where EH and Ex
EX are the classic Hartree and exact-

exchange energy defined in Eqs. (13) and (22), respec-

tively. EMF ¼ hW0jvHFjW0i is the ‘‘double-counting’’ term
due to the MF potential vMF, which is already included in

H0. The sum of E0 and the first-order term E(1) yields the
Hartree–Fock energy, and all higher-order contributions

constitute the so-called correlation energy.

The higher-order terms can be evaluated using the dia-
grammatic technique developed by Goldstone [80]. For

instance, the second-order energy in RSPT is given by

Eð2Þ ¼
X

n [ 0

jhU0jĤ1jUnij2

E0 & Eð0Þn

¼
Xocc

i

Xunocc

a

jhU0jĤ1jUa
i ij

2

E0 & Eð0Þi;a

þ
Xocc

ij

Xunocc

ab

jhU0jĤ1jUab
ij ij

2

E0 & Eð0Þij;ab

ð28Þ

where jU0i ¼ jW0i is the ground state of the reference

Hamiltonian Ĥ0; and jUni for n [ 0 correspond to its excited

states with energy Eð0Þn ¼ hUnjĤ0jUni: jUni can be classified
into singly-excited configurations jUi;ai; doubly-excited

configurations jUij;abi; etc. The summation in Eq. (28) ter-

minates at the level of double excitations. This is because Ĥ1

only contains one- and two-particle operators, and hence

does not couple the ground state jU0i to triple and higher-
order excitations. We will examine the single-excitation

contribution in Eq. (28) in detail in section ‘‘Single-excita-

tion correction and its combination with SOSEX’’. Here, it

suffices to say that this term is zero for the HF reference and
therefore is not included in MP2. The double-excitation

contribution can be further split into two terms, corre-

sponding to the second-order direct and exchange energy in
MP2, whose representation in terms of Goldstone diagrams

is depicted in Fig. 1. The rules to evaluate Goldstone dia-

grams can be found in the classic book by Szabo and Ostlund
[145]. As a side remark, the application of MP2 used to be

restricted to finite systems, and its extension to infinite

periodic systems has been a big challenge because of its
O(N5) canonical scaling. In recent years, however, several

authors demonstrated that it is in principle feasible to apply

MP2 to 1- or 2-D systems [148–150]. With the more recent
implementations in the CRYSCOR code [151] as well as in

the VASP code [10], the application of MP2 to 3-D crys-

talline solids has become realistic.
The Goldstone approach is convenient for the lowest

few orders, but becomes cumbersome or impossible for

arbitrarily high orders, the evaluation of which is essential
when an order-by-order perturbation breaks down and a

‘‘selective summation to infinite order’’ procedure has to be

invoked. In this case, it is much more convenient to express
the total energy in terms of the Green function and the self-

energy, as done, e.g., by Luttinger and Ward [152]. Using

the Green-function language, the ground-state total energy
can be expressed as [9, 152],

E ¼ E0 þ
1

2

Z1

0

dk
k

1

2p

Z1

&1

dxTr G0ðixÞRðix; kÞ
# $

0

@

1

A ð29Þ

¼ E0 þ
1

2

Z1

0

dk
k

1

2p

Z1

&1

dxTr Gðix; kÞR*ðix; kÞ½ )

0

@

1

A ð30Þ

where G0 and G(k) are single-particle Green functions

corresponding to the non-interacting Hamiltonian H0 and

the scaled interacting Hamiltonian H(k), respectively.
R*ðkÞ and RðkÞ are the proper (irreducible) and improper

(reducible) self-energies of the interacting system with

Fig. 1 Goldstone diagrams for the MP2 correlation energy. The two
graphs describe, respectively, the second-order direct process, and the
second-order exchange process. The upgoing solid line represents a
particle associated with an unoccupied orbital energy !a; the
downgoing solid line represents a hole associated with an occupied
orbital energy !i; and the dashed line denotes the bare Coulomb
interaction
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interaction strength k. [Proper self-energy diagrams are

those which cannot be split into two by cutting a single-

Green-function line.] Note that in Eqs. (29) and (30), the
trace convention of Eq. (24) is implied.

The above quantities satisfy the following relationship

Gðix; kÞ ¼ G0ðixÞ þ G0ðixÞRðix; kÞG0ðixÞ
¼ G0ðixÞ þ G0ðixÞR*ðix; kÞGðix; kÞ:

ð31Þ

From Eq. (31) the equivalence of Eqs. (29) and (30)
is obvious. In Eq. (29), a perturbation expansion of the

k-dependent self-energy RkðixÞ naturally translates into a
perturbation theory of the ground-state energy. In

particular, the linear term of RkðixÞ yields the first-order

correction to the ground-state energy, i.e., E(1) in Eq. (27).

All higher-order (n C 2) contributions of RkðixÞ; here

denoted Rc; define the so-called correlation energy. In
general, the correlation energy cannot be treated exactly. A

popular approximation to Rc is the GW approach, which

corresponds to a selective summation of self-energy
diagrams with ring structure to infinite order, as

illustrated in Fig. 2(a). Multiplying G0 to the GW self-

energy RGW
c ðixÞ as done in Eq. (29) and performing the k

integration, one obtains the RPA correlation energy

ERPA
c ¼ 1

2

Z1

0

dk
k

1

2p

Z1

&1

dxTr G0ðixÞRGW
c ðix; kÞ

# $
0

@

1

A:

ð32Þ

This illustrates the close connection between RPA and

the GW approach. A diagrammatic representation of
Ec

RPA is shown in Fig. 2(b). We emphasize that the dia-

grams in Fig. 2(a, b) are Feynman diagrams, i.e., the

arrowed lines should really be interpreted as propagators,
or Green functions. A similar representation of Ec

RPA can

be drawn in terms of Goldstone diagrams [145], as shown

in Fig. 2(c). However, caution should be applied, because
the rules for evaluating these diagrams are different (see

e.g., Ref. 9, 145), and the prefactors in Fig. 2(b) are not
present in the corresponding Goldstone diagrams. The

leading term in RPA corresponds to the second-order

direct term in MP2.
We note that starting from Eq. (29) this procedure nat-

urally gives the perturbative RPA correlation energy based

on any convenient non-interacting reference Hamiltonian
H0, such as Hartree–Fock or local/semi-local KS-DFT

theory. If one instead starts with Eq. (30) and applies the

GW approximation therein, G(k, ix) and R*ðk; ixÞ become
the self-consistent GW Green function and self-energy. As

a result the improper self-energy diagrams in Eq. (29),

which are neglected in the perturbative GW approach
(known as G0W0 in the literature), are introduced and the

total energy differs from that of the RPA. An in-depth

discussion of self-consistent GW and its implications can
be found in [153–156].

Link to coupled-cluster theory

In recent years, RPA has also attracted considerable

attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled-

cluster (CC) theory, which has been very successful for

accurately describing both covalent and non-covalent
interactions in molecular systems. To understand this

relationship, we will give a very brief account of the CC

theory here. More details can for instance be found in a
review paper by Bartlett and Musiał [157]. The essential

concept of CC builds on the exponential ansatz for the

many-body wave function W for correlated electronic
systems

jWi ¼ eT̂ jUi: ð33Þ

jUi is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of different order,

T̂ ¼ T̂1 þ T̂2 þ T̂3 þ ! ! ! þ T̂n þ ! ! ! ; ð34Þ

with T̂1; T̂2; T̂3; ! ! ! being the single-, double-, and triple-
excitation operators, etc. These operators can be most

(a)

(b)

(c)

Fig. 2 Feynman diagrams for the GW self-energy (a), Feynman
diagrams for the RPA correlation energy (b), and Goldstone diagrams
for the RPA correlation energy (c). Solid lines in a, b (with thick
arrows) represent fermion propagators G, and those in (c) (with thin
arrows) denote particle (upgoing line) or hole states (downgoing line)
without frequency dependence. Dashed lines correspond to the bare
Coulomb interaction v in all graphs

J Mater Sci

123



conveniently expressed using the language of second-

quantization, namely,

T̂1 ¼
X

i;a

ta
i ĉyaĉi;

T̂2 ¼
1

4

X

ij;ab

tab
ij ĉyaĉybĉjĉi;

! ! !

