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ABSTRACT: We explore several random phase approximation (RPA) correlation energy variants within the adiabatic-connection
fluctuation—dissipation theorem approach. These variants differ in the way the exchange interactions are treated. One of these
variants, named dRPA-I, is original to this work and closely resembles the second-order screened exchange (SOSEX) method. We
discuss and clarify the connections among different RPA formulations. We derive the spin-adapted forms of all the variants for
closed-shell systems and test them on a few atomic and molecular systems with and without range separation of the electron—

electron interaction.

1. INTRODUCTION

There is a recent revival of interest in the random phase
approximation (RPA) to obtain ground-state correlation energies
of electronic systems.' *' The RPA is considered a promising
first approximation to obtain nonperturbative, exact-exchange-
compatible, post-Kohn—Sham correlation energy corrections in
density-functional theory. In particular, the RPA is thought of as a
remedy for the bad description of London dispersion forces by
conventional local and semilocal density-functional approxi-
mations. However, it is widely admitted that while RPA is
well adapted to long-range electron—electron interactions, for
small interelectronic distances its performance is even poorer
than that of semilocal density functionals.**** An efficient way
to make o‘gtimal use of RPA is to apply it in a range-separated
approach,™* where the short-range interactions are described
by an exchange-correlation density functional, and long-range
exchange and correlation are treated by Hartree—Fock (HF) and
RPA, respectively. Computational schemes following these prin-
ciples have been recently proposed and applied mainly to van der
Waals complexes.ls_”’%’ggl’g’%

Several formulations of RPA have been developed. Perhaps, the
most well-known approach to RPA is the one based on the adiabatic-
connection fluctuation—dissipation theorem (ACFDT).*** In this
approach, the correlation energy expression involves integrations over
both the frequency and the interaction strength, which can be
performed either numerically or analytically. Obviously, an expression
which has already been integrated analytically along at least one or
both of these variables is more advantageous than the repeated use of
numerical quadratures. If an analytical integration over the frequency
is performed first, followed by a numerical integration over the
interaction strength, one obtains an expression that is of the form of
an interaction-strength-averaged two-particle density matrix con-
tracted with the two-electron integrals. This is the adiabatic-connection
formulation. An analytical integration over the interaction strength
followed by a numerical integration along the frequency leads to
an expression involving the dynamic dielectric matrix. This is the
dielectric-matrix formulation. With a second analytical integration
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(either along the interaction strength starting from the adia-
batic-connection expression or along the frequency starting from
the dielectric-matrix expression) both of these intermediate forms
can be converted to a common expression, which consists of a sum
of the shifts of electronic excitation energies when passing from an
independent-particle to the RPA description of the excited states.
This is the plasmon formulation. The plasmon expression can be
further converted to an equivalent expression involving coupled-
cluster doubles (CCD) amplitudes calculated in the ring-diagram
approximation.'* This is the ring CCD formulation. The relation-
ship between the adiabatic-connection and ring CCD formula-
tions of RPA has been recently discussed in ref 34.

In this work, we study different variants of RPA within the
adiabatic-connection formulation, which differ in the way the
exchange interactions are handled. If the exchange interactions
are neglected in the density matrix, we obtain the direct RPA
(dRPA) approach (also called time-dependent Hartree), while
inclusion of the nonlocal HF exchange response kernel leads to
the RPAx approach (also called time-dependent Hartree—Fock,
or full RPA). A third possibility, not discussed here, consists of
including an exact exchange response kernel from a local exact
exchange potential.”” If the dRPA density matrix is contracted
with nonantisymmetrized two-electron integrals, one obtains
what we call the dRPA-I variant, while if it is contracted with
antisymmetrized two-electron integrals, one obtains the dRPA-II
variant. Similarly, if the RPAx density matrix is contracted with
nonantisymmetrized two-electron integrals, the RPAx-I variant is
obtained, while if it is contracted with antisymmetrized two-
electron integrals, one obtains the RPAx-II variant. The dRPA-I
variant is just the commonly called “RPA” of the density-
functional/material-science community. The dRPA-II variant,
which is similar to the second-order screened exchange (SOSEX)
expression introduced by Griineis et al.”® in the ring CCD
formulation, is original to this work. In contrast to SOSEX, it
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involves higher-order screened exchange effects. The RPAx-II
variant was first introduced by McLachlan and Ball,* but here we
derive a new adiabatic-connection expression for it. Finally, the
RPAx-I variant has been recently introduced by Toulouse
et al.">* When possible, for the case of dRPA-I and RPAx-II,
we also compare with the equivalent plasmon formulation and
clarify the origin of the prefactor of 1/4 in the plasmon formula
of RPAx-II in place of the prefactor of 1/2 appearing for
dRPA-I. We remind the reader that in spite of the very different
formulations, the dRPA-I variant is the same as the direct ring-
CCD method, while the RPAx-II approach is identical to ring-
CCD 3446

For the sake of simplicity, we give all the expressions without
range separation, but it is straightforward to generalize them for
the case of range separation, as done in ref 33. The paper is
organized as follows. In section 2, we first provide an overview of
the adiabatic-connection RPA correlation energy variants. In
section 3, we review how the two-particle density matrix is
obtained from the RPA polarization propagator. In section 4,
we derive the expressions of RPA correlation energy variants in a
spin—orbital basis. In section S, we derive the corresponding
spin-adapted expressions for closed-shell systems. In section 6,
we perform numerical comparisons of different variants on a few
atomic and molecular systems with and without range separation.
Finally, section 7 contains our conclusions. The analysis of the
second-order limit in the electron—electron interaction of each
variant is given in the Appendix.

2. OVERVIEW OF RPA CORRELATION ENERGY VAR-
IANTS IN THE ADIABATIC-CONNECTION
FORMULATION

In the adiabatic-connection formalism, the correlation energy
in a spin—orbital basis can be expressed as

1

1 1 1
Eo=g /O da Te{ VP } = 5 /O da Y, (ralsp)(Pe),y

pgrs
(1)

where V., = (rq|sp) are the two-electron integrals, P, is the
correlation part of the two-particle density matrix at interac-
tion strength ¢, and Tr denotes the trace (sum over the indices
r and s). Using the antisymmetry of P, with respect to the
permutation of the indices p and s, the correlation energy can also
be expressed as

1 1
- / da Te{WP, .}
4o

3] @3 Gl )

pq, rs

where W, ., = (rq||sp) = (rq|sp) — (rq|ps) are the antisymme-
trized two-electron integrals. In RPA-type approximations, P, is
obtained via the fluctuation—dissipation theorem

0 dow w0
o [T e o) )]

where T *(w) is the four-index matrix representation of the
dynamic polarization propagator at interaction strength a and
frequency w, and ITy(w) is the corresponding noninteracting

(Hartree—Fock or Kohn—Sham) polarization propagator. In the
dRPA variant (or time-dependent Hartree), the polarization
propagator is obtained from the response equation with the
Hartree kernel V

(@)™ = Mo(w) ™ —aV (4)

whereas in the RPAx variant (or time-dependent Hartree—Fock),
the polarization propagator is obtained using the Hartree—Fock
kernel W

()™ = Mo(w) ™ —aW (5)
The obtained dRPA and RPAx correlation density matrices PZ%PA
and PR are completely expressed in the basis of occupied-virtual
orbital products, i.e,, pq = ia or ai and rs = jb or bj where i and j
refer to occuEIi)ed orbitals and a and b to virtual orbitals. Neither
PIEPA nor Pc,an are properly antisymmetric. As a consequence,
the two correlation energy expressions, eqs 1 and 2, are no longer
equivalent in dRPA or RPAx. This leads to at least four RPA vari-
ants for calculating correlation energies, denoted here by dRPA-],
dRPA-II, RPAx-I, and RPAx-II, depending on whether the correla-
tion density matrix is contracted with the nonantisymmetrized
two-electron integrals V (variants I) or the antisymmetrized two-
electron integrals W (variants II).

