modif xav

This commit is contained in:
Pierre-Francois Loos 2020-02-03 15:45:22 +01:00
parent d21b93fdca
commit 84e75dcf94
2 changed files with 75 additions and 34 deletions

View File

@ -13049,3 +13049,23 @@
Year = {2016}, Year = {2016},
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113}, Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113},
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}} Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}}
%%%% Xavier
@misc{complexw,
note = {In the case of complex molecular orbitals, see Ref.~\citenum{Holzer_2019} for a correct use of complex conjugation in the spectral representation of $W$. }
}
@article{Holzer_2019,
author = {Holzer,Christof and Teale,Andrew M. and Hampe,Florian and Stopkowicz,Stella and Helgaker,Trygve and Klopper,Wim },
title = {GW quasiparticle energies of atoms in strong magnetic fields},
journal = { J. Chem. Phys. },
volume = {150},
number = {21},
pages = {214112},
year = {2019},
doi = {10.1063/1.5093396},
URL = { https://doi.org/10.1063/1.5093396},
eprint = { https://doi.org/10.1063/1.5093396}
}

View File

@ -303,42 +303,71 @@ where the excitation amplitudes are
\bX{\IS} - \bY{\IS} = (\bOm{\IS})^{1/2} (\bA{\IS} - \bB{\IS})^{-1/2} \bZ{\IS}. \bX{\IS} - \bY{\IS} = (\bOm{\IS})^{1/2} (\bA{\IS} - \bB{\IS})^{-1/2} \bZ{\IS}.
\end{align} \end{align}
\end{subequations} \end{subequations}
In the case of BSE, the specific expression of the matrix elements are With the Mulliken notation for the bare two-electron integrals
\begin{subequations}
\begin{align}
\label{eq:LR_BSE}
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \W{ia,bj}{\IS}(\omega = 0) - \lambda \ERI{ia}{jb},
\\
\BBSE{ia,jb}{\IS} & = \W{ia,jb}{\IS}(\omega = 0) - \lambda \ERI{ia}{bj} ,
\end{align}
\end{subequations}
where $\eGW{p}$ are the $GW$ quasiparticle energies,
\begin{multline}
\label{eq:W}
\W{ia,jb}{\IS}(\omega) = 2 \ERI{ia}{jb}
\\
+ \sum_m^{\Nocc \Nvir} \sERI{ia}{m} \sERI{jb}{m} \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} + \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta})
\end{multline}
are the elements of the screened Coulomb operator,
\begin{equation}
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}
\end{equation}
are the screened two-electron integrals,
\begin{equation} \begin{equation}
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}', \ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}',
\end{equation} \end{equation}
are the bare two-electron integrals, and $\delta_{pq}$ is the Kronecker delta. \cite{NISTbook} and the corresponding (static) screened Coulomb potential matrix elements at coupling strength $\lambda$
\begin{equation}
\W{pq,rs}{\IS} = \iint \MO{p}(\br{}) \MO{q}(\br{}) W^{\lambda}(\br{},\br{}') \MO{r}(\br{}') \MO{s}(\br{}') \dbr{} \dbr{}',
\end{equation}
the $(\bA{\IS},\bB{\IS})$ BSE matrix elements read:
\begin{subequations}
\label{eq:LR_BSE}
\begin{align}
\ABSE{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \IS \left[ \ERI{ia}{jb} - \W{ij,ab}{\IS} \right],
\\
\BBSE{ia,jb}{\IS} & = \lambda \left[ \ERI{ia}{bj} - \W{ib,aj}{\IS} \right],
\end{align}
\end{subequations}
where $\eGW{p}$ are the $GW$ quasiparticle energies.
%In the standard BSE implementation, the screened Coulomb potential $W^{\lambda}$ is taken to be static $(\omega \rightarrow 0)$.