ð35Þ

T̂n ¼
1

ðn!Þ2
X

ijk!!!;abc!!!
tabc!!!
ijk!!! ĉyaĉybĉyc ! ! ! ĉkĉjĉi; ð36Þ

where ĉy and ĉ are single-particle creation and annihilation

operators and ta
i ; t

ab
ij , … are the so-called CC singles-,

doubles-, … amplitudes yet to be determined. As before,
i; j; … refer to occupied single-particle states, whereas a; b;

… refer to unoccupied (virtual) ones. Acting with T̂n on the

non-interacting reference state jU0i generates n-order

excited configuration denoted jUabc!!!
ijk!!! i :

T̂njU0i ¼
X

i [ j [ k!!!;a [ b [ c!!!
tabc!!!
ijk!!! jU

abc!!!
ijk!!! i: ð37Þ

The next question is how to determine the expansion

coefficients tabc!!!
ijk!!! ? The CC many-body wave function in

Eq. (33) has to satisfy the many-body Schrödinger

equation,

ĤeT̂ jUi ¼ EeT̂ jUi; ð38Þ

or

e&T̂ ĤeT̂ jUi ¼ EjUi: ð39Þ

By projecting Eq. (39) onto the excited configurations

jUabc!!!
ijk!!! i; which have zero overlap with the non-interacting

ground-state configuration jUi; one obtains a set of coupled

non-linear equations for the CC amplitudes tabc!!!
ijk!!! ;

hUabc!!!
ijk!!! je

&T̂ ĤeT̂ jUi ¼ 0: ð40Þ

These can be determined by solving Eqs. (40) self-

consistently.
In analogy to the Goldstone diagrams, Eq. (40) can be

represented pictorially using diagrams, as illustrated by

Čı́žek [158] in 1966. In practice, the expansion of the T̂
operator has to be truncated. One popular choice is the CC

doubles (CCD) approximation, or T2 approximation [158],
that retains only the double-excitation term in Eq. (34). The

graphical representation of CCD contains a rich variety of

diagrams including ring diagrams, ladder diagrams, the
mixture of the two, etc. If one restricts the choice to the

pure ring diagrams, as practiced in early work on the HEG

[97, 159], the CCD equation is reduced to the following
simplified form [15],

Bþ AT þ TAþ TBT ¼ 0: ð41Þ

A, B, T are all matrices of rank Nocc ! Nvir with Nocc and Nvir

being the number of occupied and unoccupied single-particle

states, respectively. Specifically we have Aia;jb ¼ ð!i & !aÞ
dijdab & hibjaji;Bia;jb ¼ hijjabi; and Tia,jb = tij

ab, where the

Dirac notation for the two-electron Coulomb repulsion

integrals

hpqjrsi ¼
ZZ

drdr0
w*pðrÞwrðrÞw*qðr0Þwsðr0Þ

jr& r0j
ð42Þ

has been adopted.
Equation (41) is mathematically known as the Riccati

equation [160]. Solving this equation yields the ring-CCD
amplitudes TrCCD, with which the RPA correlation energy

can be written as

ERPA
c ¼ 1

2
Tr BT rCCD
' (

¼ 1

2

X

ij;ab

Bia;jbT rCCD
jb;ia : ð43Þ

The CCD formulation of RPA as given by Eqs. (41) and

(43) was shown by Scuseria et al. [15] to be analytically

equivalent to the plasmonic formulation of RPA. The latter
has recently been discussed in detail by [40, 96], and hence

will not be presented in this review. Technically, the

solution of the Riccati equation (41) is not unique, due to
the non-linear nature of the equation. One therefore has to

make a judicious choice for the ring-CCD amplitudes in

practical RPA calculations [116].

Algorithms and implementations

RPA implementations and scaling

In this section we will briefly review different implemen-

tations of the RPA approach, since scaling and efficiency

are particularly important for a computationally expensive
approach like the RPA. Also, for historical reasons, the

theoretical formulation of RPA is often linked closely to a

certain implementation. Similar to conventional DFT
functionals, implementations of RPA can be based on local

orbitals (LO), or on plane waves, or on (linearized) aug-

mented plane waves (LAPW). LO implementations have
been reported for the development version of Gaussian [16,

18, 118], a development version of Molpro [17, 123], FHI-

aims [133] and Turbomole [12, 30]. Plane-wave-based
implementations can be found in ABINIT [13], VASP [21,

112], and Quantum-Espresso [23, 135]. An early imple-

mentation by Miyake et al. [110] was based on LAPW.
Furche’s original implementation uses a molecular

particle-hole basis and scales as O(N6) [12], where N is the

number of atoms in the system (unit cell). This can be
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reduced to O(N5) using the plasmon-pole formulation of

RPA [96], or to O(N4) [30] when the resolution-of-identity
(RI) technique is employed. Our own RPA implementation

[133] in FHI-aims [134] is described in Appendix 1. It is

based on localized numeric atom-centered orbitals and the
RI technique, and hence naturally scales as O(N4).

The key in the RI-RPA implementation is to expand the

occupied–virtual orbital pair products /*i ðrÞ/jðrÞ appear-

ing in Eq. (20) in terms of a set of auxiliary basis functions

(ABFs) {Pl(r)}. In this way, one can reduce the rank of the
matrix representation of v0 from Nocc*Nvir to Naux with

Naux+ Nocc*Nvir. Here Naux, Nocc, and Nvir denote the

number of ABFs, and the numbers of occupied and unoc-
cupied (virtual) single-particle orbitals, respectively. With

both v0 and the coulomb kernel v represented in terms of

the ABFs, the RPA correlation energy expression in Eq.
(23) can be re-interpreted as a matrix equation of rank

Naux, which is numerically very cheap to evaluate. The

dominating step then becomes the build of the matrix form
of v0 which scales as O(N4). We refer the readers to

Appendix 1 and Ref. [133] for further details.

Plane-wave-based implementations [13, 112] automati-
cally have O(N4) scaling. In a sense the plane-wave-based

RPA implementation is very similar in spirit to the local-

orbital-based RI-RPA implementation. In the former case
the plane waves themselves serve as the above-mentioned

ABFs.

Speed-up of RPA with iterative methods

The RPA correlation energy in (23) can also be rewritten as
follows,

ERPA
c ¼ & 1

2p

Z1

0

dx
XNaux

l

ln eD
l ðixÞ

) *
þ 1& eD

l ðixÞ
h i

;

ð44Þ

where eD
l ðixÞ is the lth eigenvalue of the dielectric func-

tion eðixÞ ¼ 1& v0ðixÞv represented in the ABFs. All
eigenvalues are larger than or equal to 1. From (44) it is

clear that eigenvalues which are close to 1 have a vanishing

contribution to the correlation energy. For a set of different
materials, Wilson et al. [136] observed that only a small

fraction of the eigenvalues differs significantly from 1,

which suggests that the full spectrum of eðixÞ is not
required for accurate RPA correlation energies. This opens

up the possibility of computing the RPA correlation energy

by obtaining the ‘‘most significant’’ eigenvalues of eðixÞ
(or equivalently v0(ix)v) from an iterative diagonalization

procedure, instead of constructing and diagonalizing the

full eðixÞ or v0(ix)v matrices. In practice this can be

conveniently done by resorting to the linear response

technique of density-functional perturbation theory (DFPT)

[137] and has been proposed and implemented in the two
independent works of Galli and co-workers [23, 136], and

of Nguyen and de Gironcoli [135] within a pseudopotential

plane-wave framework. In these (plane-wave based)
implementations the computational cost is reduced from

Npw&v
2NoccNvir to Npw&wNocc

2Neig; where Npw&v and Npw&w

are the numbers of plane waves to expand the response

function v0 and the single-particle orbitals w, respectively,
and Neig is the number of dominant eigenvalues. In this

way, although the formal scaling is still O(N4), one

achieves a large reduction of the prefactor, said to be 100–
1000 [135]. This procedure is in principle applicable to RI-

RPA implementation in local-orbital basis sets as well, but
has, to the best of our knowledge, not been reported so far.

Computational schemes beyond RPA

In this section we will give a brief account of the major
activities for improving the standard RPA, aiming at better

accuracy.

Semi- and non-local corrections to RPA

It is generally accepted that long-range interactions are
well-described within RPA, whereas short-range correla-

tions are not adequate [106]. This deficiency manifests

itself most clearly in the pair-correlation function of the
HEG, which spuriously becomes negative when the sepa-

ration between two electrons gets small [105, 106]. Based

on this observation, Perdew and co-worker [99, 107] pro-
posed a semi-local correction to RPA, termed as RPA?