The dRPA-I variant is obtained by inserting the dRPA
correlation density matrix in eq 1:

1 1
ERPAT — — [ qg Tr{VPIRPA (6)
c 2 0 ca

This variant is commonly called “RPA” in the density-functional/
material-science community. It corresponds to the first RPA
correlation energy approximation historically developed and is
still widely used. Since the dRPA response equation involves
the mere Hartree kernel, only the screening effect of the bare
Coulomb interaction is taken into account in the polarization
propagator and all exchange-correlation screening effects are
neglected. The resulting correlation energies tend to be too
strongly negative. At second order in the electron—electron
interaction, the dRPA-I correlation energy does not reduce to
the standard second-order Moller—Plesset (MP2) correlation
energy but instead to a “direct MP2” expression, i.e., without the
MP2 exchange term.>°

The dRPA-II variant is obtained by contracting the dRPA
correlation density matrix with the antisymmetrized two-
electron integrals W:

-, 1 1
EgRPA I _ E/0 da Tr{WPil}IPA (7)

which re-establishes the correct second-order MP2 limit. In view
of equation 2, it could have been suggested to use a factor of 1/4
instead of 1/2 in eq 7, but in fact the correct MP2 limit is only
recovered with the factor 1/2. This variant can also be obtained
from eq 6 by antisymmetrizing the correlation density matrix
with respect to th%Ppermutation of p and s: (P?;PA)I,WS -
(PiﬁPA)pWs - (Pia A)Sq,,p. As far as we know, the dRPA-II
variant has never been described before. It is similar to the
second-order screened exchange (SOSEX) expression intro-
duced by Griineis et al,>® but the latter does not involve
integration over the adiabatic connection and treats exchange
effects only at the lowest order of perturbation.
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The RPAx-I variant is obtained by inserting the RPAx correla-
tion density matrix in eq 1:

1 1
ERAT — — [ da Tr{ VPRPA (8)
C 2 0

ca

and has been introduced recently by Toulouse et al.'>** In this
variant, the exchange screening effects are taken into account in
the polarization propagator. The matrix Pre > is properly anti-
symmetric at first order, and therefore the RPAx-I correlation
energy has the correct MP2 limit. At higher orders, however,
PEI,; violates antisymmetry properties to some extent.

The RPAx-II variant is obtained by inserting the RPAx
correlation density matrix in eq 2:

1 1
ERPAAL — — [ do Tr{WPRPA (9)
c 4 o ca

which can also be obtained from eq 8 by antisymmetrizing the
correlation density matrix: (PEI;AX)PWS —(1/ 2)[(P§EAX)PWS —
(PR sqrp)s the factor 1/2 being justified by the fact that P
is already approximately antisymmetric, in contrast to Pga A
This variant was first introduced by McLachlan and Ball.* At
second order, it properly reduces to MP2.

In the following, these four RPA correlation energy variants
will be analyzed further, and working expressions will be given.

3. TWO-PARTICLE DENSITY MATRIX FROM THE PO-
LARIZATION PROPAGATOR

We first briefly review how to extract a two-particle density
matrix from the RPA polarization propagator. The noninteract-
ing (Hartree—Fock or Kohn—Sham) polarization propagator
I1y(w) writes

Ih(w) = — (Ao — wA)™" (10)

where Ag and A are 2 X 2 supermatrices

e 0 I 0
Ay = 0 & and A = 0 I (11)

each block being of dimension N,N, X N,N,, where N, and N,
are the numbers of occupied and virtual orbitals, respectively.
The diagonal matrix € contains the independent one-particle
excitation energies, &, = (£,—£:)0;;04, and I is the identity
matrix. Similarly, the RPA polarization propagator at interaction
strength a writes

M () = — (A — wA) ™ (12)

where the supermatrix A, is calculated with the Hartree kernel V
in the case of dRPA:

ASPA — Ay + aV (13)
and with the Hartree—Fock kernel W in the case of RPAx:
AN = Ay + aW (14)

From now on, we will consider real-valued orbitals. In this case,
the Hartree kernel is made of four identical blocks,

K K
- (K K> (15)

where K, = (ab|ij> are nonantisymmetrized two-electron
integrals. Similarly, the Hartree—Fock kernel writes

A B
W=<B A,) (16)

with the antisymmetrized two-electron integrals
A, i = Cibllaj) = (iblaj) — (iblja) = Kig,jt = Jia,jv (17)
and

Bigjy = {abl|if) = (ablij) —{ablji) = Kis,j — K, s (18)

Let us consider now the generalized nonhermitian RPA
eigenvalue equation

Aa(ca,n = wa,nA(Ca,n (19)

whose solutions come in pairs: positive excitation energies @, ,
with eigenvectors C,, = (xa,n,ya,,,) and negative excitation
energies Wy, _, = —W,, With ei%fpnvectors Co—n = (yal,,,xal,,).
The spectral representation of ITsy (@) then writes

Ca,nC, Co,—nCy _
HI;PA((U) — Z{ a,n a,—n

~ o — w4, + i0+_a)—cua,,,,—i0+
(20)

where the sum is over eigenvectors n with positive excitation

energies @, > 0. The fluctuation—dissipation theorem [eq 3]

leads to the supermatrix representation of the correlation density
. DRPA (. . .

matrix P., (using contour integration in the upper half of the

complex plane):

® dw w0t
phen — [ e (14 ) — Ty(w)
= ${Ca oGl — Ca i) 2

with the noninteracting eigenvectors Cy_,, = (yo,%o,,) With
Yo, =0andx, =1, (where 1, is the vector whose nth component
is 1 and all other components are zero). The explicit supermatrix
expression of the RPA correlation density matrix is thus

T T
poa _ [ Ya¥o YXi) (00 )
oa X, Y, X XD 0 I
where X, and Y, are the matrices whose columns contain the
eigenvectors X, and y,,. The dRPA and RPAx correlation
density matrices have the same form in terms of the eigenvector

matrices X, and Y, although the eigenvectors are of course
different for dRPA and RPAx.

4. CORRELATION ENERGY EXPRESSIONS IN A SPIN—
ORBITAL BASIS

We give here the expressions in a spin—orbital basis for
calculating the different RPA correlation energy variants. We
first consider the dRPA-I and RPAx-II variants which have similar
expressions. In both cases, the integration over the adiabatic
connection can be done analytically, leading to plasmon for-
mulas. We then examine the dRPA-II and RPAx-I variants. They
have in common that they mix the nonantisymmetrized
integrals V and the antisymmetrized integrals W, which makes
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it impossible to do the integration over the adiabatic connection
analytically. Although the dRPA-I variant is well-documented in
the literature after the work of Furche and co-workers,>'>>* the
review that we give here is useful to define our notations and for
comparisons with other variants. The RPAx-I variant has been
discussed in detail in the context of range separation by Toulouse
et al.'>*"*3 The RPAx-II variant is much less documented, and
the dRPA-II is new, so most of the expressions that we give for
them are original to this work.

