1165 lines
51 KiB
Plaintext
1165 lines
51 KiB
Plaintext
|
|
|||
|
|
|||
|
************************************************************************
|
|||
|
*************** Dalton - An Electronic Structure Program ***************
|
|||
|
************************************************************************
|
|||
|
|
|||
|
This is output from DALTON release Dalton2017.alpha (2017)
|
|||
|
( Web site: http://daltonprogram.org )
|
|||
|
|
|||
|
----------------------------------------------------------------------------
|
|||
|
|
|||
|
NOTE:
|
|||
|
|
|||
|
Dalton is an experimental code for the evaluation of molecular
|
|||
|
properties using (MC)SCF, DFT, CI, and CC wave functions.
|
|||
|
The authors accept no responsibility for the performance of
|
|||
|
the code or for the correctness of the results.
|
|||
|
|
|||
|
The code (in whole or part) is provided under a licence and
|
|||
|
is not to be reproduced for further distribution without
|
|||
|
the written permission of the authors or their representatives.
|
|||
|
|
|||
|
See the home page "http://daltonprogram.org" for further information.
|
|||
|
|
|||
|
If results obtained with this code are published,
|
|||
|
the appropriate citations would be both of:
|
|||
|
|
|||
|
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
|
|||
|
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
|
|||
|
P. Dahle, E. K. Dalskov, U. Ekstroem,
|
|||
|
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
|
|||
|
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
|
|||
|
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
|
|||
|
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
|
|||
|
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
|
|||
|
P. Joergensen, J. Kauczor, S. Kirpekar,
|
|||
|
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
|
|||
|
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
|
|||
|
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
|
|||
|
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
|
|||
|
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
|
|||
|
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
|
|||
|
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
|
|||
|
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
|
|||
|
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
|
|||
|
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
|
|||
|
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
|
|||
|
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
|
|||
|
and H. Agren,
|
|||
|
"The Dalton quantum chemistry program system",
|
|||
|
WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
Dalton, a Molecular Electronic Structure Program,
|
|||
|
Release Dalton2017.alpha (2017), see http://daltonprogram.org
|
|||
|
----------------------------------------------------------------------------
|
|||
|
|
|||
|
Authors in alphabetical order (major contribution(s) in parenthesis):
|
|||
|
|
|||
|
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
|
|||
|
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
|
|||
|
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
|
|||
|
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
|
|||
|
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
|
|||
|
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
|
|||
|
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
|
|||
|
Ove Christiansen, Aarhus University, Denmark (CC module)
|
|||
|
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
|
|||
|
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
|
|||
|
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
|
|||
|
Paal Dahle, University of Oslo, Norway (Parallelization)
|
|||
|
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
|
|||
|
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
|
|||
|
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
|
|||
|
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
|
|||
|
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
|
|||
|
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
|
|||
|
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
|
|||
|
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
|
|||
|
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
|
|||
|
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
|
|||
|
Kasper Hald, Aarhus University, Denmark (CC module)
|
|||
|
Asger Halkier, Aarhus University, Denmark (CC module)
|
|||
|
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
|
|||
|
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
|
|||
|
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
|
|||
|
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
|
|||
|
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
|
|||
|
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
|
|||
|
Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA)
|
|||
|
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
|
|||
|
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
|
|||
|
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
|
|||
|
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
|
|||
|
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
|
|||
|
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
|
|||
|
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
|
|||
|
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
|
|||
|
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
|
|||
|
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
|
|||
|
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
|
|||
|
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
|
|||
|
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
|
|||
|
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
|||
|
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
|
|||
|
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
|
|||
|
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
|
|||
|
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
|
|||
|
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
|
|||
|
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
|
|||
|
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
|
|||
|
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
|
|||
|
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Anders Osted, Copenhagen University, Denmark (QM/MM)
|
|||
|
Martin J. Packer, University of Sheffield, UK (SOPPA)
|
|||
|
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
|
|||
|
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
|||
|
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
|
|||
|
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
|
|||
|
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
|
|||
|
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
|
|||
|
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
|
|||
|
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
|
|||
|
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
|
|||
|
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
|
|||
|
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
|
|||
|
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
|
|||
|
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
|
|||
|
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
|
|||
|
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
|
|||
|
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
|
|||
|
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
|
|||
|
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
|
|||
|
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
|
|||
|
David P. Tew, University of Bristol, England (CCSD(R12))
|
|||
|
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
|
|||
|
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
|
|||
|
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
|
|||
|
--------------------------------------------------------------------------------
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 15:04:25 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
* Work memory size : 6400000000 = 47.684 gigabytes.