ERPAþ
c ¼ ERPA

c þ EGGA
c & EGGA&RPA

c ; ð45Þ

where Ec
GGA is the GGA correlation energy, and Ec

GGA-RPA

represents the ‘‘random-phase approximation’’ within

GGA. Thus, the difference between Ec
GGA and Ec

GGA-RPA

gives a semi-local correction to RPA for inhomogeneous

systems. As mentioned before in the introduction, the

RPA? scheme, although conceptually appealing, and good
for total energies [20], does not significantly improve the

description of energy differences, in particular the

atomization energies of small molecules [12]. This failure
has been attributed to the inaccuracy of RPA in describing

the multi-center non-locality of the correlation hole, which

cannot be corrected by semi-local corrections of the RPA?
type [36, 37]. A fully non-local correction (nlc) to RPA has

recently been proposed by Ruzsinszky et al. [37]. It takes
the following form
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Enlc
c ¼

Z
drnðrÞ !GGAðrÞ & !GGA&RPAðrÞ

# $
1& aFðf ðrÞ)½ );

ð46Þ

where !GGAðrÞ and !GGA&RPAðrÞ are the GGA energy

density per electron and its approximate value within RPA,
respectively. a is an empirical parameter yet to be

determined, and F is a certain functional of f(r)—the

dimensionless ratio measuring the difference between the
GGA exchange energy density and the exact-exchange

energy density at a given point r,

f ðrÞ ¼ !
GGA
x ðrÞ & !exact

x ðrÞ
!GGA

x ðrÞ
: ð47Þ

One may note that by setting a = 0 in Eq. (46) the usual

RPA? correction term is recovered. A simple choice of the
functional form F(f) = f turns out to be good enough for

fitting atomization energies, but the correct dissociation

limit of H2 given by standard RPA is destroyed. To
overcome this problem, Ruzsinszky et al. chose a more

complex form of F,

Fðf Þ ¼ f ½1& 7:2f 2)½1þ 14:4f 2)expð&7:2f 2Þ; ð48Þ

which insures the correct dissociation limit, while yielding

significantly improved atomization energies for a = 9. Up

to now the correction scheme of Eq. (46) has not been
widely benchmarked except for a small test set of ten

molecules where the atomization energy has been

improved by a factor of two [37].

Screened second-order exchange (SOSEX)

The SOSEX correction [18, 97, 125] is an important route to

going beyond the standard RPA. This concept can be most

conveniently understood within the context of the ring-CCD
formulation of RPA as discussed in section ‘‘Link to coupled-

cluster theory’’. If in Eq. (43), the anti-symmetrized Coulomb

integrals ~Bia;jb ¼ hijjabi& hijjbai are inserted instead of the

unsymmetrized Coulomb integrals, the RPA?SOSEX cor-

relation energy expression is obtained

ERPAþSOSEX
c ¼ 1

2

X

ij;ab

T rCCD
ia;jb

~Bia;jb: ð49Þ

This approach, which was first used by [97], and recently

examined by Grüneis et al. [125] for solids and Paier et al. [18]
for molecular properties, has received increasing attention

in the RPA community. In contrast to RPA?, this scheme has

the attractive feature that it improves both total energies
and energy differences simultaneously. Although originally

conceived in the CC context, SOSEX has a clear

representation in terms of Goldstone diagrams, as shown in
Fig. 3 (see also Ref. [125]), which can be compared to the

Goldstone diagrams for RPA in Fig. 2(c). From Fig. 3, it is
clear that the leading term in SOSEX corresponds to the

second-order exchange term of MP2. In analogy, the leading

term in RPA corresponds to the second-order direct term of
MP2. Physically the second-order exchange diagram

describes a (virtual) process in which two particle-hole pairs

are created spontaneously at a given time. The two particles
(or equivalently the two holes) then exchange their positions,

and these two (already exchanged) particle-hole pairs

annihilate themselves simultaneously at a later time. In
SOSEX, similar to RPA, a sequence of higher-order diagrams

are summed up to infinity. In these higher-order diagrams,

after the initial creation and exchange process, one particle-
hole pair is scattered into new positions repeatedly following

the same process as in RPA, until it annihilates simultaneously

with the other pair at the end of the process.
SOSEX is one-electron self-correlation free and ame-

liorates the short-range over-correlation problem of RPA to

a large extent, leading to significantly better total energies
[97, 125]. More importantly, the RPA underestimation of

atomization energies is substantially reduced. However, the

dissociation of covalent diatomic molecules, which is well-
described in RPA, worsens considerably as demonstrated

in Ref. [18] and to be shown in Fig. 6. It was argued that

the self-correlation error present in RPA mimics static
correlation, which becomes dominant in the dissociation

limit of covalent molecules [116].

Single-excitation correction and its combination

with SOSEX

In most practical calculations, RPA and SOSEX correlation

energies are evaluated using input orbitals from a preced-

ing KS or generalized KS (gKS) [161] calculation. In this
way both RPA and SOSEX can be interpreted as ‘‘infinite-

order summations of selected types of diagrams’’ within

the MBPT framework introduced in section ‘‘RPA derived
from MBPT’’, as is evident from Figs. 2(c) and (3). This

viewpoint is helpful for identifying contributions missed in

RPA through the aid of diagrammatic techniques. An an
example, the second-order energy in RSPT in Eq. (28) have

contributions from single- (SE) and double-excitations.

The latter gives rise to the familiar MP2 correlation energy,

Fig. 3 Goldstone diagrams for SOSEX contribution. The rules to
evaluate Goldstone diagrams can be found in Ref. [145]
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which is included in the RPA?SOSEX scheme as the
leading term. The remaining SE term is given by

ESE
c ¼

Xocc

i

Xunocc

a

jhU0jĤ1jUa
i ij

2

E0 & Eð0Þi;a

¼
X

ia

jhwijv̂HF & v̂MFjwaij
2

!i & !a

ð50Þ

¼
X

ia

jhwijf̂ jwaij
2

!i & !a
ð51Þ

where v̂HF is the self-consistent HF single-particle potential,

v̂MF is the mean-field potential associated with the reference

Hamiltonian, and f̂ ¼ &r2=2þ v̂ext þ v̂HF is the single-par-

ticle HF Hamiltonian (also known as the Fock operator in the

quantum chemistry literature). A detailed derivation of Eq.
(50) using second-quantization can be found in the supple-

mental material of Ref. [34]. The equivalence of Eqs. (51) and

(50) can be readily confirmed by observing the relation

between f̂ and the single-particle reference Hamiltonian ĥMF :

f̂ ¼ ĥMF þ v̂HF & v̂MF; and the fact that hwijĥMFjwai ¼ 0:

Obviously for a HF reference where v̂MF ¼ v̂HF; Eq. (51)

becomes zero, a fact known as Brillouin theorem [145].
Therefore, as mentioned in section ‘‘RPA derived from

MBPT’’, this term is not present in MP2 theory which is based

on the HF reference. We note that a similar SE term also
appears in second-order Görling–Levy perturbation theory

(GL2) [162, 163], ab initio DFT [164], as well as in CC theory
[157]. However, the SE terms in different theoretical frame-

works differ quantitatively. For instance, in GL2 vMF should

be the exact-exchange OEP potential instead of the reference
mean-field potential.

In Ref. [34] we have shown that adding the SE term of Eq.

(51) to RPA significantly improves the accuracy of vdW-
bonded molecules, which the standard RPA scheme generally

underbinds. This improvement carries over to atomization

energies of covalent molecules and insulating solids as shown
in Ref. [126]. It was also observed in Ref. [34] that a similar

improvement can be achieved by replacing the non-self-

consistent HF part of the RPA total energy by its self-con-
sistent counterpart. It appears that, by iterating the exchange-

only part toward self-consistency, the SE effect can be

accounted for effectively. This procedure is termed ‘‘hybrid-
RPA’’, and has been shown to be promising even for surface

adsorption problems [32].

The SE energy in Eq. (51) is a second-order term in
RSPT, which suffers from the same divergence problem as

MP2 for systems with zero (direct) gap. To overcome this
problem, in Ref. [34] we have proposed to sum over a

sequence of higher-order diagrams involving only single

excitations. This procedure can be illustrated in terms of
Goldstone diagrams as shown in Fig. 4. This summation

follows the spirit of RPA and we denote it ‘‘renormalized

single excitations’’ (rSE) [34]. The SE contribution to the
second-order correlation energy in Eq. (51), represented by

the first diagram in Fig. 4, constitutes the leading term in

the rSE series. A preliminary version of rSE, which
neglects the ‘‘off-diagonal’’ terms of the higher-order SE

diagrams (by setting i ¼ j ¼ . . . and a ¼ b ¼ . . .), was

benchmarked for atomization energies and reaction barrier
heights in Ref. [126]. Recently we were able to also include

the ‘‘off-diagonal’’ terms, leading to a refined version of

rSE. This rSE ‘‘upgrade’’ does not affect the energetics of
strongly bound molecules, as those benchmarked in Ref.