4.1. dRPA-I Correlation Energy. There are several equivalent
expressions for the dRPA-I correlation energy.

4.1.1. Adiabatic-Connection Formula. The dRPA-I correla-
tion energy of eq 6 can be expressed with the eigenvectors of the
dRPA polarization propagator according to the general prescrip-
tion to form the correlation density matrix, eq 21:

1 1
EIROAT 5 /0 day Tr{VCq ,C} _, — VCoCq _,}

(23)

or, using the explicit expressions in terms of the block matrix
components [eqs 15 and 22]:

ESRPA'I = %Al da tr{[(Xy + Yo)(Xq + Ya)T — 1K}
(24)

where tr refers to the trace now applied to the block matrices
(which are half the size of the supermatrices). As shown by
Furche,” one does not need to calculate explicitly the eigenvector
matrices X,, and Y,, to get the correlation energy; it is sufficient to
form the matrix

Q. = (Xa + Ya)(Xa + Ya)T (25)

which can be obtained directly from the matrices involved in the
RPA response equation. In the case of dRPA, it simply reads

QiRPA _ El/Z(MiRPA)fl/Zel/Z (26)
with
MIPA — £12(e 4 20K)e!/? (27)

The adiabatic-connection formula for the dRPA-I correlation
energy is then finally

1 1
EIRPAT — 3 /0 da tr{[Q A 1K} (28)

Ir}jl previous papers, this equation was written with the matrix
Py =Q, —L

4.1.2. Plasmon Formula. The plasmon formula for the dRPA-I
correlation energy is found by starting from an equivalent form of
eq 23:

1
ESRPA-I — 5/ da Y, Tr{Cgﬁ VCqp— CgﬁnVCoﬁn}
0 n

(29)

obtained by a cyclic permutation of the matrices in the trace.
Since the positive excitation energies can be written as'¥*

wgf‘ff\ = cgﬁn/\imca,,n (30)

the derivative of w,, , with respect to a gives

dCUdR}:A dAdRPA
# = ?;,—n daa (Ca;*” = Cl‘,—nvca;*" (31)

which allows one to perform the integral over a in eq 29
analytically, leading to the plasmon formula

1
R = S (0f — w0, = CF L, VCo)
n
1
= 20" — o™ (32)

where Zn wiTDA = Zn Cg,an?RPACO,fn = Zn 6()O,rz + Cg,anCO,fn

is the sum of the (positive) excitation energies in the direct

Tamm-Dancoff approximation (dTDA). The sum of the dTDA
o . dTDA

excitation energies can also be expressed as ¥, w, = tr{€ + K}.
4.1.3. Alternative Plasmon Formula. An alternative form of

the plasmon formula can be found by rewriting eq 32 as

dl
— AfAC_,Cy_,}

1,—n

b1 p
ESRPAI = EZ Tr{AIRPACL,"CT

n (33)

where the cyclic invariance of the trace has again been used.
Using then eq 22 and recalling that the diagonal blocks of AFEA
are € + K and the off-diagonal blocks are K, the correlation energy
becomes

i 1
EfRPAI = Etr{[Yler —|— XIX? — I](£ + K)

+ Y. X] + X, YT|K} (34)

Introducing now the inverse of the Q, matrix:*

Q;l = (Xa - Ya)(Xa _Ya)T (35)
which in the case of dRPA can be written as

Q)

— 8—1/2(M3RPA)1/28—1/2 (36)

the correlation energy can be expressed as

gt — Sl [Ja @) -1 e +

2
S CTCHON )

or, equivalently,
1 1 -
= Ll e+ @i one)

(38)

or, rearranged in a different way

EIRPAT étr{%qu(s +2K) + 5 (@ e (e + K)}
(39)

Using the expressions of QiRrA [eq 26], (QIRPAY ! [eq 36],
and M{RPA [eq 27] and the cyclic invariance of the trace, we
finally arrive at the alternative form of the plasmon formula for

3119 dx.doi.org/10.1021/ct200501r |J. Chem. Theory Comput. 2011,7,3116-3130



Journal of Chemical Theory and Computation

Cammcie

the dRPA-I correlation energy:

pIAT %tr{(MiiRPA)l/Z “ (e + K)} (40)

Recently, eq 40 was used by Eshuis et al.* as the starting point
for developing a computationally efficient algorithm for calculat-
ing the dRPA-I correlation energy. Note that expression 40 could
have also been found by noting that the eigenvalues of M{*A are
(wﬁPA 2and, thus 3, wfﬁPA = tr{ (M{*P%)/2} However, work-
ing with Q' will be useful for the other variants. Also, a
comparison of eqs 28 and 38 provides us with a decomposi-
tion of the correlation energy into kinetic and potential contri-
butions, Ef:lRPA'I = Tf}RPA'I + UfRPA’I. Indeed, the potential cor-
relation energy is just the value of the integrandin eq 28 at . = 1, i.e,,

U = [ — 1K) (41)

and thus, by subtraction, according to eq 38, the kinetic correlation
energy is

Lo @i S @)

In the limit of a system with orbitals that are all degenerate, i.e.,
with static correlation only, then € = 0 and the kinetic correlation
energy vanishes as it should. This is in agreement with the
statement that dRPA-I correctl;l describes left—right static
correlation in bond dissociations.”*"

4.2. RPAx-ll Correlation Energy. We now derive several
equivalent RPAx-II correlation energy expressions by proceeding
in an analogous way to the case of dRPA-I.

4.2.1. Adiabatic-Connection Formula. The RPAx-II correla-
tion energy of eq 9 can be written in terms of the eigenvectors of
the RPAx polarization propagator

1 1
E?PAX-II — Z/ daz TI‘{WCa,fn(CT
0 n

a-—n WCO: *”Cg,fn}
(43)

or, using the block structure of W [eq 16]:

1 1
E}:{PAX-II — Z/ da tr{(YaYg + XaXZ - I)Al
0

+ (Y XL + X, YD)B} (44)

Using the matrix Q ,, which in the case of RPAx is given by

QR = (& + aA’ — aB)A(MP) (¢ + aA’ — aB)'/?
(43)
with
MY — (g + aA’ — aB)*(e + aA’ + aB)
s (46)
x (¢ + aA’ — aB)
and the inverse Q'
RPAx\—1 __ r_ —1/2 (x fRPAx\1/2
( a ) - (8 + aA CCB) (Ma ) (47)

x (& + aA' — aB) V2

we arrive at the adiabatic-connection formula for the RPAx-II
correlation energy

1! 1
B =2 / da tr{EQEPAX(A’ + B)
0

1 -
F3 @) o) -} (45
Since Q, = I + P, if P, is small, we can consider the
approximation Q;l =1+ Pa)_1 ~1— P, =21 — Q, which
leads to the following approximation for the RPAx-II correlation
energy:

RPAx-IIa
E c

1 ! 1 RPAx /
= Z da tr i a (A + B)
0

+%(ZI — QM) (A’ —B) —A’}

ol ) (49)

So, we have the interesting result that this approximate correla-
tion energy expression is analogous to the dRPA-I correlation
energy expression of eq 28, the only differences being that matrix
Q is now obtained from the RPAx response equation and that it
is contracted with the antisymmetrized two-electron integrals B,
along with the corresponding change of the prefactor from 1/2
to 1/4.