|
|||
|
|
|||
|
* Directories for basis set searches:
|
|||
|
1) /home/CEISAM/jacquemin-d/TITOU/CO/TZ
|
|||
|
2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis
|
|||
|
|
|||
|
|
|||
|
Compilation information
|
|||
|
-----------------------
|
|||
|
|
|||
|
Who compiled | blondel-a
|
|||
|
Host | jaws.cluster
|
|||
|
System | Linux-3.10.0-862.9.1.el7.x86_64
|
|||
|
CMake generator | Unix Makefiles
|
|||
|
Processor | x86_64
|
|||
|
64-bit integers | ON
|
|||
|
MPI | OFF
|
|||
|
Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
|||
|
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
|||
|
| ibraries_2018.3.222/linux/bin/intel64/ifort
|
|||
|
Fortran compiler version | ifort (IFORT) 18.0.3 20180410
|
|||
|
C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
|||
|
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
|||
|
| ibraries_2018.3.222/linux/bin/intel64/icc
|
|||
|
C compiler version | icc (ICC) 18.0.3 20180410
|
|||
|
C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
|||
|
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
|||
|
| ibraries_2018.3.222/linux/bin/intel64/icpc
|
|||
|
C++ compiler version | icpc (ICC) 18.0.3 20180410
|
|||
|
Static linking | ON
|
|||
|
Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083
|
|||
|
Git branch | master
|
|||
|
Configuration time | 2018-07-26 15:11:23.544354
|
|||
|
|
|||
|
|
|||
|
Content of the .dal input file
|
|||
|
----------------------------------
|
|||
|
|
|||
|
**DALTON INPUT
|
|||
|
.RUN WAVE FUNCTIONS
|
|||
|
**INTEGRALS
|
|||
|
.DIPLEN
|
|||
|
.DEROVL
|
|||
|
.DERHAM
|
|||
|
**WAVE FUNCTIONS
|
|||
|
.CC
|
|||
|
*CC INP
|
|||
|
.CC2
|
|||
|
.CCSD
|
|||
|
.CC3
|
|||
|
*CCEXCI
|
|||
|
.NCCEXCI
|
|||
|
3 3 3 3
|
|||
|
3 3 3 3
|
|||
|
**END OF DALTON INPUT
|
|||
|
|
|||
|
|
|||
|
Content of the .mol file
|
|||
|
----------------------------
|
|||
|
|
|||
|
BASIS
|
|||
|
cc-pVTZ
|
|||
|
CO/Scan
|
|||
|
Dalton Run w/o symmetry
|
|||
|
AtomTypes=2 Charge=0 Cartesian
|
|||
|
Charge=6.0 Atoms=1
|
|||
|
C 0.0000000 0.0000000000 0.000
|
|||
|
Charge=8.0 Atoms=1
|
|||
|
O 0.00000000 0.0000000000 3.500
|
|||
|
|
|||
|
|
|||
|
*******************************************************************
|
|||
|
*********** Output from DALTON general input processing ***********
|
|||
|
*******************************************************************
|
|||
|
|
|||
|
--------------------------------------------------------------------------------
|
|||
|
Overall default print level: 0
|
|||
|
Print level for DALTON.STAT: 1
|
|||
|
|
|||
|
HERMIT 1- and 2-electron integral sections will be executed
|
|||
|
"Old" integral transformation used (limited to max 255 basis functions)
|
|||
|
Wave function sections will be executed (SIRIUS module)
|
|||
|
--------------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
****************************************************************************
|
|||
|
*************** Output of molecule and basis set information ***************
|
|||
|
****************************************************************************
|
|||
|
|
|||
|
|
|||
|
The two title cards from your ".mol" input:
|
|||
|
------------------------------------------------------------------------
|
|||
|
1: CO/Scan
|
|||
|
2: Dalton Run w/o symmetry
|
|||
|
------------------------------------------------------------------------
|
|||
|
|
|||
|
Atomic type no. 1
|
|||
|
--------------------
|
|||
|
Nuclear charge: 6.00000
|
|||
|
Number of symmetry independent centers: 1
|
|||
|
Number of basis sets to read; 2
|
|||
|
Basis set file used for this atomic type with Z = 6 :
|
|||
|
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ"
|
|||
|
|
|||
|
Atomic type no. 2
|
|||
|
--------------------
|
|||
|
Nuclear charge: 8.00000
|
|||
|
Number of symmetry independent centers: 1
|
|||
|
Number of basis sets to read; 2
|
|||
|
Basis set file used for this atomic type with Z = 8 :
|
|||
|
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ"
|
|||
|
|
|||
|
|
|||
|
SYMADD: Requested addition of symmetry
|
|||
|
--------------------------------------
|
|||
|
|
|||
|
Symmetry test threshold: 5.00E-06
|
|||
|
|
|||
|
@ The molecule is centered at center of mass and rotated
|
|||
|
@ so principal axes of inertia are along coordinate axes.