[126]. However, the interaction energies of weakly bound

molecules improve considerably. A more detailed
description of the computational procedure and extended

benchmarks for rSE will be reported in a forthcoming

paper [165]. However, we note that all the rSE results
reported in section ‘‘Applications’’ correspond to the

upgraded rSE.

Diagrammatically, RPA, SOSEX, and rSE are three
distinct infinite series of many-body terms, in which the

three leading terms correspond to the three terms in sec-

ond-order RSPT. Thus it is quite natural to include all three
of them, and the resultant RPA?SOSEX?rSE scheme can

be viewed a renormalization of the normal second-order

RSPT. Therefore, we will refer to RPA?SOSEX?rSE as
‘‘renormalized second-order perturbation theory’’ or r2PT

in the following.

Other ‘‘beyond-RPA’’ activities

There have been several other attempts to go beyond RPA.
Here, we will only briefly discuss the essential concepts

behind these approaches without going into details. The

interested reader is referred to the corresponding refer-
ences. Following the ACFD formalism, as reviewed in

section ‘‘RPA derived from ACFD’’, one possible route is

to improve the interacting density-response function. This

Fig. 4 Goldstone diagrams for
renormalized single-excitation
contributions. Dashed lines
ending with a cross denote the
matrix element
Dvpq ¼ hwpjv̂HF & v̂MFjwqi
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can be conveniently done by adding the exchange correlation

kernel (fxc) of time-dependent DFT [166, 167], that is
omitted in RPA. Fuchs et al. [168], as well as Heßelmann

and Görling [124] have added the exact-exchange kernel to

RPA, a scheme termed by these authors as RPA?X or EXX-
RPA, for studying the H2 dissociation problem. RPA?X or

EXX-RPA displays a similar dissociation behavior for H2 as

RPA: accurate at infinite separation, but slightly repulsive at
intermediate bond lengths. This scheme, however, gives rise

to a noticeable improvement of the total energy [123]. Fur-
che and Voorhis examined the influence of several different

local and non-local kernels on the atomization energies of

small molecules and the binding energy curves of rare-gas
dimers [14]. They found that semilocal fxc kernels lead to a

diverging pair density at small inter-particle distances, and it

is necessary to go to non-local fxc kernels to cure this. More
work along these lines has to be done before conclusions can

be drawn and accurate kernels become available.

Quantum chemistry offers another route to go beyond
standard RPA by including higher-order exchange effects

(often termed as ‘‘RPAx’’). There the two-electron Cou-

lomb integrals usually appear in an antisymmetrized form,
whereby exchange-type contributions, which are neglected

in standard RPA, are included automatically [101, 169].

The RPA correlation energy can be expressed as a con-
traction between the ring-CCD amplitudes and the Cou-

lomb integrals (see Eq. (43)), or alternatively between the

coupling-strength-averaged density matrix and the Cou-
lomb integrals (see Ref. [119]). Different flavors of RPA

can therefore be constructed depending on whether one

antisymmetrizes the averaged density matrix and/or the
Coulomb integrals (see Ángyán et al. [121]). According to

our definitions in this article, these schemes are categorized

as different ways to go beyond standard RPA, while in
the quantum chemistry community they might simply be

referred to as RPA. The SOSEX correction, discussed in

section ‘‘Screened second-order exchange (SOSEX)’’, can
also be rewritten in terms of a coupling-strength-averaged

density matrix [119]. Another interesting scheme was

proposed by Heßelmann [38], in which RPA is corrected to
be exact at the third order of perturbation theory. These

corrections show promising potential for the small mole-

cules considered in Ref. [38]. However, more benchmarks
are needed for a better assessment.

Both standard RPA and RPA with the exchange-type

corrections discussed above have been tested in a range-
separation framework by several authors [16, 17, 28, 118–

122]. As mentioned briefly in the introduction, the concept

of range separation is similar to the RPA? procedure, in
which only the long-range behavior of RPA is retained.

However, instead of additional corrections, here RPA at the

short-range is completely removed and replaced by semi-
local or hybrid functionals. The price to pay is an empirical

parameter that controls the range separation. The gain is

better accuracy in describing molecular binding energies
[16, 17], and increased computational efficiency. The latter

is due to a reduction in the number of required basis

functions to converge the long-range RPA part, which is no
longer affected by the cusp condition. More details on

range-separated RPA can be found in the original refer-

ences [16, 17, 28, 118–122]. Compared to the diagram-
matic approaches discussed before, the range-separation

framework offers an alternative and computationally more
efficient way to handle short-range correlations, albeit at

the price of introducing some empiricism into the theory.

Applications

Molecules

RPA-based approaches have been extensively benchmarked
for molecular systems, ranging from the dissociation behavior

of diatomic molecules [12, 13, 16, 17, 122, 124, 140], atom-

ization energies of small covalent molecules [12, 18, 36, 37,
126], interaction energies of weakly bonded molecular com-

plex [28, 33, 119–121], and chemical reaction barrier heights

[40, 126]. The behavior of RPA for breaking covalent bonds
was examined in early days [12, 13], and today is still a topic of

immense interest [17, 122, 124, 140]. Atomization energies of

covalent molecules are somewhat disappointing, because
standard RPA, as well as its local correction (RPA?), is not

better than semi-local DFT functionals [12]. This issue was

subsequently referred to as ‘‘the RPA atomization energy
puzzle’’ [36]. A solution can be found in the beyond-RPA

schemes such as RPA?SOSEX [18, 125] and RPA?SE [34,

126, 165]. Another major application area of RPA are weakly
bonded molecules. Due to the seamless inclusion of the

ubiquitous vdW interactions, RPA clearly improves over

conventional DFT functionals, including hybrids. This feature
is very important for systems where middle-ranged non-local

electron correlations play a significant role, posing great

challenges to empirical or semi-empirical pairwise-based
correction schemes. Finally, for activation energies it turned

out that standard RPA performs remarkably well [40, 126] and

the beyond-RPA correction schemes that have been devel-
oped so far do not improve the accuracy of the standard RPA

[126].

In the following, we will discuss the performance of
RPA and its variants using representative examples to

illustrate the aforementioned points.

Dissociation of diatomic molecules

The dissociation of diatomic molecules is an important test
ground for electronic-structure methods. The performance
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of RPA on prototypical molecules has been examined in a
number of studies [12, 13, 16, 17, 115, 122, 124, 140].

Here, we present a brief summary of the behavior of RPA-

based approaches based on data produced using our in-
house code FHI-aims [134]. The numerical details and

benchmark studies of our RPA implementation have been

presented in Ref. [133]. In Fig. 5 the binding energy curves
obtained with PBE, MP2, and RPA-based methods are

plotted for four molecular dimers, including two covalent

molecules (H2 and N2), one purely vdW-bonded molecule
(Ar2), and one with mixed character (Be2). Dunning’s

Gaussian cc-pV6Z basis [170, 171] was used for H2 and

N2, aug-cc-pV6Z for Ar2, and cc-pV5Z for Be2. Currently,
no larger basis seems to be available for Be2, but this will

not affect the discussion here. Basis-set superposition

errors (BSSE) are corrected using the Boys–Bernardi
counterpoise procedure [172]. Also plotted in Fig. 5 are

accurate theoretical reference data for H2, Ar2, and Be2

coming respectively from the full CI approach [173], the

Tang–Toennies model [174], and the extended germinal

model [175]. To visualize the corresponding asymptotic
behavior more clearly, the large bond distance regime of all

curves is shown in Fig. 6.

RPA and RPA? dissociate the covalent molecules cor-
rectly to their atomic limit at large separations, albeit from

above after going through a positive ‘‘bump’’ at intermediate

bond distances. The fact that spin-restricted RPA calculations
yield the correct H2 dissociation limit is quite remarkable,

given the fact that most spin-restricted single-reference

methods, including local and semi-local DFT, Hartree–Fock,
as well as the coupled-cluster methods, yield an dissociation

limit that is often too high in energy, as illustrated in Fig. 5 for
PBE. MP2 fails more drastically, yielding diverging results in

the dissociation limit for H2 and N2. The RPA? binding

curves follow the RPA ones closely, with only minor differ-
ences. The rSE corrections are also quite small in this case,

shifting the RPA curves toward larger binding energies, with

the consequence that the binding energy dips slightly below
zero in the dissociation limit (see the N2 example in Fig. 6).