4.2.2. Plasmon Formula. As in the case of dRPA-I, the
plasmon formula for the RPAx-II correlation energy is found
by taking profit of the cyclic invariance of the trace to rewrite
eq 43 as

w_1f
E?PAX 1T — Z/O da ZTr{nginWCa’,n - Cg] ,HWCO,fn}

(50)

and then using dwhy>/da = C_,(dAS"™/da)C,, ., =
CE,_,, WC,,_, to integrate analytically over a

1
ERPARTL ZZ(wIIULAX — wo,n — Cg,_, WCo_y)
n
1
ST o
n

where ¥, w P =y, CFOF,_,,AE{PAKCO’_,, =Y, Wo,+ CFOF’_,,W(CO,_,,
is the sum of the (positive) excitation energies in the Tamm-
Dancoff approximation with exchange (TDAx) or configuration
interaction singles (CIS). The sum of the TDAx excitation
energies can also be expressed as ¥, w, > = tr{¢ + A'}. This
plasmon formula was first presented by McLachlan and Ball.*’
The presence of a factor of 1/4 in eq 51 and not a factor of 1/2
like in eq 32 has been debated in the literature.”> The present
exposition makes it clear that this factor of 1/4 is due to the use of
the antisymmetrized two-electron integrals W.

4.2.3. Alternative Plasmon Formula. As in the case of dRPA-],
the alternative plasmon formula is found by rewriting eq 51 as

ot = Ly A, o

1,—n

— AT"™Co-Cqy _,}

n

(52)
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and inserting the diagonal blocks of AR which are £ + A’ and
the off-diagonal blocks which are B:

1 (1
ERPACTL — 4tr{2 Q™ (e + A + B)

1 _
+7 Q™) 1(e+A’—B)—(s+A’)} (53)
Using the expressions of Q™ [eq 45], Q! [eq 47],
and M ** [eq 46] and the cyclic invariance of the trace, we arrive
at the alternative plasmon formula for the RPAx-II correlation
energy:

BRI Ze{ (M) — (e + A) (54)

Finally, just as for dRPA-I, a comparison of eq 48 and eq 53
provides us with a decomposition of the correlation energy into
the potential energy contribution to the correlation energy

1 (1
Ukt = Ztr{i Q"™ (A" + B)

LRIy (59

and the kinetic correlation energy

TRPACT %tr{[Qllu)Ax + (QFA)™! —21)e} (56)

The RPAx-II kinetic correlation energy vanishes in the limit
where € = 0 as for dRPA-L

4.3. dRPA-II Correlation Energy. The dRPA-II correlation
energy of eq 7 writes in terms of the eigenvectors of the dRPA
polarization propagator

1
E(CiRPA»H = i/0 da Z Tr{WCa'_,,CZﬁn — WCO,_,,COT’,W}

n

(87)
leading to
1! 1
paReAIL — — / da tr{—QiRPA(A’ + B)
2/ 2
1 _
Q)W ) - (58

Equation 58 is similar to eq 48, with Q%" * instead of Q' ** and
a factor 1/2 instead of 1/4.

The approximation Q' & 2I — Q,, leads to the following
approximate dRPA-II correlation energy:

1 1
prove =2 [ da (@~ 1B (59)
0

which is in close analogy (but usually not equal) to the SOSEX
correlation energy in the ring-CCD formulation. The analytic
relationship of this “adiabatic-connection SOSEX” (AC-SOSEX)
variant with the original SOSEX has been discussed in detail in
ref 34.

4.4. RPAXx-1 Correlation Energy. Finally, the RPAx-I correla-
tion energy of eq 8 writes in terms of the eigenvectors of the

RPAx polarization propagator

11
E}cszx—I - i/ da z Tr{V(Cay,,,CEﬁn — VCO,,HCOTy,n}
0 n
(60)

leading to

1/t

gt = [ da((Qi - 1K) (61)
0

which has the same form as eq 28 but with the RPAx matrix QRPAx,

This last variant has been discussed in detail and applied in the

context of range-separated density-functional theory.'>>"**

5. CORRELATION ENERGY EXPRESSIONS IN A SPATIAL-
ORBITAL BASIS FOR CLOSED-SHELL SYSTEMS

For spin-restricted closed-shell calculations, all of the matrices
in the spin—orbital excitation basis occurring in the RPA
equations have the following spin block structure:

Cir 1t Crpoyy O 0
C C 0 0
c_ ot Gy (62)
0 0 Ciyoty Gyt
0 0 Cit oty Gt ot

This structure is a consequence of the fact that the two-electron
integrals can be nonzero only for pairs of identical spins. The
orthogonal transformation

11 00
1|1 -1 00

V="7lo 0o 11 (63)
00 1 -1

leads to a spin-adapted matrix C =U"CU, which in the case of the
matrices involved in RPA simplifies into a block-diagonal form
with a spin-singlet excitation block 'C and three spin-triplet
excitation blocks *°C, *'C, and *~'C

Ic o 0 0
0o 33C o 0
0 0 31C 0
0 o0 0 s=1c

o
I

with the matrix elements (i;j and a,b referring now to occupied
and virtual spatial orbitals, respectively)

lcia,jh = %(Cwﬁm + Citatjlor + Citaljtet
+ Citabjid) (65a)
0C, ., = l(CiTaTjThT — Citatjiot — Cilaljtot
)] 2
+ Cilaljint) (65b)
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1
3, +1 _
Cip = 5(Citatiter £ Citatjint £ Citatjtul

+Ciyatjiut) (65c¢)

Let us start with dRPA. Spin-adaptation of the nonantisym-
metrized integrals matrix K gives only a contribution from the
singlet excitations

IK 0 0 0

B 0 00 0

K=10 00 o0 (66)
0 00 0

where leﬂ, = 2(ablij). By eq 27 it leads to the following
spin-adaptation for the matrix Mo

MEPA 0 0 0

- 0 g 0 0
dRPA __

0 0 0 &

where "M = £2(e + 20'K)e'/?, and € refers now to the
matrix of one—partlcle excitation energies indexed in spatial
orbitals. Berq 26, it gives the following spin-adaptation for the
matrix Qa

'Qi™ 0 0 0

- 0 I 00
dRPA

0 0 0 I

where 'QIPA = ¢

Let us now consider RPAx. Spin-adaptation of the antisym-
metrized integrals matrices A’ and B gives contributions from
both singlet and triplet excitations:

I/Z(IMgRPA)—l/Zsl/Z.

A" 0 0

(=]

B 0o 0 o
0 B 0 0
0 0 °B 0
0 0 0 B

«-}}
I
—~
()Y
\O
=

where A iajb — 2<lb|a]> - <lb|]ll>, 3A/m,jb = <lb|]ll>, lBia,jb =
2(ablijy — (ablji), and Bm,b =— (ablji). Notice the minus sign
for the last triplet block in the B matrix, which makes spin-
adaptation less trivial for RPAx. By eq 46, it leads to the following

spin-adaptation for the matrix My *:

IMRPAX 0 0 0
3 RPAx
SR 0 MR 0 0
- 3n g RPAx
@ 0 0 MR 0
0 0 0 SNRPAX

with the expected spin-adapted blocks

IMRPA — (¢ 4 a'A’ — a'B)*(e + a'A’ + a'B)
x (¢ + a'A' — a'B)"/?
and
SMEY = (& + o’A — @*B) (e + A + «’B)
X (& + a’A' — oz3B)1/2

along with the less expected last triplet block with opposite signs
for °B

INRPAY — (& + oA’ + ’B)/*(e + o*A’ — o’B)
x (€ + *A' + *B)"/?