In the standard BSE approach, the screened Coulomb potential $W^{\lambda}$ is built within the direct RPA scheme:
\begin{subequations}
\label{eq:wrpa}
\begin{align}
W^{\lambda}({\bf r},{\bf r}') &= \int d{\bf r}_1 \; \frac{\epsilon_{\lambda}^{-1}({\bf r},{\bf r}_1; \omega=0) } { |{\bf r}_1-{\bf r}' | }, \\
\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) &= \delta({\bf r}-{\bf r}') - \lambda \int d{\bf r}_1 \; \frac{ \chi_{0}({\bf r},{\bf r}_1; \omega) }{ |{\bf r}_1 - {\bf r}'| },
\end{align}
\end{subequations}
with $\epsilon_{\lambda}$ the dielectric function at coupling constant $\lambda$ and $\chi_{0}$ the non-interacting polarizability. In the occupied-to-virtual molecular orbitals product basis, the spectral representation of $W^{\lambda}$ can be written as follows in the case of real molecular orbitals: \cite{complexw}
\begin{multline}
\label{eq:W}
\W{ij,ab}{\IS}(\omega) = \textcolor{red}{\sout{2}} \ERI{ij}{ab} + \sum_m^{\Nocc \Nvir} \sERI{ij}{m} \sERI{ab}{m}
\\
\times \qty(\frac{1}{\omega - \OmRPA{m}{\IS} + i \eta} \textcolor{red}{-} \frac{1}{\omega + \OmRPA{m}{\IS} - i \eta})
\end{multline}
where the \xavier{ \sout{screened two-electron integrals} spectral weights} $\sERI{pq}{m}$ at coupling strength $\lambda$ read:
\begin{equation}
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{\IS}_m + \bY{\IS}_m)_{ia}
\end{equation}
In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements In Eq.~\eqref{eq:W}, $\eta$ is a positive infinitesimal, and $\OmRPA{m}{\IS}$ are the direct (\ie, without exchange) RPA neutral excitation energies computed by solving the linear eigenvalue problem \eqref{eq:LR} with the following matrix elements
\begin{subequations} \begin{subequations}
\begin{align} \begin{align}
\label{eq:LR_RPA} \label{eq:LR_RPA}
\ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{bj}, \ARPA{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \ERI{ia}{jb},
\\ \\
\BRPA{ia,jb}{\IS} & = 2 \IS \ERI{ia}{jb}, \BRPA{ia,jb}{\IS} & = \IS \ERI{ia}{bj},
\end{align} \end{align}
\end{subequations} \end{subequations}
where $\eHF{p}$ are the HF orbital energies. where $\eHF{p}$ are the HF orbital energies.
The relation between the BSE formalism and the well-known RPAx approach can be obtained by switching off the screening
%namely setting $\epsilon_{\lambda}({\bf r},{\bf r}'; \omega) = \delta({\bf r}-{\bf r}')$
so that $W^{\lambda}$ reduces to the bare Coulomb potential. In that limit, the $GW$ quasiparticle energies reduce to the Hartree-Fock eigenvalues, and Eqs.~\ref{eq:LR_BSE} to the RPAx equations:
\begin{subequations}
\begin{align}
\label{eq:LR_RPAx}
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + \IS \left[ \ERI{ia}{jb} - \ERI{ij}{ab} \right],
\\
\BRPAx{ia,jb}{\IS} & = \IS \left[ \ERI{ia}{bj} - \ERI{ib}{aj} \right].
\end{align}
\end{subequations}
%This allows to understand that the strength parameter $\lambda$ enters twice in the $\lambda W^{\lambda}$ contribution, one time to renormalize the screening efficiency, and a second time to renormalize the direct electron-hole interaction.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Ground-state BSE energy} %\subsection{Ground-state BSE energy}
%\label{sec:BSE_energy} %\label{sec:BSE_energy}
@ -378,21 +407,13 @@ is the interaction kernel \cite{Angyan_2011, Holzer_2018} [with $\tA{ia,jb}{\IS}