This shift, however, leads to better molecular binding energies

around the equilibrium where RPA systematically under-
binds. The SOSEX correction, on the other hand, leads to

dramatic changes. Although ‘‘bump’’ free, RPA?SOSEX

yields dissociation limits that are much too large, even larger
than PBE. This effect carries over to r2PT at large bond dis-

tances where rSE does not reduce the SOSEX overestimation.

For the purely dispersion-bonded dimer Ar2, all RPA-
based approaches, as well as MP2, yield the correct C6/R6

asymptotic behavior, whereas the semi-local PBE func-
tional gives a too fast exponential decay. Quantitatively,

the C6 dispersion coefficient is underestimated by *9 %

within RPA (based on a PBE reference) (Ren X et al.,
unpublished), and SOSEX or rSE will not change this. In

contrast, MP2 overestimates the C6 value by *18 % (Ren

X et al., unpublished). Around the equilibrium point, RPA
and RPA? underbind Ar2 significantly. The rSE correction

improves the results considerably, bringing the binding

energy curve into close agreement with the Tang–Toennies
reference curve. The SOSEX correction, on the other hand,

does very little in this case. As a consequence, r2PT

resembles RPA?rSE closely in striking contrast to the
covalent molecules.
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Fig. 5 Dissociation curves for
H2, N2, Ar2, and Be2 using
PBE, MP2, and RPA-based
methods. All RPA-based
methods use PBE orbitals as
input. ‘‘Accurate’’ reference
curves are obtained with the full
CI method for H2 [173], the
Tang–Toennies potential model
for Ar2 [174], and the extended
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Be2 represents a more complex situation, in which both

static correlation and long-range vdW interactions play an
important role. In the intermediate regime, the RPA and

RPA? binding energy curves display a positive bump

which is much more pronounced than for purely covalent
molecules. At very large bonding distances, the curves

cross the energy-zero line and eventually approach the

atomic limit from below. The rSE correction moves the
binding energy curve significantly further down, giving

binding energies in good agreement with the reference

values, whereas in the intermediate region a small positive
bump remains. The SOSEX correction exhibits a complex

behavior. While reducing the bump it concomitantly

weakens binding around the equilibrium distance. Com-
bining the corrections from SOSEX and rSE, r2PT does

well at intermediate and large bonding distances, but the

binding energy at equilibrium is still noticeably too small.
Regarding MP2, it is impressive to observe that this

approach yields a binding energy curve that is in almost

perfect agreement with the reference in the asymptotic
region, although a substantial underbinding can be seen

around the equilibrium region.

Summarizing this part, RPA with and without correc-
tions shows potential, but at this point, none of the

RPA-based approaches discussed above can produce

quantitatively accurate binding energy curves for all
bonding situations. It is possible, but we consider it unli-

kely, that iterating RPA to self-consistency will change this

result. Apart from applications to neutral molecules, RPA
and RPA?SOSEX studies have been carried out for the

dissociation of charged molecules. RPA fails drastically in

this case [115], giving too low a total energy in the dis-
sociation limit. Adding SOSEX to RPA fixes this problem,

although the correction now overshoots (with the exception

of H2
?) (see Ref. [18, 40, 115, 116] for more details).

Atomization energies: the G2-I set

One important molecular property for thermochemistry is

the ‘‘atomization energy’’, given by Emol -
P

iEi
at where

Emol is the ground-state energy of a molecule and Ei
at that

of the ith isolated atom. According to this definition, the

negative of the atomization energy gives the energy cost to

break the molecule into its individual atoms. Here, we
examine the accuracy of RPA-based approaches for

atomization energies of small molecules. The RPA results

for a set of ten small organic molecules were reported in
Furche’s seminal work [12] where the underestimation of

RPA for atomization energies was first observed. This

benchmark set is included in their recent review [40]. A
widely accepted representative set for small organic mol-

ecules is the G2-I set [143], that contains 55 covalent

molecules and will be used as an illustrative example here.
The RPA-type results for the G2-I set have recently been

reported in the work by Paier et al. [18, 126].

In Fig. 7 we present in a bar graph the mean absolute
percentage error (MAPE) for the G2-I atomization energies

obtained by four RPA-based approaches in addition to

GGA-PBE, the hybrid density-functional PBE0, and MP2.
The actual values for the mean error (ME), mean absolute
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error (MAE), MAPE, and maximum absolute percentage

error (MaxAPE) are listed in Table 2 in Appendix 2. The
calculations were performed using FHI-aims [133, 134]

with Dunning’s cc-pV6Z basis [170, 171]. Reference data

are taken from Ref. [176] and corrected for zero-point
energies. Figure 7 and Table 2 illustrate that among the

three traditional approaches, the hybrid functional PBE0

performs best, with a ME close to the ‘‘chemical accuracy’’
(1 kcal/mol = 43.4 meV). MP2 comes second, and PBE

yields the largest error and shows a general trend toward

overbinding. Concerning RPA-based approaches, standard
RPA leads to ME and MAE that are even larger than the

corresponding PBE values, with a clear trend of under-

binding. RPA? does not improve the atomization energies
[12]. All this is in line with previous observations [12, 18,

126, 133]. As shown in the previous section, the under-

binding of RPA for small molecules can be alleviated by
adding the SOSEX or rSE correction. And the combination

of the two (i.e., r2PT) further brings the MAE down to

3.3 kcal/mol, comparable to the corresponding PBE0
value. Whether the mechanism of this improvement can be

interpreted in terms of the ‘‘multi-center non-locality of the

correlation hole’’ as invoked by Ruzsinszky et al. [36, 37]
or not, is not yet clear at the moment.

vdW interactions: S22 set

As discussed above, one prominent feature of RPA is that it

captures vdW interactions that are of paramount importance
for non-covalently bonded systems. Benchmarking RPA-

based methods for vdW-bonded systems is an active

research field [14, 16, 17, 21, 23, 28, 33, 34, 109, 119, 120].
Here, we choose the S22 test set [144] as the illustrating

example to demonstrate the performance of RPA for non-

covalent interactions. This test set contains 22 weakly bound

molecular complex of different size and bonding type (seven
of hydrogen bonding, eight of dispersion bonding, and seven

of mixed nature). Since its inception this test set has been

widely adopted as the benchmark or training data set for
computational schemes that aim at dealing with non-cova-

lent interactions [177–183] including RPA-based approa-

ches [28, 33, 34, 120]. The consensus emerging from these
studies is as expected: RPA improves the binding energies

considerably over semilocal functionals.
Quantitatively the MAEs given by standard RPA

reported for S22 by different groups show an unexpected

spread. Specifically Zhu et al. [28] report an MAE of
2.79 kcal/mol, Ren et al. 39 meV or 0.90 kcal/mol [34],

and Eshuis and Furche 0.41 kcal/mol [33]. The latter

authors investigated this issue in detail [184] and con-
cluded that the discrepancy is due to basis-set incom-

pleteness and BSSE. Using Dunning’s correlation

consistent basis-sets plus diffuse functions and extrapolat-
ing to the complete basis-set (CBS) limit Eshuis and

Furche obtained a MAE of 0.79 with 0.02 kcal/mol

uncertainty [184]. These authors confirmed our observation
that standard RPA generally underbinds weakly bound

molecules. The basis set we have used, NAO tier 4 plus

diffuse functions from aug-cc-pV5Z (denoted as ‘‘tier 4 ?
a5Z-d’’) [34, 133], yields RPA results very close to the

CBS limit. The results reported in Ref. [34] are, in our

opinion, the most reliable RPA results (based on the PBE
reference) for S22 so far.

