new graphs
This commit is contained in:
parent
d77017e8d5
commit
9a9da4873b
BIN
BF_GS_VTZ.pdf
BIN
BF_GS_VTZ.pdf
Binary file not shown.
30
BSE-PES.tex
30
BSE-PES.tex
@ -315,9 +315,9 @@ the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
|
||||
\begin{subequations}
|
||||
\label{eq:LR_BSE}
|
||||
\begin{align}
|
||||
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \left[ \ERI{ia}{jb} - \W{ij,ab}{\IS} \right],
|
||||
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \W{ij,ab}{\IS} ],
|
||||
\\
|
||||
\BBSE{ia,jb}{\IS} & = \lambda \left[ \ERI{ia}{bj} - \W{ib,aj}{\IS} \right],
|
||||
\BBSE{ia,jb}{\IS} & = \lambda \qty[ 2 \ERI{ia}{bj} - \W{ib,aj}{\IS} ],
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
where $\eGW{p}$ are the $GW$ quasiparticle energies.
|
||||
@ -333,22 +333,22 @@ In the standard BSE approach, the screened Coulomb potential $W^{\lambda}$ is bu
|
||||
with $\epsilon_{\lambda}$ the dielectric function at coupling constant $\lambda$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual molecular orbitals product basis, the spectral representation of $W^{\lambda}$ can be written as follows in the case of real molecular orbitals: \cite{complexw}
|
||||
\begin{multline}
|
||||
\label{eq:W}
|
||||
\W{ij,ab}{\IS}(\omega) = \textcolor{red}{\sout{2}} \ERI{ij}{ab} + \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
|
||||
\W{ij,ab}{\IS}(\omega) = \ERI{ij}{ab} + 2 \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
|
||||
\\
|
||||
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} \textcolor{red}{-} \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta})
|
||||
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} - \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta}),
|
||||
\end{multline}
|
||||
where the \xavier{ \sout{screened two-electron integrals} spectral weights} $\sERI{pq}{m}$ at coupling strength $\lambda$ read:
|
||||
where the spectral weights at coupling strength $\lambda$ read
|
||||
\begin{equation}
|
||||
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}
|
||||
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}.
|
||||
\end{equation}
|
||||
|
||||
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\label{eq:LR_RPA}
|
||||
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \ERI{ia}{jb},
|
||||
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{jb},
|
||||
\\
|
||||
\BRPA{ia,jb}{\IS} & = \IS \ERI{ia}{bj},
|
||||
\BRPA{ia,jb}{\IS} & = 2 \IS \ERI{ia}{bj},
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
where $\eHF{p}$ are the HF orbital energies.
|
||||
@ -359,15 +359,13 @@ so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, t
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\label{eq:LR_RPAx}
|
||||
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \left[ \ERI{ia}{jb} - \ERI{ij}{ab} \right],
|
||||
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \qty[ 2 \ERI{ia}{jb} - \ERI{ij}{ab} ],
|
||||
\\
|
||||
\BRPAx{ia,jb}{\IS} & = \IS \left[ \ERI{ia}{bj} - \ERI{ib}{aj} \right].
|
||||
\BRPAx{ia,jb}{\IS} & = \IS \qty[ 2 \ERI{ia}{bj} - \ERI{ib}{aj} ].
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
%This allows to understand that the strength parameter $\lambda$ enters twice in the $\lambda W^{\lambda}$ contribution, one time to renormalize the screening efficiency, and a second time to renormalize the direct electron-hole interaction.
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\subsection{Ground-state BSE energy}
|
||||
%\label{sec:BSE_energy}
|
||||
@ -564,9 +562,9 @@ Note that these irregularities would be genuine discontinuities in the case of {
|
||||
%%% FIG 2 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[height=0.35\linewidth]{LiF_GS_VQZ}
|
||||
\includegraphics[height=0.35\linewidth]{HCl_GS_VTZ}
|
||||
\includegraphics[height=0.35\linewidth]{HCl_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the \titou{cc-pVQZ} basis set.
|
||||
Ground-state PES of \ce{LiF} (left) and \ce{HCl} (right) around their respective equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-LiF-HCl}
|
||||
}
|
||||
@ -595,9 +593,9 @@ However, BSE@{\GOWO}@HF is the closest to the CC3 curve
|
||||
|
||||
%%% FIG 4 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{F2_GS_VTZ}
|
||||
\includegraphics[width=\linewidth]{F2_GS_VQZ}
|
||||
\caption{
|
||||
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the \titou{cc-pVQZ} basis set.
|
||||
Ground-state PES of \ce{F2} around its equilibrium geometry obtained at various levels of theory with the cc-pVQZ basis set.
|
||||
Additional graphs for other basis sets and within the frozen-core approximation can be found in the {\SI}.
|
||||
\label{fig:PES-F2}
|
||||
}
|
||||
|
BIN
CO_GS_VQZ.pdf
BIN
CO_GS_VQZ.pdf
Binary file not shown.
BIN
F2_GS_VTZ.pdf
BIN
F2_GS_VTZ.pdf
Binary file not shown.
BIN
H2_GS_VQZ.pdf
BIN
H2_GS_VQZ.pdf
Binary file not shown.
BIN
HCl_GS_VTZ.pdf
BIN
HCl_GS_VTZ.pdf
Binary file not shown.
BIN
LiF_GS_VQZ.pdf
BIN
LiF_GS_VQZ.pdf
Binary file not shown.
BIN
LiH_GS_VQZ.pdf
BIN
LiH_GS_VQZ.pdf
Binary file not shown.
BIN
N2_GS_VQZ.pdf
BIN
N2_GS_VQZ.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user