labels
This commit is contained in:
parent
fbea44ea73
commit
c3a1ae1d7b
15
BSE-PES.tex
15
BSE-PES.tex
@ -313,10 +313,11 @@ With the Mulliken notation for the bare two-electron integrals
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
|
the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\label{eq:LR_BSE}
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
\label{eq:LR_BSE-A}
|
||||||
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \W{ij,ab}{\IS} ],
|
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \W{ij,ab}{\IS} ],
|
||||||
\\
|
\\
|
||||||
|
\label{eq:LR_BSE-B}
|
||||||
\BBSE{ia,jb}{\IS} & = \lambda \qty[ 2 \ERI{ia}{bj} - \W{ib,aj}{\IS} ],
|
\BBSE{ia,jb}{\IS} & = \lambda \qty[ 2 \ERI{ia}{bj} - \W{ib,aj}{\IS} ],
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
@ -345,10 +346,11 @@ where the spectral weights at coupling strength $\lambda$ read
|
|||||||
|
|
||||||
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
|
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\label{eq:LR_RPA}
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
\label{eq:LR_RPA-A}
|
||||||
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{jb},
|
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{jb},
|
||||||
\\
|
\\
|
||||||
|
\label{eq:LR_RPA-B}
|
||||||
\BRPA{ia,jb}{\IS} & = 2 \IS \ERI{ia}{bj},
|
\BRPA{ia,jb}{\IS} & = 2 \IS \ERI{ia}{bj},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
@ -356,12 +358,13 @@ where $\eHF{p}$ are the HF orbital energies.
|
|||||||
|
|
||||||
The relation between the BSE formalism and the well-known RPAx approach can be obtained by switching off the screening
|
The relation between the BSE formalism and the well-known RPAx approach can be obtained by switching off the screening
|
||||||
%namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
|
%namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
|
||||||
so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\ref{eq:LR_BSE} to the RPAx equations:
|
so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\eqref{eq:LR_BSE-A} and \eqref{eq:LR_BSE-B} to the RPAx equations:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\label{eq:LR_RPAx}
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
\label{eq:LR_RPAx-A}
|
||||||
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \ERI{ij}{ab} ],
|
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \ERI{ij}{ab} ],
|
||||||
\\
|
\\
|
||||||
|
\label{eq:LR_RPAx-B}
|
||||||
\BRPAx{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \ERI{ib}{aj} ].
|
\BRPAx{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \ERI{ib}{aj} ].
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
@ -412,9 +415,9 @@ Therefore, an additional contribution to Eq.~\eqref{eq:EcBSE} originating from t
|
|||||||
However, as commonly done within RPA and RPAx (\ie, RPA with exchange), \cite{Toulouse_2009, Toulouse_2010, Holzer_2018} we shall neglect it in the present study.
|
However, as commonly done within RPA and RPAx (\ie, RPA with exchange), \cite{Toulouse_2009, Toulouse_2010, Holzer_2018} we shall neglect it in the present study.
|
||||||
|
|
||||||
Equation \eqref{eq:EcBSE} can also be straightforwardly applied to RPA and RPAx, the only difference being the expressions of $\bA{\IS}$ and $\bB{\IS}$ used to obtain the eigenvectors $\bX{\IS}$ and $\bY{\IS}$ entering the definition of $\bP{\IS}$ [see Eq.~\eqref{eq:2DM}].
|
Equation \eqref{eq:EcBSE} can also be straightforwardly applied to RPA and RPAx, the only difference being the expressions of $\bA{\IS}$ and $\bB{\IS}$ used to obtain the eigenvectors $\bX{\IS}$ and $\bY{\IS}$ entering the definition of $\bP{\IS}$ [see Eq.~\eqref{eq:2DM}].
|
||||||
For RPA, these expressions have been provided in Eq.~\eqref{eq:LR_RPA}, and their RPAx analogs in Eq.~\eqref{eq:LR_RPAx}.
|
For RPA, these expressions have been provided in Eqs.~\eqref{eq:LR_RPA-A} and \eqref{eq:LR_RPA-B}, and their RPAx analogs in Eqs.~\eqref{eq:LR_RPAx-A} and \eqref{eq:LR_RPAx-B}.
|
||||||
In the following, we will refer to these two types of calculations as RPA@HF and RPAx@HF, respectively.
|
In the following, we will refer to these two types of calculations as RPA@HF and RPAx@HF, respectively.
|
||||||
Finally, we will also consider the RPA@$GW$@HF scheme which consists in replacing the HF orbital energies in Eq.~\eqref{eq:LR_RPA} by the $GW$ quasiparticles energies.
|
Finally, we will also consider the RPA@$GW$@HF scheme which consists in replacing the HF orbital energies in Eq.~\eqref{eq:LR_RPA-A} by the $GW$ quasiparticles energies.
|
||||||
|
|
||||||
Several important comments are in order here.
|
Several important comments are in order here.
|
||||||
For spin-restricted closed-shell molecular systems around their equilibrium geometry (such as the ones studied here), it is rare to encounter singlet instabilities as these systems can be classified as weakly correlated.
|
For spin-restricted closed-shell molecular systems around their equilibrium geometry (such as the ones studied here), it is rare to encounter singlet instabilities as these systems can be classified as weakly correlated.
|
||||||
|
Loading…
Reference in New Issue
Block a user