B};Uig( 45, it gives the following spin-adaptation for the matrix

a

1Q RPAx 0 0 0
3y RPAx
—— 0 QR 0 0
o 0 0 3QRPAx 0
0 0 0 Q™)
(71)
with the spin- adapted blocks 'QYA* = (8 +a'A —a B)l/ 2

lMRPAx) 1/2 d QE;PAX (£+a3A/

(e + a'A’ — a'B)"?
3B) /2 The last triplet block

3B)1/2(3MRPAx) 1/2(£+ A —
turns out to be the inverse (* RPAX) =(e+a’A + 0(3B)1/2
CCNEPAYT2(g 4+ @A + a®B)"/? since according to eqs 25 and
35 one goes from Q4 to Q. by changing the sign of Y, which is
equivalent to changing the sign of B.

The spin-adapted correlation energy expressions can be easily
obtained by usmg the invariance of the trace under the trans-
formation C — U"CU. The spin-adapted adiabatic-connection
formula for the dRPA-I correlation energy is thus

1 1
g =2 [ o - ') (72)
0

i.e., only singlet excitations contribute. Similarly, the correspond-
ing plasmon formula contains only singlet excitation energies

T
ESRPAI — EZ(lwiiiPA _ 1a)STDA) (73)

The triplet term vanishes since both *w{x™ and 0§ “* are

equal to the one-particle excitation energles £, — & Flnally, the
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spin-adapted alternative plasmon formula is

1
E?RPA—I _ Etr{(ll\/[cliRPA)l/Z o (8 + 1K)} (74)

Both singlet and triplet excitations contribute the RPAx-II
correlation energy. The spin-adapted adiabatic-connection for-
mula for RPAx-II is

1! 1
B = 2 / da tr{2 (‘Qg™) (A" +'B)
0

1 _
+ E(IQEPAX) l(lA/_lB) _ lA/

TR R

The last triplet term gives a contribution identical to the other
two triplet terms because the expression is invariant under the
replacements Q , — Q' and B — —B. The spin-adaptation of
the approximate RPAx-II correlation energy of eq 49 is

1 1
g — [ dan(lQ™ - 1's)
0

1
+ %/ da tr{ Q™™ —1°B}
0

-3 dantiCQr -y (6)

where now the last triplet term is not identical to the other
two triplet terms. If we make the additional approximation
3RPAXY—1 3 RPAx . .
CQe ™) = 2l — °Qy Y, we arrive at the following
expression:

11
Ei{pr»ub _ Z/ da tr{[lQipr _I]lB}

0

- /0 da te{PQ™ 1B} (77)

which could also have been obtained by starting from the spin-
adag)ted formula of eq 75 and making the approximation
Q. ~ 2I — Qg in both the singlet and the triplet terms.
The RPAx-II plasmon formula decomposes into sums over
singlet and triplet excitation energies:

(0]

ERPAT _ ‘_1‘2(1 lll‘lzle 1 IDAx)

3
+ 3TCaltn ST 79)

and similarly for the alternative plasmon formula

1
E?PAX—H _ Ztr{(1M111PAx)1/2 — (e 41 A’)}

+ %tr{ M2 (¢ 43 AT)) (79)

The last triplet term is identical to the other two because N}~
and >M;"** have the same eigenvalues and thus tr{ (?N}"** 22
e M)

The spin-adapted dRPA-II correlation energy involves only
singlet excitations:

o 1/[! 1
EfRPAII _ E/0 da tr{i (lQiRPA)(IA/ + IB)

1 _
+E<1Q2RPA) I(IA/_IB) _ IAI} (80)
since for the triplet blocks *Q%"* = I and the contribution vanishes.
Likewise, the spin-adaptation of the approximate dRPA-II correla-
tion energy of eq 59 is simply

1
pro 2 dawl Qi —1'B) (31)

Finally, the spin-adapted RPAx-I correlation energy expres-

sion is
1 1
ERPAT S / da te{['Q —1'K} (82)
0

where only singlet excitations contribute since the triplet blocks
of the matrix K are zero.

6. NUMERICAL ILLUSTRATIONS

The above-described spin-adapted RPA correlation energy
variants based on the adiabatic-connection formula have been
implemented in the development version of the MOLPRO
quantum chemistry package.”® The numerical equality of the
alternative but equivalent expressions has been carefully tested
and has been confirmed within the usual accuracy of quantum
chemical calculations. In each case, we start by doing a usual
Kohn—Sham (KS) calculation with some approximate density
functional and evaluate the RPA correlation energy with the KS
orbitals. The total RPA energy is calculated as

ERPA = Epxx + ERPA (83)

tot

where Egpxy is the exact exchange (EXX) energy expression
evaluated with the same KS orbitals. This exchange energy is
Hartree—Fock type, and it is not to be confused with the
optimized effective potential (OEP) type local exchange, often
denoted by the same acronym. For comparison, we also perform
range-separated calculations, in which we start from a range-
separated hybrid (RSH)," using the short-range PBE exchange-
correlation functional of ref 54, and add the long-range RPA
correlation energy evaluated with RSH orbitals

Ei{OStHJrRPA = Epsy + Elcr,RPA (84)

The long-range RPA correlation energy EZRPA i calculated by
replacing the Coulombic two-electron integrals by the two-
electron integrals with the long-range interaction erf(ur)/r, just
as in refs 15, 31, and 33. We use a fixed value of the range-
separation parameter of ¢ = 0.5 bohr™ . This value corresponds
to a reasonable global compromise, as was shown previously*” in
a study of thermochemical properties, and as was confirmed later
by using alternative criteria leading to similar estimates of the
u parameter (see, e.g, ref $6). In all cases, the adiabatic-
connection integration is performed by an eight-point Gauss—
Legendre quadrature.
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Figure 1. Ratios between various RPA correlation energy variants and the FCI-quality correlation energy as estimated by Davidson and co-workers,
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with and without range separation. All of the correlation energies have been extrapolated to the CBS limit. The RPA correlation energies E* (RPA) are
redefined here as the difference between the total RPA energies and the regular HF energies.

The RPA correlation energies are extrapolated to the complete
basis set (CBS) limit by the usual 1/X> formula®” for a series of
Dunning basis sets. In contrast to the usual two-point extrapola-
tion procedure,”®*” all of the available correlation energies calcu-
lated by at least a triple- basis set are used. The single-determinant
reference energies are evaluated with a large basis set so that they
can be considered converged.

6.1. Atomic Correlation Energies. As a first test, we have
calculated correlation energies for a series of atoms and atomic
cations and compared them with full configuration interaction
(FCI) quality correlation energies as estimated by Davidson and
co-workers.”®" In order to make a direct comparison with the
FCI-quality correlation energies which are defined with respect
to the HF energies, we redefine RPA correlation energies as the
difference between the total RPA energies and the regular HF
energies. The single-determinant reference energies are calcu-
lated with a large even-tempered basis set. With this basis set, the
HF energies agree within all significant digits with Davidson’s
reference data. Core excitations are included in the calculation of
the RPA correlation energies and are extrapolated from the series
of aug-cc-pCVXZ basis sets for He up to X = 6; for B, Al", Ne,
and Ar, up to X = S; and for Li", Na”, Be, and Mg, up to X = Q.

