VQZ
This commit is contained in:
parent
c3a1ae1d7b
commit
ac8c62dd67
BIN
BF_GS_VQZ.pdf
Normal file
BIN
BF_GS_VQZ.pdf
Normal file
Binary file not shown.
BIN
BF_GS_VTZ.pdf
BIN
BF_GS_VTZ.pdf
Binary file not shown.
31
BSE-PES.bib
31
BSE-PES.bib
@ -1,7 +1,7 @@
|
|||||||
%% This BibTeX bibliography file was created using BibDesk.
|
%% This BibTeX bibliography file was created using BibDesk.
|
||||||
%% http://bibdesk.sourceforge.net/
|
%% http://bibdesk.sourceforge.net/
|
||||||
|
|
||||||
%% Created for Pierre-Francois Loos at 2020-01-28 17:57:57 +0100
|
%% Created for Pierre-Francois Loos at 2020-02-03 16:35:45 +0100
|
||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
@ -13050,22 +13050,15 @@
|
|||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113},
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113},
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}}
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}}
|
||||||
|
|
||||||
%%%% Xavier
|
|
||||||
|
|
||||||
@misc{complexw,
|
|
||||||
note = {In the case of complex molecular orbitals, see Ref.~\citenum{Holzer_2019} for a correct use of complex conjugation in the spectral representation of $W$. }
|
|
||||||
}
|
|
||||||
|
|
||||||
@article{Holzer_2019,
|
@article{Holzer_2019,
|
||||||
author = {Holzer,Christof and Teale,Andrew M. and Hampe,Florian and Stopkowicz,Stella and Helgaker,Trygve and Klopper,Wim },
|
Author = {Holzer,Christof and Teale,Andrew M. and Hampe,Florian and Stopkowicz,Stella and Helgaker,Trygve and Klopper,Wim},
|
||||||
title = {GW quasiparticle energies of atoms in strong magnetic fields},
|
Doi = {10.1063/1.5093396},
|
||||||
journal = { J. Chem. Phys. },
|
Eprint = {https://doi.org/10.1063/1.5093396},
|
||||||
volume = {150},
|
Journal = {J. Chem. Phys.},
|
||||||
number = {21},
|
Number = {21},
|
||||||
pages = {214112},
|
Pages = {214112},
|
||||||
year = {2019},
|
Title = {GW quasiparticle energies of atoms in strong magnetic fields},
|
||||||
doi = {10.1063/1.5093396},
|
Url = {https://doi.org/10.1063/1.5093396},
|
||||||
URL = { https://doi.org/10.1063/1.5093396},
|
Volume = {150},
|
||||||
eprint = { https://doi.org/10.1063/1.5093396}
|
Year = {2019},
|
||||||
}
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.5093396}}
|
||||||
|
|
||||||
|
31
BSE-PES.tex
31
BSE-PES.tex
@ -307,9 +307,9 @@ With the Mulliken notation for the bare two-electron integrals
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}',
|
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}',
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and the corresponding (static) screened Coulomb potential matrix elements at coupling strength $\lambda$
|
and the corresponding (static) screened Coulomb potential matrix elements at coupling strength $\IS$
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\W{pq,rs}{\IS} = \iint \MO{p}(\br{}) \MO{q}(\br{}) W^{\lambda}(\br{},\br{}') \MO{r}(\br{}') \MO{s}(\br{}') \dbr{} \dbr{}',
|
\W{pq,rs}{\IS} = \iint \MO{p}(\br{}) \MO{q}(\br{}) \W{}{\IS}(\br{},\br{}') \MO{r}(\br{}') \MO{s}(\br{}') \dbr{} \dbr{}',
|
||||||
\end{equation}
|
\end{equation}
|
||||||
the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
|
the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
@ -318,20 +318,23 @@ the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
|
|||||||
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \W{ij,ab}{\IS} ],
|
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \W{ij,ab}{\IS} ],
|
||||||
\\
|
\\
|
||||||
\label{eq:LR_BSE-B}
|
\label{eq:LR_BSE-B}
|
||||||
\BBSE{ia,jb}{\IS} & = \lambda \qty[ 2 \ERI{ia}{bj} - \W{ib,aj}{\IS} ],
|
\BBSE{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \W{ib,aj}{\IS} ],
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
where $\eGW{p}$ are the $GW$ quasiparticle energies.
|
where $\eGW{p}$ are the $GW$ quasiparticle energies.
|
||||||
%In the standard BSE implementation, the screened Coulomb potential $W^{\lambda}$ is taken to be static $(\omega \rightarrow 0)$.
|
%In the standard BSE implementation, the screened Coulomb potential $\W{}{\IS}$ is taken to be static $(\omega \rightarrow 0)$.