In Fig. 8 the relative errors (in percentage) of five RPA-

based schemes are plotted for the molecules of the S22 set.
Results for PBE, PBE0, and MP2 are also presented for

comparison. For MP2 and RPA-based methods, the relative

errors (in percentage) for the 22 individual molecules are

0

1

2

3

4

5

6

7

8
M

A
PE

 (%
)

PB
E

PB
E0

M
P2

R
PA

R
PA

+
R

PA
+S

O
SE

X
R

PA
+r

SE

r2
PT

Fig. 7 Mean absolute percentage error (MAPE) for the G2-I
atomization energies obtained with four RPA-based approaches in
addition to PBE, PBE0, and MP2

0

10

20

30

40

50

60

M
A

PE
 (%

)

PB
E

PB
E0

M
P2

R
PA

R
PA

+
R

PA
+S

O
SE

X

R
PA

+r
SE

r2
PT

Fig. 8 The MAPEs for the S22 test set obtained with RPA-based
approaches in addition to PBE, PBE0, and MP2. The ‘‘tier 4 ? a5Z-
d’’ basis set was used in the calculations

J Mater Sci

123



further demonstrated in Fig. 9. The reference data were

obtained using CCSD(T) and properly extrapolated to the
CBS limit by Takatani et al. [185]. MP2 and RPA results

are taken from Ref. [34]. The RPA?rSE, RPA?SOSEX,

and r2PT results are presented for the first time. Further
details for these calculations and an in-depth discussion

will be presented in a forthcoming paper [165]. Figure 8

shows that PBE and PBE0 fail drastically in this case,
because these two functionals do not capture vdW inter-

actions by construction, whereas all other methods show
significant improvement. Figure 9 further reveals that MP2

describes the hydrogen-bonded systems very accurately,

but vastly overestimates the strength of dispersion inter-
actions, particularly for the p–p stacking systems. Com-

pared to MP2, RPA provides a more balanced description

of all bonding types, but shows a general trend to under-
bind. It has been shown that this underbinding is signifi-

cantly reduced by adding SE corrections [34]. The

renormalized SE correction presented here gives rise to a
more systematic correction to RPA, as can be seen from

Fig. 9. SOSEX shows a similar correction pattern as rSE

for hydrogen bonding and mixed interactions, but has little
effect on the dispersion interaction. The r2PT scheme, that

combines SOSEX and rSE corrections, overshoots for

hydrogen bonding, but on average improves the description
of the other two bonding types. Figure 9 also reveals that

p–p stacking configurations, as exemplified by the benzene

dimer in the slip parallel geometry (#11), represent the
most challenging case for RPA-based methods. The rela-

tive error of RPA for this case is the largest. rSE provides

little improvement, whereas SOSEX worsens slightly.
More work is needed to understand the origin of this

failure.

The detailed errors (ME, MAE, MAPE, and MaxAPE)
for S22 are presented in Table 3 in Appendix 2. Among the

approaches we have investigated, RPA?rSE gives the

smallest MAE for S22, while r2PT gives the smallest
MAPE. Due to space restrictions it is not possible to

include the multitude of computational schemes that have

emerged in recent years for dealing with non-covalent
interactions [177–184]. Compared to these approaches, the

RPA-based approaches presented here are completely

parameter-free and systematic in the sense that they have a
clear diagrammatic representation. Thus RPA-based

approaches are expected to have a more general applicabil-
ity, and may well serve as the reference for benchmarking

other approaches for systems where CCSD(T) calculations

are not feasible.

Reaction barrier heights

One stringent test for an electronic-structure method is its

ability to predict chemical reaction barrier heights, i.e., the

energy difference between the reactants and their transition
state. This is a central quantity that dictates chemical

kinetics. Semi-local density approximations typically

underestimate barrier heights [18, 187]. RPA has already
been benchmarked for barrier heights in two-independent

studies [40, 126]. Both studies used the test sets of 38

hydrogen-transfer barrier heights (HTBH38) and 38 non-
hydrogen-transfer barrier heights (NHTBH38) designed by

Zhao et al. [187, 188] (together coined as BH76 in Ref.

[189]). HTBH38 contains the forward and inverse barrier
heights of 19 hydrogen-transfer reactions, whereas

NHTBH38 contains 19 reactions involving heavy atom

transfers, nucleophilic substitutions, association, and uni-
molecular processes. The reference data were obtained

using the ‘‘Weizmann-1’’ theory [190]—a procedure to

extrapolate the CCSD(T) results—or by other ‘‘best theo-
retical estimates’’ [188]. Paier et al. [126] presented results

for standard RPA and ‘‘beyond-RPA’’ approaches based on

the PBE reference, where a two-point cc-pVTZ?cc-pVQZ
basis-set extrapolation strategy is used. In the study of

Eshuis et al. [40], standard RPA results based on both PBE

and TPSS [191] references were presented, where the
Def2-QZVP basis [192] was used. The RPA@PBE results

for BH76 reported by both groups are very close, with

an ME/MAE of -1.35/2.30 kcal/mol from the former and
-1.65/3.10 kcal/mol from the latter.

The performance of RPA-based approaches, as well as

PBE, PBE0, and MP2 for HTBH38/NHTBH38 test sets is
demonstrated by the MAE bar graph in Fig. 10. The cal-

culations were done using FHI-aims with the cc-pV6Z

basis set. The ME, MAE, and the maximal absolute error
(MaxAE) are further presented in Table 4 in Appendix 2.

In this case we do not present the relative errors, which turn

out to be very sensitive to the computational parameters
due to some small barrier heights in the test set, and hence
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cannot be used as a reliable measure of the performance of

the approaches examined here. Compared to the results

reported in Ref. [126], besides a different basis set (cc-
pV6Z instead of cc-pVTZ?cc-pVQZ extrapolation), we

also used the refined rSE correction (see discussion in

section ‘‘Single-excitation correction and its combination
with SOSEX’’) for the RPA?rSE and r2PT results in

Table 4, which gives slightly better results in this case.

On average, PBE underestimates the reaction barrier
heights substantially, a feature that is well-known for GGA

functionals. The hybrid PBE0 functional reduces both the
ME and MAE by more than a factor of two. However, the

remaining error is still sizable. Standard RPA performs

magnificently and shows a significant improvement over
PBE0. The performance of RPA? is again very similar to

standard RPA. As already noted in Ref. [126], both the rSE

and the SOSEX corrections deteriorate the performance of
RPA. This is somewhat disappointing, and highlights the

challenge for designing simple, generally more accurate

corrections to RPA. Fortunately, the errors of rSE and
SOSEX are now in the opposite direction, and largely

canceled out when combining the two schemes. Indeed, the

AEs and MAEs of r2PT are not far from their RPA
counterparts, although the individual errors are more

scattered in r2PT as manifested by the larger MaxAE.

Crystalline solids

Crystalline solids are an important domain for RPA-based
approaches, in particular because the quantum-chemical

hierarchy of benchmark approaches cannot easily be

transfered to periodic systems. Over the years RPA cal-
culations have been performed for a variety of systems

such as Si [110, 111, 135], Na [110], h-BN [19], NaCl

[111], rare-gas solids [21], graphite [22, 29], and benzene
crystals [23]. The most systematic benchmark study of

RPA for crystalline solids was conducted by Harl and

Kresse [22, 112]. These authors reported ‘‘technically
converged’’ calculations using their VASP code and the

projector augmented plane-wave method for atomization

energies, lattice constants, and bulk moduli of 24 repre-
sentative crystals, including ionic compounds (MgO, LiF,

NaF, LiCl, and NaCl), semiconductors (C, Si, Ge, SiC,
AlN, AlP, AlAs, GaN, GaP, GaAs, InP, InAs, and InSb),

and metals (Na, Al, Cu, Rh, Pd, and Ag). The error analysis

of their RPA and RPA? results, based on a PBE reference,
as well as the LDA and PBE results are presented in

Table 1. As is clear from Table 1, the RPA lattice con-

stants and bulk moduli are better than in LDA and PBE.
The atomization energies, however, are systematically

underestimated in RPA, and the MAE in this case is even

larger than that of PBE. This behavior is very similar to
that for the atomization energies in the G2 set discussed

above. Harl et al. also observed that the error of RPA does

not grow when going to heavier atoms, or open-shell
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Fig. 10 The MAEs for the HTBH38 (full bars) and NHTBH38
(hatched bars) test sets obtained with RPA-based approaches in
addition to PBE, PBE0, and MP2. The cc-pV6Z basis set was used in
the calculations

Table 1 ME, MAE, MAPE (%), and MaxAPE (%) for the atom-
ization energies (in eV/atom), lattice constants (in Å), and bulk
moduli (in Gpa) of 24 crystalline solids. Results are taken from Ref.
[112]. The experimental atomization energies Ref. [193] are corrected
for temperature effect (based on thermochemical correction data)
[194] and zero-point vibrational energy. The experimental lattice
constants have been corrected for anharmonic expansion effects

Atomization energies

ME (eV) MAE (eV) MAPE (%) MaxAPE (%)

LDA -0.74 0.74 18.0 32.7

PBE 0.15 0.17 4.5 15.4

RPA 0.30 0.30 7.3 13.5

RPA? 0.35 0.35 8.7 15.0

Lattice constants

ME (Å) MAE (Å) MAPE (%) MaxAPE (%)

LDA -0.045 0.045 1.0 3.7

PBE 0.070 0.072 1.4 2.7

RPA 0.016 0.019 0.4 0.9

RPA? 0.029 0.030 0.6 1.1

Bulk moduli

ME (GPa) MAE (GPa) MAPE (%) MaxAPE (%)

LDA 9 11 9.6 31.0

PBE -11 11 10.7 23.7

RPA -1 4 3.5 10.0

RPA? -3 5 3.8 11.4
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systems in contrast to LDA or PBE [112]. The RPA?

results are in general slightly worse than those of standard
RPA.

