ACS format
This commit is contained in:
parent
f55874c71f
commit
9e6495f3f6
@ -1,7 +1,7 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2019-05-13 21:13:34 +0200
|
||||
%% Created for Pierre-Francois Loos at 2020-02-05 14:17:56 +0100
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
48
BSE-PES.tex
48
BSE-PES.tex
@ -2,6 +2,12 @@
|
||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts}
|
||||
\usepackage[version=4]{mhchem}
|
||||
|
||||
\usepackage{natbib}
|
||||
\usepackage[extra]{tipa}
|
||||
\bibliographystyle{achemso}
|
||||
\AtBeginDocument{\nocite{achemso-control}}
|
||||
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{txfonts}
|
||||
@ -160,20 +166,20 @@
|
||||
\title{Ground-State Potential Energy Surfaces Within the Bethe-Salpeter Formalism: Pros and Cons}
|
||||
|
||||
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
||||
\email{loos@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
\author{Ivan \surname{Duchemin}}
|
||||
\email{ivan.duchemin@cea.fr}
|
||||
\affiliation{\CEA}
|
||||
\email{loos@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
\author{Anthony \surname{Scemama}}
|
||||
\email{scemama@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
\email{scemama@irsamc.ups-tlse.fr}
|
||||
\affiliation{\LCPQ}
|
||||
\author{Ivan \surname{Duchemin}}
|
||||
\email{ivan.duchemin@cea.fr}
|
||||
\affiliation{\CEA}
|
||||
\author{Denis \surname{Jacquemin}}
|
||||
\email{denis.jacquemin@univ-nantes.fr}
|
||||
\affiliation{\CEISAM}
|
||||
\email{denis.jacquemin@univ-nantes.fr}
|
||||
\affiliation{\CEISAM}
|
||||
\author{Xavier \surname{Blase}}
|
||||
\email{xavier.blase@neel.cnrs.fr }
|
||||
\affiliation{\NEEL}
|
||||
\email{xavier.blase@neel.cnrs.fr }
|
||||
\affiliation{\NEEL}
|
||||
|
||||
\begin{abstract}
|
||||
%\begin{wrapfigure}[12]{o}[-1.25cm]{0.4\linewidth}
|
||||
@ -335,7 +341,7 @@ In the standard BSE approach, $\W{}{\IS}$ is built within the direct RPA scheme,
|
||||
& = \delta(\br{}-\br{}') - \IS \int \frac{\chi_{0}(\br{},\br{}''; \omega)}{\abs*{\br{}' - \br{}''}} \dbr{}'' ,
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
with $\epsilon_{\IS}$ the dielectric function at coupling constant $\IS$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual orbital product basis, the spectral representation of $\W{}{\IS}$ can be written as follows in the case of real spatial orbitals \footnote{In the case of complex molecular orbitals, see Ref.~\onlinecite{Holzer_2019} for a correct use of complex conjugation in the spectral representation of $W$.}
|
||||
with $\epsilon_{\IS}$ the dielectric function at coupling constant $\IS$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual orbital product basis, the spectral representation of $\W{}{\IS}$ can be written as follows in the case of real spatial orbitals
|
||||
\begin{multline}
|
||||
\label{eq:W}
|
||||
\W{ij,ab}{\IS}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
|
||||
@ -346,6 +352,7 @@ where the spectral weights at coupling strength $\IS$ read
|
||||
\begin{equation}
|
||||
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
|
||||
\end{equation}
|
||||
In the case of complex molecular orbitals, see Ref.~\onlinecite{Holzer_2019} for a correct use of complex conjugation in the spectral representation of $\W{}{}$.
|
||||
|
||||
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
|
||||
\begin{subequations}
|
||||
@ -515,7 +522,7 @@ Additional graphs for other basis sets can be found in the {\SI}.
|
||||
%%% TABLE I %%%
|
||||
\begin{table*}
|
||||
\caption{
|
||||
Equilibrium distances (in bohr) of the ground state of diatomic molecules obtained at various levels of theory and basis sets.