Figure la—c show the ratios of the correlation energies for
each full-range RPA variant (dRPA-I, dRPA-II, dRPA-Ila, RPAx-
I, RPAx-II) to the FCI-quality correlation energies, using orbitals

obtained with the local-density approximation (LDA),%* the
Perdew—Burke—Ernzerhof (PBE),* and the Zhao—Morrison—
Parr (ZMP)** exchange-correlation potentials. The ZMP potentials
have been constructed from high-quality ab initio wave functions
(Brueckner coupled cluster doubles).%* It appears that the correla-
tion energies are only marginally dependent on the quality of the KS
orbitals, at least for this series of atomic systems. The full-range
RPAx-I and RPAx-II variants suffer from instabilities in the RPAx
response equation for the Be, BY, Mg, and Al" systems, and
additionally Ar in the case of RPAx-II with the ZMP orbitals. In
fact, the strongly overestimated RPAx-II correlation energies of
Ar obtained with the LDA and PBE orbitals indicate a situation
close to instability. More generally, the presence of near instabil-
ities may be considered as being at the origin of the relatively
strong overestimation (usually more than 150%) of the correla-
tion energy in RPAx-IL. In view of the poor performance of
RPAx-II, we did not test the approximate versions of eqs 76 and
77. The RPAx-I variant only involves singlet excitations and thus
is not subject to triplet instabilities. It gives quite reasonable
correlation energies (maximum 25% of overestimation) for He,
Li", Ne, Na*, and even Ar. However, RPAx-1 is subject to singlet
instabilities, which appear for the rest of the systems. The dRPA-I
variant is free of any instability problems, since the dRPA
response matrix is positive definite by construction, but has
nevertheless a tendency for overestimating correlation energies
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Figure 2. Errors in the equilibrium bond lengths and harmonic vibrational frequencies for simple diatomic molecules, calculated with the full-range and
range-separated RPA variants and compared to experimental reference values. All of the correlation energies have been extrapolated to the CBS limit.
The experimental reference values are (in bohr and cm™') H,, R, =1.40112, o, = 4401.21; HF, R, = 1.73250, . = 4138.32; N, R, = 2.07431,

. = 2358.57.%

by a factor of 1.5 to 2. This systematic error can be easily
corrected by including exchange in the energy expression. In fact,
the dRPA-II variant and especially its approximate form dRPA-
Ila (AC-SOSEX) lead to a very good reproduction of the
reference correlation energies. Similar effects could be observed
recently in the direct ring-CCD (dRPA-I) and SOSEX calcula-
tions of correlation energies of Klopper et al,* performed with a
much smaller basis set.

As mentioned previously, dRPA-Ila (or AC-SOSEX) and the
ring-CCD-based SOSEX correlation energies are expected to be
quite close to each other. Numerical results (not shown in the
ﬁgures) confirm this expectation. For two-electron systems
(He, Li"), the dRPA-Ila and SOSEX correlation energies are
identical, while for the rest of the systems, the relative difference
is less than 0.15%. The largest absolute difference, 0.82 mHar-
tree, has been found in full-range calculations on the Ar atom. It
is interesting to note that the ring-CCD-based SOSEX correla-
tion energies are always deeper than the dRPA-IIa values. This
fact cannot be interpreted simply by the comparison of the third
order energy expressions, reported in ref 34.

Figure 1d shows the same total correlation energies obtained
with range separation, ie., the sum of the short-range PBE
correlation energy and the long-range RPA correlation energy.
The situation is quite different from the full-range RPA calcula-
tions. First, we do not encounter any instability problems any-
more. Second, all of the range-separated RPA variants give
essentially identical correlation energies. Third, the correlation

energies are systematically underestimated, for most of the
systems with less than 20% of error, but with the notable
exceptions of Li*, Be, and B*, for which the correlation energies
are underestimated by as much as 50%. These findings may be
due to the fact that the systems considered here have very
compact densities, and for the value of the range separation used
here, 1t = 0.5 bohr ', the major part of correlation is assigned to
the short-range density functional rather than to the long-range
RPA calculation. Improvement over these results would require
either increasing the value of x or using a more accurate short-
range density-functional approximation.

6.2.Bond Lengths and Harmonic Vibrational Frequencies.
Figure 2 reports equilibrium bond lengths and harmonic vibra-
tional frequencies calculated with the full-range and range-
separated RPA variants for three simple diatomic molecules,
representing an apolar single bond (H,), a strongly polar single
bond (HF), and an apolar multiple bond (N,). The full-range
RPA calculations are done with PBE orbitals, while the range-
separated RPA calculations are done with the short-range PBE
density functional. All RPA calculations are without core excita-
tions and extrapolated to the CBS limit with the series of basis
sets aug-cc-pVXZ with X = T, Q, and S. The single-determinant
reference energies are calculated with the aug-cc-pVSZ basis set.
Due to instabilities in the full-range RPAx response equation,
only the full-range dRPA values can be calculated, while no
instabilities are found for the range-separated RPAx calculations.
Without range separation, big differences are found between the

3125 dx.doi.org/10.1021/ct200501r |J. Chem. Theory Comput. 2011,7,3116-3130



Journal of Chemical Theory and Computation

60 "‘-., Accurate 1
¥ -=—t-== EXX(PBE)
—%— PBE + dRPA-|
40 | N e % PBE + dRPA-Il |
4 PBE + dRPA-lla
~-©-- PBE + RPAX-|
20 | . PBE + RPAX-II
©
g | b\ .
£ AN T
& ot
e
=
- N
40
-60
5 6 7 8 9 10 11
R [bohr]
(a) He without range separation
Accurate
200 | \ --—+--- EXX(PBE)
% —%— PBE + dRPAI
v e % PBE + dRPA-II
5\ e PBE + dRPA-lla
100 | S, o-- PBE+RPAX-I |
k ~f-- PBE + RPAX-Il
oy
o
| Ne e
& 0Ff
5 ___
U;IE
-100 |
-200 |
5 6 7 8 9 10 11 12 13
R [bohr]
(c) Ne without range separation
600 — : ; . . .
Accurate
L -=—+--- EXX(PBE)
400 t y —— PBE+dRPA-l |
| - PBE + dRPA-II
<t PBE + dRPA-lla
| ~-©-- PBE + RPAx-|
200 | X e - PBE + RPAx-II
- ,
Q
s
< 0r
e
k=
L
-200 f
-400 |
-600 -
6 7 8 9 10 11 12 13 14
R [bohr]

(e) Ar without range separation

Ejnt [uhartree]

Ejt [uhartree]

Ejt [uhartree]

a0 | Accurate 1
—-t--- RSH
—>— RSH + dRPA-I
R | T % RSH + dRPA-Il |
et RSH + dRPA-lla
<&~ RSH + RPAX-I
e RSH + RPAX-1I
10
0 -
-10 t
-20
-30
5 6 7 8 9 10 11
R [bohr]
(b) He with range separation
Accurate
100 | --—+--- RSH i
—>— RSH + dRPA-I
----- - RSH + dRPA-II
----------- RSH + dRPA-lla
RSH + RPAXx-I
50
0 L
-50
-100
5 6 7 8 9 10 11 12 13
R [bohr]
(d) Ne with range separation
600 : ' ' ‘ ' '
Accurate
~=—t--- RSH
400 —>— RSH + dRPA-| 1
----- *---- RSH + dRPA-II
...... £ RSH + dRPA-lla
~©-- RSH + RPAXx-I
20 FH W\ . B RSH + RPAx-II
0 -
-200
-400
-600 —
6 7 8 9 10 11 12 13 14
R [bohr]

(f) Ar with range separation

Figure 3. Interaction energy curves of He,, Ne,, and Ar,, calculated with the full-range and range-separated RPA variants. All of the correlation energies

have been extrapolated to the CBS limit.
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different methods. The dRPA-I and dRPA-II variants perform
quite well and represent an important improvement over both
HF and KS PBE. The approximate variant dRPA-Ila is significa-
tively less accurate than dRPA-II. With range separation, the
methods give much closer results to one another. The best range-
separated variant for this small set of bond lengths and harmonic
frequencies appears to be RPAx-II, especially in the case of the N,
molecule.