The performance of RPA has not been extensively

benchmarked for vdW-bound solids. However, judging
from the studies on h-BN [19], rare-gas crystals [21],

benzene crystal [23], and graphite [22], standard RPA does

an excellent job regarding the equilibrium lattice constants
and cohesive energies, whereas semi-local DFT fails mis-

erably, yielding typically too weak binding and too large
lattice constants. LDA typically gives a finite binding

(often overbinding) for weakly bonded solids, but its per-

formance varies significantly from system to system, and
cannot be trusted in general, as the functional by con-

struction does not contain the necessary physics to reliably

describe this phenomenon. In a recent work [29], it was
shown that RPA also reproduces the correct 1/d3 asymp-

totics between graphite layers as analytically predicted by

Dobson et al. [195]. This type of behavior can neither be
described by LDA and GGAs, nor by hybrid functionals.

For solids attempts have also been made to go beyond

the standard RPA. For a smaller test set of 11 insulators,
Paier et al. [126] showed that adding SOSEX corrections to

RPA the MAE of atomization energies is reduced from

0.35 to 0.14 eV/atom. By replacing the non-self-consistent
HF energy by its self-consistent counterpart, which mi-

micks the effect of adding single-excitation corrections

[34], reduces the MAE further to 0.09 eV/atom [126].
Thus, the trend in periodic insulators is again in line with

what has been observed for molecular atomization ener-

gies. The effects of SOSEX and rSE corrections for metals,
and for other properties such as the lattice constants and

bulk moduli have not been reported yet.

Adsorption at surfaces

The interaction of atoms and molecules with surfaces plays
a significant role in many phenomena in surface science

and for industrial applications. In practical calculations, the

super cells needed to model the surfaces are large and a
good electronic-structure approach has to give a balanced

description for both the solid and the adsorbate, as well as

the interface between the two. Most approaches today
perform well for either the solid or the isolated adsorbate

(e.g., atoms, molecules, or clusters), but not for the com-

bined system, or are computationally too expensive to be
applied to large super cells. This is an area where we

believe RPA will prove to be advantageous.

The systems to which RPA has been applied include Xe
and 3,4,9,10-perylene-tetracarboxylic acid dianhydride

(PTCDA) adsorbed on Ag(111) [25]; CO on Cu(111) [22,

26], and other noble/transition metal surfaces [27]; benzene
on Ni(111) [27], Si(001) [114], and the graphite surface

[113]; and graphene on Ni(111) [196, 197], and Cu(111),

Co(0001) surfaces [197]. In all these applications, RPA has
been very successful.

To illustrate how RPA works for an adsorbate system,

here we briefly describe the RPA study of CO@Cu(111)
following Ref. [26]. The study was motivated by the so-

called CO adsorption puzzle—LDA and several GGAs

predict the wrong adsorption site for CO adsorbed on
several noble/transition metal surfaces at low coverage

[198]. For instance, for the (111) surface of Cu and Pt DFT
within local/semi-local approximations erroneously favor

the threefold-coordinated hollow site, whereas experiments

clearly show that the singly-coordinated on-top site is the
energetically most stable site [199, 200]. This posed a

severe challenge to the first-principles modeling of

molecular adsorption problems and the question arose, at
what level of approximation can the correct physics be

recovered. In our study, the Cu surface was modeled using

systematically increasing Cu clusters cut out of the
Cu(111) surface. Following a procedure proposed by Hu

et al. [201], the RPA adsorption energy was obtained by

first converging its difference to the PBE values with
respect to cluster size, and then adding the converged

difference to the periodic PBE results. The RPA adsorption

energies for both the on-top and fcc (face centered cubic)
hollow sites are presented in Fig. 11, together with the

results from LDA, AM05 [202], PBE, and the hybrid PBE0

functional. Figure 11 reveals what happens in the CO
adsorption puzzle when climbing the so-called Jacob’s

ladder in DFT [6]—going from the first two rungs (LDA

and GGAs) to the fourth (hybrid functionals), and finally to
the fifth rung (RPA and other functionals that explicitly

depend on unoccupied KS states). Along the way the

magnitude of the adsorption energies on both sites are
reduced, but the effect is more pronounced for the fcc
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PBE, PBE0, and RPA. RPA results are presented for both PBE and
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J Mater Sci

123



hollow site. The correct energy ordering is already restored

at the PBE0 level, but the energy between the two sites is
too small. RPA not only gives the correct adsorption site,

but also produces a reasonable adsorption energy differ-

ence of 0.22 eV, consistent with experiments. This result
was later confirmed by the periodic RPA calculations of

Harl and Kresse in Ref. [22], with only small numerical

differences arising from the different implementations and
different convergence strategy.

The study of Rohlfing and Bredow on Xe and PTCDA
adsorbed at Ag(111) surface represents the first RPA study

regarding surface adsorption problems, where the authors

explicitly demonstrated that RPA yields the expected -C3/
(d - d0)3 behavior for large molecule-surface separations

d. Schimka et al. extended the RPA benchmark studies of

the CO adsorption problem to more surfaces [27]. They
found that RPA is the only approach so far that gives both

good adsorption energies as well as surface energies.

GGAs and hybrid functionals at most yield either good
surface energies, or adsorption energies, but never both.

Göltl and Hafner investigated the adsorption of small

alkanes in Na-exchanged chabazite using RPA and several
other approaches. They found that the ‘‘hybrid-RPA’’

scheme, as proposed in Ref. [34] and further examined in

Ref. [126], provides the most accurate description of the
system compared to the alternatives, e.g., DFT-D [203] and

vdW-DF [204]. More recently RPA was applied to the

adsorption of benzene on the Si(001) surface by Kim et al.
[114], graphene on the Ni(111) surface by Mittendorfer

et al. [196] and by Olsen et al. [197], and additionally

graphene on Cu(111) and Co(0001) surfaces by the latter
authors. In all these studies, RPA is able to capture the

delicate balance between covalent and dispersive interac-

tions, and yields quantitatively reliable results. We expect
RPA to become increasingly more important in surface

science with increasing computer power and more efficient

implementations.

Discussion and outlook

RPA is an important concept in physics and has a more than

50-year-old history. Owing to its rapid development in recent
years, RPA has shown great promise as a powerful first-

principles electronic-structure method with significant

implications for quantum chemistry, computational physics,
and materials science in the foreseeable future. The rise of the

RPA method in electronic-structure theory, and its recent

generalization to r2PT, were borne out by realizing that tra-
ditional DFT functionals (local and semi-local approxima-

tions) are encountering noticeable accuracy and reliability

limits and that hybrid density-functionals are not sufficient to
overcome them. With the rapid development of computer

hardwares and algorithms, it is not too ambitious to expect

RPA-based approaches to become (or at least to inspire) main-
stream electronic-structure methods in computational mate-

rials science and engineering in the coming decades. At this

point it would be highly desirable if the community would
start to build up benchmark sets for materials science akin to

the ones in quantum chemistry (e.g., G2 [143] or S22 [144]).