|
||||
Equilibrium bond length (in bohr) of the ground state of diatomic molecules obtained at various levels of theory and basis sets.
|
||||
The reference CC3 and corresponding BSE@{\GOWO}@HF data are highlighted in bold black and bold red for visual convenience, respectively.
|
||||
The values in parenthesis have been obtained by fitting a Morse potential to the PES.
|
||||
}
|
||||
@ -542,7 +549,7 @@ The values in parenthesis have been obtained by fitting a Morse potential to the
|
||||
& cc-pVTZ & 1.404 & 3.023 & (2.982) & 2.410 & 2.068 & 2.116 & (2.389) & (2.647) \\
|
||||
& cc-pVQZ &\rb{1.399} &\rb{3.017} &\rb{(2.974)} &\gb{(2.408)} &\gb{(2.070)} &\gb{(2.130)} &\gb{(2.383)} &\rb{(2.640)}\\
|
||||
RPA@{\GOWO}@HF & cc-pVDZ & 1.426 & 3.019 & 2.994 & 2.436 & 2.083 & 2.144 & 2.403 & (2.629) \\
|
||||
& cc-pVTZ & 1.388 & 2.988 & (2.965) & 2.408 &2.065(2.048) & 2.114 & (2.370) & (2.584) \\
|
||||
& cc-pVTZ & 1.388 & 2.988 & (2.965) & 2.408 & 2.055 & 2.114 & (2.370) & (2.584) \\
|
||||
& cc-pVQZ & 1.382 & 2.997 & (2.965) &\gb{(2.389)} &\gb{(2.045)} &\gb{(2.110)} &\gb{(2.367)} & (2.571) \\
|
||||
RPAx@HF & cc-pVDZ & 1.428 & 3.040 & 2.998 & 2.424 & 2.077 & 2.130 & 2.417 & 2.611 \\
|
||||
& cc-pVTZ & 1.395 & 3.003 & 2.943 & 2.400 & 2.046 & 2.110 & 2.368 & 2.568 \\
|
||||
@ -587,7 +594,8 @@ However, BSE@{\GOWO}@HF is the closest to the CC3 curve
|
||||
%\section{Conclusion}
|
||||
%\label{sec:conclusion}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
In this Letter, we have shown that calculating the BSE correlation energy within the ACFDT framework yield extremely accurate PES around equilibrium.
|
||||
In this Letter, we hope to have illustrated that the ACFDT@BSE formalism is a promising methodology for the computation of accurate ground-state PES and their corresponding equilibrium structures.
|
||||
To do so, we have shown that calculating the BSE correlation energy computed within the ACFDT framework yield extremely accurate PES around equilibrium.
|
||||
(Their accuracy near the dissociation limit remains an open question.)
|
||||
We have illustrated this for 8 diatomic molecules for which we have also computed reference ground-state energies using coupled cluster methods (CC2, CCSD, and CC3).
|
||||
However, we have also observed that, in some cases, unphysical irregularities on the ground-state PES due to the appearance of a satellite resonance with a weight similar to that of the $GW$ quasiparticle peak.
|
||||
@ -596,11 +604,6 @@ We believe that this central issue must be resolved if one wants to expand the a
|
||||
In the perspective of developing analytical nuclear gradients within the BSE@$GW$ formalism, we are currently investigating the accuracy of the ACFDT@BSE scheme for excited-state PES.
|
||||
We hope to be able to report on this in the near future.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Supporting Information}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
See {\SI} for additional potential energy curves with other basis sets and within the frozen-core approximation.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{acknowledgements}
|
||||
%PFL would like to thank Julien Toulouse for enlightening discussions about RPA, and
|
||||
@ -611,6 +614,11 @@ This work has been supported through the EUR grant NanoX ANR-17-EURE-0009 in the
|
||||
\end{acknowledgements}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Supporting Information}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
See {\SI} for additional potential energy curves with other basis sets and within the frozen-core approximation.
|
||||
|
||||
\bibliography{BSE-PES,BSE-PES-control}
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user