\end{pmatrix} \end{pmatrix}
\end{equation} \end{equation}
is the correlation part of the two-electron density matrix at interaction strength $\IS$, and $\Tr$ denotes the matrix trace. is the correlation part of the two-electron density matrix at interaction strength $\IS$, and $\Tr$ denotes the matrix trace.
Note that the present definition of the BSE correlation energy [see Eq.~\eqref{eq:EcBSE}], which we refer to as BSE@$GW$@HF here, has be labeled ``XBS'' for ``extended Bethe Salpeter'' by Holzer \textit{et al.} \cite{Holzer_2018} Note that the present definition of the BSE correlation energy [see Eq.~\eqref{eq:EcBSE}], which we refer to as BSE@$GW$@HF here, has been labeled ``XBS'' for ``extended Bethe Salpeter'' by Holzer \textit{et al.} \cite{Holzer_2018}
Contrary to DFT where the electron density is fixed along the adiabatic path, in the present formalism, the density is not maintained as $\IS$ varies. Contrary to DFT where the electron density is fixed along the adiabatic path, in the present formalism, the density is not maintained as $\IS$ varies.
Therefore, an additional contribution to Eq.~\eqref{eq:EcBSE} originating from the variation of the Green's function along the adiabatic connection should be added. Therefore, an additional contribution to Eq.~\eqref{eq:EcBSE} originating from the variation of the Green's function along the adiabatic connection should be added.
However, as commonly done within RPA and RPAx (\ie, RPA with exchange), \cite{Toulouse_2009, Toulouse_2010, Holzer_2018} we shall neglect it in the present study. However, as commonly done within RPA and RPAx (\ie, RPA with exchange), \cite{Toulouse_2009, Toulouse_2010, Holzer_2018} we shall neglect it in the present study.
Equation \eqref{eq:EcBSE} can also be straightforwardly applied to RPA and RPAx, the only difference being the expressions of $\bA{\IS}$ and $\bB{\IS}$ used to obtain the eigenvectors $\bX{\IS}$ and $\bY{\IS}$ entering the definition of $\bP{\IS}$ [see Eq.~\eqref{eq:2DM}]. Equation \eqref{eq:EcBSE} can also be straightforwardly applied to RPA and RPAx, the only difference being the expressions of $\bA{\IS}$ and $\bB{\IS}$ used to obtain the eigenvectors $\bX{\IS}$ and $\bY{\IS}$ entering the definition of $\bP{\IS}$ [see Eq.~\eqref{eq:2DM}].
For RPA, these expressions have been provided in Eq.~\eqref{eq:LR_RPA}, and their RPAx analogs read For RPA, these expressions have been provided in Eq.~\eqref{eq:LR_RPA}, and their RPAx analogs in Eq.~\eqref{eq:LR_RPAx}.
\begin{subequations}
\begin{align}
\label{eq:LR_RPAx}
\ARPAx{ia,jb}{\IS} & = \delta_{ij} \delta_{ab} (\eHF{a} - \eHF{i}) + 2 \IS \ERI{ia}{bj} - \IS \ERI{ia}{jb},
\\
\BRPAx{ia,jb}{\IS} & = 2 \IS \ERI{ia}{jb} - \IS \ERI{ia}{bj}.
\end{align}
\end{subequations}
In the following, we will refer to these two types of calculations as RPA@HF and RPAx@HF, respectively. In the following, we will refer to these two types of calculations as RPA@HF and RPAx@HF, respectively.
Finally, we will also consider the RPA@$GW$@HF scheme which consists in replacing the HF orbital energies in Eq.~\eqref{eq:LR_RPA} by the $GW$ quasiparticles energies. Finally, we will also consider the RPA@$GW$@HF scheme which consists in replacing the HF orbital energies in Eq.~\eqref{eq:LR_RPA} by the $GW$ quasiparticles energies.