6.3. London Dispersion Interactions. Figure 3 shows the
interaction energy curves of the three rare-gas dimers He,, Ne,,
and Ar,, calculated with the full-range and range-separated RPA
variants. The full-range RPA calculations are done with PBE
orbitals, while the range-separated RPA calculations are done
with the short-range PBE density functional. All RPA calculations
are without core excitations and extrapolated to the CBS limit
with the series of basis sets aug-cc-pVXZ with X =T, Q, 5, and 6.
The single-determinant reference energies are obtained with the
aug-cc-pV6Z basis set. We note that when using LDA orbitals
(not shown), instabilities are found for Ne, and Ar, in a wide
range of interatomic distances. In contrast, no instabilities are
encountered in the case of PBE, neither with nor without range
separation.

The continuous curves without points represent, on the one
hand, the accurate reference curves according to the analytical
potential energy expression of Tang and Toennies®” and, on
the other hand, the repulsive (exponentially decaying) compo-
nent of the same potential. These latter curves serve as useful
guides to estimate the accuracy of the single-determinant
reference energies, i.e, EXX energies with PBE orbitals or
RSH energies. It is quite clear that the quality of the results
depends strongly on the quality of the repulsive curve. The
poorest interaction energy curves are obtained for the He,
dimer without range separation, for which the EXX energy is
too strongly repulsive. The prerequisite of the good perfor-
mance of the range-separated calculations is obviously the
excellent accuracy of the RSH energy, which, for He,, is in
almost perfect agreement with the reference repulsive curve.

The full-range RPAx-II variant overestimates systematically
the binding energy by a factor of 3 or more. The dRPA-I
method largely underestimates the interaction energies, and for
He,, it does not provide any minimum at all, although the non-
binding character is mostly due to the bad single-determinant
energy. The dRPA-II variant systematically gives more binding
than dRPA-I but also tends to underestimate the interaction
energies. The approximate dRPA-Ila variant gives results that
are always very close to those of dRPA-L This is not surprising
since the dRPA-I and the dRPA-IIa methods differ only by the
presence of exponentially decaying exchange integrals in the
interaction matrix which become quite rapidly negligible to the
interaction energy in van der Waals complexes. This behavior is
analogous to that of the SOSEX method, which gives dispersion
interaction energies also very close to those of dRPA-L*® The
best full-range method for these rare gas dimers is RPAx-I,
which is in quite good agreement with the reference curves for
Ne, and Ar,.

With range separation, all of the RPA variants give much closer
interaction energy curves to each other, but the same trends
are found. Range-separated dRPA-I, dRPA-II, and dRPA-IIa
methods systematically underestimate interaction energies.
The range-separated RPAx-II significantly overbinds Ar,, and
the range-separated RPAx-I globally gives the most accurate
interaction energies.

7. CONCLUSIONS

We have analyzed several RPA correlation energy variants
based on the adiabatic-connection formula: dRPA-I, dRPA-II,
RPAx-1, and RPAx-II. These variants have the generic form of an
interaction-strength-averaged two-particle density matrix con-
tracted with two-electron integrals. They differ in the way the
exchange interactions are treated. The dRPA-I variant is just the
usual RPA of the density-functional/material-science community
and neglects all exchange interactions. The dRPA-II variant uses
a density matrix without exchange but contracted with antisym-
metrized two-electron integrals. It is original to this work,
although it resembles the SOSEX method,” especially in its
approximate form named dRPA-IIa. The RPAx-I uses a density
matrix with exchange but contracted with nonantisymmetrized
two-electron integrals. It has previously been discussed in the
context of range-separated density-functional theory.'>*> The
RPAx-II variant uses a density matrix with exchange and con-
tracted with antisymmetrized two-electron integrals. The RPAx-
I method itself is obviously not new,* but we have derived
several new expressions for it. Contracting the density matrix
with either nonantisymmetrized or antisymmetrized two-electron
integrals is not equivalent because of the breaking of the anti-
symmetry of the density matrix in RPA. For the dRPA-I and
RPAx-II variants, we have made the connection with the plasmon
formulation and clarify the origin of the factor of 1/4 in the
plasmon formula for RPAx-II instead of the factor of 1/2 for
dRPA-I. We have carefully studied the second-order limit in the
electron—electron interaction and shown that all of the correla-
tion energy variants except for dRPA-I correctly reduce to the
MP2 correlation energy (see the Appendix). Finally, we have
derived the spin-adapted forms of all of these methods for closed-
shell systems and implemented and tested them with and without
range separation of the electron—electron interaction.

The numerical examples on atomic and molecular systems
show that the RPAx variants without range separation frequently
suffer from instabilities in the RPAx response equation, which
make it impossible to extract a meaningful correlation energy in
these cases. However, no instabilities are encountered with range
separation, and the RPAx variants can be thus safely applied. The
tests performed do not allow us to identify an RPA variant which
would be uniformly better than the others. Without range-
separation, dRPA-II performs well for atomic correlation en-
ergies and equilibrium molecular properties but significantly
underestimates London dispersion interaction energies for
which RPAx-I is more accurate. With range separation, all of
the RPA variants tend to give more accurate results, and they also
become much more similar to each other. Range-separated
RPAx-II appears as the best variant for equilibrium molecular
properties, and range-separated RPAx-I is the best variant for
dispersion interaction energies.

We hope that the overview of the RPA correlation energy
variants provided in this work will be useful for a better under-
standing of RPA methods and can serve as a starting point for the
design of improved approximations.

B APPENDIX

Appendix. Second-Order Approximations to the RPA
Correlation Energy Expressions

In this appendix, we explicitly derive the approximations at
second order in the electron—electron interaction of the RPA
correlation energy variants.
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We will deal with the more general RPAx response equation
and obtain dRPA as a special case. We thus start from the
response equation:

(Ao + aW)Cqp = g uACq,, (83)
with
A (s 0>,W: <A’ B/))A: (I 0 )
0 ¢ B A 0 I
(86)

where ¢ is a diagonal matrix composed of orbital energy dif-
ferences ¢;, = €, — &, and A’ and B are matrices composed of the
the antisymmetrized two-electron integrals A';, j, = (ib||aj) and
Biaji = {ab||ij), and I is the identity matrix. We assume that all
occupied (denoted by i and j) and all virtual (a and b) orbitals are
real. In the following, the index pairs ia and jb will be replaced
with simple indices m and n. Note that the matrices are
symmetric: A',,, = A’,,, and B,, = B,,,. The solutions of
eq 85 come in pairs; i.e., if Cy, , = (X¢ 1w¥a,) is an eigenvector with
a positive eigenvalue Wapn > 0, then (Cal_,, = (ya,n,xa,n) is an
eigenvector with the negative eigenvalue w,,_, = —®q,,. In the
following, we will use positive integer indices to denote solutions
which connect to positive eigenvalues in the limit of a vanishing
coupling parameter @, i.e., to Wy, > 0. Note that we also suppose
a nonvanishing HOMO—-LUMO gap.