|
||||||
In the standard BSE approach, the screened Coulomb potential $W^{\lambda}$ is built within the direct RPA scheme:
|
In the standard BSE approach, the screened Coulomb potential $\W{}{\IS}$ is built within the direct RPA scheme:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\label{eq:wrpa}
|
\label{eq:wrpa}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
W^{\lambda}({\bf r},{\bf r}') &= \int d{\bf r}_1 \; \frac{\epsilon_{\lambda}^{-1}({\bf r},{\bf r}_1; \omega=0) } { |{\bf r}_1-{\bf r}' | }, \\
|
\W{}{\IS}(\br{},\br{}')
|
||||||
\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) &= \delta({\bf r}-{\bf r}') - \lambda \int d{\bf r}_1 \; \frac{ \chi_{0}({\bf r},{\bf r}_1; \omega) }{ |{\bf r}_1 - {\bf r}'| },
|
& = \int \dbr{1} \frac{\epsilon_{\IS}^{-1}(\br{},\br{1}; \omega=0)}{\abs{\br{1} - \br{}'}},
|
||||||
|
\\
|
||||||
|
\epsilon_{\IS}(\br{},\br{}'; \omega)
|
||||||
|
& = \delta(\br{}-\br{}') - \IS \int \dbr{1} \frac{\chi_{0}(\br{},\br{1}; \omega)}{\abs{\br{1} - \br{}'}},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
with $\epsilon_{\lambda}$ the dielectric function at coupling constant $\lambda$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual molecular orbitals product basis, the spectral representation of $W^{\lambda}$ can be written as follows in the case of real molecular orbitals: \cite{complexw}
|
with $\epsilon_{\IS}$ the dielectric function at coupling constant $\IS$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual molecular orbitals product basis, the spectral representation of $\W{}{\IS}$ can be written as follows in the case of real molecular orbitals \footnote{In the case of complex molecular orbitals, see Ref.~\onlinecite{Holzer_2019} for a correct use of complex conjugation in the spectral representation of $W$.}
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\label{eq:W}
|
\label{eq:W}
|
||||||
\W{ij,ab}{\IS}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
|
\W{ij,ab}{\IS}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
|
||||||
@ -339,7 +342,7 @@ with $\epsilon_{\lambda}$ the dielectric function at coupling constant $\lambda$
|
|||||||
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} - \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}),
|
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} - \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}),
|
||||||
\end{multline}
|
\end{multline}
|
||||||
|
|
||||||
where the spectral weights at coupling strength $\lambda$ read
|
where the spectral weights at coupling strength $\IS$ read
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
|
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -357,8 +360,8 @@ In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ a
|
|||||||
where $\eHF{p}$ are the HF orbital energies.
|
where $\eHF{p}$ are the HF orbital energies.
|
||||||
|
|
||||||
The relation between the BSE formalism and the well-known RPAx approach can be obtained by switching off the screening
|
The relation between the BSE formalism and the well-known RPAx approach can be obtained by switching off the screening
|
||||||
%namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
|
%namely setting $\epsilon_{\IS}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
|
||||||
so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\eqref{eq:LR_BSE-A} and \eqref{eq:LR_BSE-B} to the RPAx equations:
|
so that $\W{}{\IS}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\eqref{eq:LR_BSE-A} and \eqref{eq:LR_BSE-B} to the RPAx equations:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LR_RPAx-A}
|
\label{eq:LR_RPAx-A}
|
||||||
@ -368,7 +371,7 @@ so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, t
|
|||||||
\BRPAx{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \ERI{ib}{aj} ].
|
\BRPAx{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \ERI{ib}{aj} ].
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
%This allows to understand that the strength parameter $\lambda$ enters twice in the $\lambda W^{\lambda}$ contribution, one time to renormalize the screening efficiency, and a second time to renormalize the direct electron-hole interaction.
|
%This allows to understand that the strength parameter $\IS$ enters twice in the $\IS W^{\IS}$ contribution, one time to renormalize the screening efficiency, and a second time to renormalize the direct electron-hole interaction.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
%\subsection{Ground-state BSE energy}
|
%\subsection{Ground-state BSE energy}
|
||||||
@ -582,9 +585,9 @@ In that case again, the performance of BSE@{\GOWO}@HF are outstanding, as shown
|
|||||||
\begin{figure*}
|
\begin{figure*}
|
||||||
\includegraphics[height=0.26\linewidth]{N2_GS_VQZ}
|
\includegraphics[height=0.26\linewidth]{N2_GS_VQZ}
|
||||||
\includegraphics[height=0.26\linewidth]{CO_GS_VQZ}
|
\includegraphics[height=0.26\linewidth]{CO_GS_VQZ}
|
||||||
\includegraphics[height=0.26\linewidth]{BF_GS_VTZ}
|
\includegraphics[height=0.26\linewidth]{BF_GS_VQZ}
|
||||||
\caption{
|
\caption{
|
||||||
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the \titou{cc-pVQZ} basis set.
|
Ground-state PES of the isoelectronic series \ce{N2} (left), \ce{CO} (center), and \ce{BF} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||||
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||||
\label{fig:PES-N2-CO-BF}
|
\label{fig:PES-N2-CO-BF}
|
||||||
}
|
}
|
||||||
|
BIN
CO_GS_VQZ.pdf
BIN
CO_GS_VQZ.pdf
Binary file not shown.
BIN
F2_GS_VQZ.pdf
BIN
F2_GS_VQZ.pdf
Binary file not shown.
BIN
H2_GS_VQZ.pdf
BIN
H2_GS_VQZ.pdf
Binary file not shown.
BIN
HCl_GS_VQZ.pdf
BIN
HCl_GS_VQZ.pdf
Binary file not shown.
BIN
LiF_GS_VQZ.pdf
BIN
LiF_GS_VQZ.pdf
Binary file not shown.
BIN
LiH_GS_VQZ.pdf
BIN
LiH_GS_VQZ.pdf
Binary file not shown.
BIN
N2_GS_VQZ.pdf
BIN
N2_GS_VQZ.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user