These should include prototypical bulk crystals, surfaces, and
surface adsorbates and would aid the development of RPA-

based approaches.
As an outlook, we would like to indicate several direc-

tions for future developments of RPA-based methods.

i. Improved accuracy Although RPA does not suffer from
the well-documented pathologies of LDA and GGAs,

its quantitative accuracy is not always what is desired,

in particular for atomization energies. To improve on
this and to make RPA worth its computational effort,

further corrections to RPA are necessary. To be useful
in practice, these should not increase the computational

cost significantly. The r2PT approach as presented in

section ‘‘Computional schemes beyond RPA’’ and
benchmarked in section ‘‘Applications’’ is one example

of this kind. More generally the aim is to develop RPA-

based computational schemes that are close in accuracy
to CCSD(T), but come at a significantly reduced

numerical cost. More work can and should be done

along this direction.
ii. Reduction of the computational cost The major factor

that currently prevents the widespread use of RPA in

materials science is its high numerical cost compared
to traditional DFT methods. The state-of-the-art

implementations still have an O(N4) scaling, as

discussed in section ‘‘Algorithms and implementa-
tions’’. To enlarge the domain of RPA applications, a

reduction of this scaling behavior will be highly

desirable. Ideas can be borrowed from O(N) methods
[139] developed in quantum chemistry (in particular in

the context of MP2) or compression techniques

applied in the GW context [138].
iii. RPA forces For a ground-state method, one crucial

component that is still missing in RPA are atomic

forces. Relaxations of atomic geometries that are
common place in DFT and that make DFT such a

powerful method are currently not possible with RPA

or at least have not been demonstrated yet. An
efficient realization of RPA forces would therefore

extend its field of application to many more interest-

ing and important materials science problems.
iv. Self-consistency Practical RPA calculations are pre-

dominantly done in a post-processing manner, in

which single-particle orbitals from KS or generalized
KS calculations are taken as input for a one-shot RPA
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calculation. This introduces undesired uncertainties,

although the starting-point dependence is often not very

pronounced, if one restricts the input to KS orbitals. A
self-consistent RPA approach can be defined within

KS-DFT via the optimized effective potential method

[95], and has already been applied in a few instances
[41, 42, 129, 130, 132]. However, in its current

realizations self-consistent RPA is numerically very

challenging, and a more practical, robust and numer-
ically more efficient procedure will be of great interest.

With all these developments, we expect RPA and its

generalizations to play an increasingly important role in
computational materials science in the near future.

Appendix 1: RI-RPA implementation in FHI-aims

In this section, we will briefly describe how RPA is
implemented in the FHI-aims code [134] using the reso-

lution-of-identity (RI) technique. More details can be found

in Ref. [133]. For a different formulation of RI-RPA see
Ref. [30, 40]. We start with the expression for the RPA

correlation energy in Eq. (23), which can be formally

expanded in a Taylor series,

ERPA
c ¼ & 1

p

Z1

0

dx
X1

n¼2

1

2n
Tr v0ðixÞv
' (n# $

: ð52Þ

Applying RI to RPA in this context means to represent

both v0(ix) and v in an appropriate auxiliary basis set. Eq.

(52) can then be cast into a series of matrix operations. To
achieve this we perform the following RI expansion

w*i ðrÞwjðrÞ ,
XNaux

l¼1

Cl
ijPlðrÞ; ð53Þ

where Pl(r) are auxiliary basis functions, Cij
l are the expansion

coefficients, and Naux is the size of the auxiliary basis set. Here

C serves as the transformation matrix that reduces the rank of
all matrices from Nocc*Nvir to Naux, with Nocc, Nvir and Naux

being the number of occupied single-particle orbitals,

unoccupied (virtual) single-particle orbitals, and auxiliary
basis functions, respectively. The determination of the C
coefficients is not unique, but depends on the underlying

metric. In quantum chemistry the ‘‘Coulomb metric’’ is the
standard choice where the C coefficients are determined by

minimizing the Coulomb repulsion between the residuals of

the expansion in Eq. (53) (for details see Ref. [133] and
references therein). In this so-called ‘‘RI-V’’ approximation,

the C coefficients are given by

Cl
ij ¼

X

m

ðijjmÞV&1
ml ; ð54Þ

where

ðijjmÞ ¼
ZZ

/iðrÞ/jðrÞPmðr0Þ
jr& r0j drdr0; ð55Þ

and

Vlm ¼
Z

PlðrÞPmðr0Þ
jr& r0j

drdr0: ð56Þ

In practice, sufficiently accurate auxiliary basis set can

be constructed such that Naux + Nocc*Nvir, thus reducing

the computational effort considerably. A practically
accurate and efficient way of constructing auxiliary basis

set {Pl(r)} and their associated {Cij
l} for atom-centered

basis functions of general shape has been presented in Ref.
[133].

Combining Eq. (20) with (53) yields

v0ðr; r0; ixÞ ¼
X

lm

X

ij

ðfi & fjÞCl
ijC

m
ji

!i & !j & ix
PlðrÞPmðr0Þ

¼
X

lm

v0
lmðixÞPlðrÞPmðr0Þ;

ð57Þ

where

v0
lmðixÞ ¼

X

ij

ðfi & fjÞCl
ijC

m
ji

!i & !j & ix
: ð58Þ

Introducing the Coulomb matrix

Vlm ¼
ZZ

drr0PlðrÞvðr; r0ÞPmðr0Þ; ð59Þ

we obtain the first term in (52)

Eð2Þc ¼&
1

4p

Z1

0

dx
Z
! ! !
Z

drdr1dr2dr0

' v0ðr; r1Þvðr1; r2Þv0ðr2; r
0Þvðr0; rÞ

¼ & 1

4p

Z1

0

dx
X

lm;ab

v0
lmðixÞVmav0

abðixÞVb;l

¼& 1

4p

Z1

0

dxTr v0ðixÞV
' (2
h i

:

ð60Þ

This term corresponds to the second-order direct

correlation energy also found in MP2. Similar equations

hold for the higher order terms in (52). This suggests that
the trace operation in Eq. (23) can be re-interpreted as a

summation over auxiliary basis function indices, namely,

Tr AB½ ) ¼
P

lm AlmBml; provided that v0(r, r0, ix) and

v(r, r0) are represented in terms of a suitable set of

auxiliary basis functions. Equations (23), (58), and (59)
constitute a practical scheme for RI-RPA. In this

implementation, the most expensive step is Eq. (58) for
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the construction of the independent response function,

scaling as Naux
2 NoccNvir. We note that the same is true for

standard plane-wave implementations [112] where Naux

corresponds to the number of plane waves used to expand

the response function. In that sense RI-based local-basis
function implementations are very similar to plane-wave-

based or LAPW-based implementations, where the plane

waves themselves or the mixed product basis serve as the
auxiliary basis set.

Appendix 2: Error statistics for G2-I, S22,
and NHBH38/NHTBH38 test sets

Tables 2, 3, and 4 present a more detailed error analysis for

the G2-I, S22, and NHBH38/NHTBH38 test sets. Given are
the mean error (ME), the mean absolute error (MAE), the

mean absolute percentage error (MAPE), the maximum

absolute percentage error (MaxAPE), and the maximum
absolute error (MaxAE).
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ME MAE MAPE MaxAPE

PBE -0.28 0.36 5.9 38.5

PBE0 0.07 0.13 2.6 20.9

MP2 -0.08 0.28 4.7 24.6

RPA 0.46 0.46 6.1 24.2

RPA? 0.48 0.48 6.3 24.9

RPA?SOSEX 0.22 0.25 4.2 36.7

RPA?rSE 0.30 0.31 4.0 22.5

r2PT 0.07 0.14 2.6 24.9

Table 3 ME (in meV), MAE (in meV), MAPE (%), and MaxAPE(%)
for the S22 test set [144] obtained with five RPA-based approaches in
addition to PBE, PBE0, and MP2 obtained with FHI-aims. The basis set
‘‘tier 4 ? a5Z-d’’ [133] was used in all calculations

ME MAE MAPE MaxAPE

PBE 116.2 116.2 57.8 170.3

PBE0 105.7 106.5 55.2 169.1

MP2 -26.5 37.1 18.7 85.1

RPA 37.8 37.8 16.1 28.7

RPA? 51.2 51.2 21.9 39.4

RPA?rSE 14.1 14.8 7.7 24.8

RPA?SOSEX 15.4 18.0 10.5 34.6

r2PT -8.4 21.0 7.1 30.7

Table 4 ME, MAE, and MaxAE (in eV) for the HTBH38 [187] and
NHTBH38 [188] test sets obtained with four RPA-based approaches
in addition to PBE, PBE0, and MP2, as obtained using FHI-aims. The
cc-pV6Z basis set was used in all calculations. Negative ME indicates
an underestimation of the barrier height on average

HTBH38 NHTBH38

ME MAE MaxAE ME MAE MaxAE

PBE -0.399 0.402 0.863 -0.365 0.369 1.320

PBE0 -0.178 0.190 0.314 -0.134 0.155 0.609

MP2 0.131 0.169 0.860 0.215 0.226 1.182

RPA 0.000 0.066 0.267 -0.065 0.081 0.170

RPA? 0.005 0.069 0.294 -0.068 0.084 0.168

RPA?rSE -0.170 0.187 0.809 -0.251 0.252 0.552

RPA?SOSEX 0.243 0.244 0.885 0.185 0.188 0.781

r2PT 0.072 0.084 0.453 -0.001 0.129 0.432
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