The positive energy solutions of eq 85 for a = 0 are trivially
given by wg , = &,, %o, = 1,, and yg , = 0, where 1, denotes the nth
unit vector, i.e., a vector with vanishing components except for
the nth component which is equal to 1. We now wish to find the
first-order correction C'V to the eigenvector employing the
power-series Ansatz

Won = 0o, + aoV + ... (87)

g

Con = Co,n + aCEll) + ... (88)

Plugging this into eq 85, one sees that the first-order corrections
are obtained from solving

A()C(l> + W(Co,, = Wy, ,,AC(I) + w(1>AC0,, (89)

Multlphcatlon of this equatlon from the left with (CO » and using
CO nAOC = W, n(CO AC, D along with the normalization con-
dition CO ACq, = 1 gives the first-order correction to the
eigenvalue

o\l = Cy WG, = A, (90)

Multlplyln% eq 89 from the left with Cy,, for m # n, using
Co, mAGCSE T WACSY, and employing the orthogo-

nalization condltlon CO,,,,ACO,n =0 leads to

CI WCy,
cr,ACY = —760;”“_&)‘:; (91)

provided that the zeroth-order eigenvalues are non-degenerate,
ie, that no two occupied—virtual orbital energy differences
match. Repeating the same operations for (CO _m One arrives at

CT _ WG,
Acﬁl) 20 —m T O0n (92)
w(),m + wO,n

CT

0, —m

where wq,_,, = —®q,, has been used. Using the resolution of
1dent1ty, 1=1X,C,, mC0m+ Co, mCO _,. the orthogonahty of
C(l to the zeroth-order eigenvector, ie., C AC D 0,
and A? = I, we find the expansion of the first- order correction
to the positive-energy eigenvectors

c? wWC CI_ WG,

0,—m d
o OEACy 4 Y 2 AG, L,
m#n wO,m wO n m wO,m + wO,n

(93)

From eq 93, it follows that the first-order corrections read more
explicitly

A/
x = — nggm%slm (94a)
M= - 94b
yn ng + & m ( )

The first-order corrections to the negatlve energy solutions are
simply a)(_) —a),(f), x(_,), = and y

We can obtain the first- order expansion of the matrix Q5
T
QEPAX = Z(xa,n + Ya,n)(xa,n + Ya,n)
n

=Y L1} + a1 + lnx,(f)T + yW1T

n

+ 1y + o(a?) (95)

where the sum over n refers to positive-energy eigenvectors only.
The first term is simply the identity matrix

Y117 =1 (96)

Using eq 94a, one can show that the term depending on xM

vanishes:

—-3y

ST+ L)

nm#n m — €n
—ZZ 10
nm;ﬁn m — €n

(97)

This is seen by swapping n and m in the last term and noting that
A/ (€, — €,) is antisymmetric when exchan §1ng m and n.
Finally, using eq 94b, the term dependlng on y,, gives

e e

W1T 4 1 ¢(D7
;Yn n ﬂYn em _|_ gn

STl = o8,

n m m
(98)
where B is the matrix with elements B,,,, = By, ./ (&, + €,) or,
more explicitly, Bigjp = Bigjn/ (e, +€&,— & — 8]-). Therefore, we

have

QR = 1—20B + 0(c?) (99)
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and, similarly, the first-order expansion of the inverse matrix
(™)™ = 2 = Yan) R = Yauu) " yields

(QR™) ™ — 1 + 2aB + 0(a?) (100)

a

Equations 99 and 100 show that the approximation Q, +

. A 21, which leads to the definitions of E& *™'* [eq 49] and
EZRPATR [eq 59], is correct up to first order in .

All of the above considerations remain valid for the dRPA case,
except for the replacements A’ — K and B — K, with the obvious
results

QA = 120K + O(a?) (101)
and
(QEPMY™ =1 4 2aK + O(a?) (102)

where the matrix elements of K are given by K,,,,, = K./ (€, + €,)
or, more explicitly, K,y = Kigjo/ (€4 + &, — & — &)).

We can give now the second-order limits of the RPA correla-
tion energy variants. Using eq 101, we find the second-order limit

of the dRPA correlation energy variant of eq 28:

1
BN / dote{[-20RK} = —JeRK}  (109)
0

which is not the normal MP2 correlation energy but a MP2-like
correlation energy without exchange, also called direct MP2 or
JMP2.* In a similar way, egs 101 and 100 give the second-order
limit of the RPAx-II correlation energy variant of eq 48, which is
the same for its approximation of eq 49:

1/t _ 1
EE{PA}('H%ECRPAX»HQ% Z/ da tr{[—20B|B} = —Ztr{BB}
0

(104)

which is exactly the MP2 correlation energy expression (except
for the possible replacement of Hartree—Fock orbitals and
orbital energies with corresponding Kohn—Sham quantities).
The second-order limit of the JRPA-II correlation energy variant
of eq 58 and its approximation of eq 59 are found with eqs 101
and 102:

1! _ 1,
R / dorte{[-2aR]B} = — (KB}
0

(105)

Using the antisymmetry of B and observing the prefactor of 1/2,
it can easily be seen that this is another way to write the usual
MP2 correlation energy expression. Finally, the RPAx-I correla-
tion energy variant of eq 61 has the following second-order limit:

1 /! 1
E?PAXIzE/ da tr{[—2aBJK} = — > tr{BK} (106)
0

which again exactly corresponds to the usual MP2 correlation
energy expression.

Let us now consider the case of a closed-shell system. In this
case, there is (at least) a 4-fold degeneracy in the & block of A,
since €4 = € and &,t = &,. As a consequence, the condition of
nondegeneracy of zeroth-order excitation energies wy, = &,
leading to eqs 91 and 94a is violated. Even if the final results for
the second-order correlation energies do not contain differences
of excitation energies anymore, a different derivation is needed.
This may be achieved by first spin-adapting the RPA response

equation (for the details, see, e.g., ref 33) and only subsequently
making the perturbation expansion on the spin-adapted energy
expressions of section 5. Assuming the absence of further
degeneracies between orbital energy differences (zeroth-order
excitation energies), one obtains formally identical expansions

for the singlet and triplet blocks. For example, the spin-adapted
matrices IQa = Zn( Xgn T IY(x,n)(lxa,n + IYLZ,n)T and 3Qa =
%o+ Vo) Cxa + *yan) T where ("o 'Yor,n) and (X *Yoon)
are the singlet and triplet eigenvectors, and the corresponding
inverse matrices ('Q,,) " and (°Q,,) " have the following expan-

sions in the case of RPAx:

(PQM)F = 1F 20"B + 0(a?) (107)
with 'B,,,,, = 'B,, ./ (&, + €,) and °B,,, = °B,,, ./ (€,, + €,). Using
these results, one can easily check that all of the spin-adapted
correlation expressions of section S correctly reduce to MP2 at
second order, except for the dRPA-I variant, which reduces to
direct MP2.
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