|
|||
|
|
|||
|
Symmetry class found: C(oo,v)
|
|||
|
|
|||
|
Symmetry Independent Centres
|
|||
|
----------------------------
|
|||
|
8 : 0.00000000 0.00000000 1.50027246 Isotope 1
|
|||
|
6 : 0.00000000 0.00000000 -1.99972754 Isotope 1
|
|||
|
|
|||
|
The following elements were found: X Y
|
|||
|
|
|||
|
|
|||
|
SYMGRP: Point group information
|
|||
|
-------------------------------
|
|||
|
|
|||
|
@ Full point group is: C(oo,v)
|
|||
|
@ Represented as: C2v
|
|||
|
|
|||
|
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
|
|||
|
|
|||
|
* The point group was generated by:
|
|||
|
|
|||
|
Reflection in the yz-plane
|
|||
|
Reflection in the xz-plane
|
|||
|
|
|||
|
* Group multiplication table
|
|||
|
|
|||
|
| E C2z Oxz Oyz
|
|||
|
-----+--------------------
|
|||
|
E | E C2z Oxz Oyz
|
|||
|
C2z | C2z E Oyz Oxz
|
|||
|
Oxz | Oxz Oyz E C2z
|
|||
|
Oyz | Oyz Oxz C2z E
|
|||
|
|
|||
|
* Character table
|
|||
|
|
|||
|
| E C2z Oxz Oyz
|
|||
|
-----+--------------------
|
|||
|
A1 | 1 1 1 1
|
|||
|
B1 | 1 -1 1 -1
|
|||
|
B2 | 1 -1 -1 1
|
|||
|
A2 | 1 1 -1 -1
|
|||
|
|
|||
|
* Direct product table
|
|||
|
|
|||
|
| A1 B1 B2 A2
|
|||
|
-----+--------------------
|
|||
|
A1 | A1 B1 B2 A2
|
|||
|
B1 | B1 A1 A2 B2
|
|||
|
B2 | B2 A2 A1 B1
|
|||
|
A2 | A2 B2 B1 A1
|
|||
|
|
|||
|
|
|||
|
Isotopic Masses
|
|||
|
---------------
|
|||
|
|
|||
|
C 12.000000
|
|||
|
O 15.994915
|
|||
|
|
|||
|
Total mass: 27.994915 amu
|
|||
|
Natural abundance: 98.663 %
|
|||
|
|
|||
|
Center-of-mass coordinates (a.u.): 0.000000 0.000000 -0.000000
|
|||
|
|
|||
|
|
|||
|
Atoms and basis sets
|
|||
|
--------------------
|
|||
|
|
|||
|
Number of atom types : 2
|
|||
|
Total number of atoms: 2
|
|||
|
|
|||
|
Basis set used is "cc-pVTZ" from the basis set library.
|
|||
|
|
|||
|
label atoms charge prim cont basis
|
|||
|
----------------------------------------------------------------------
|
|||
|
C 1 6.0000 47 35 [10s5p2d1f|4s3p2d1f]
|
|||
|
O 1 8.0000 47 35 [10s5p2d1f|4s3p2d1f]
|
|||
|
----------------------------------------------------------------------
|
|||
|
total: 2 14.0000 94 70
|
|||
|
----------------------------------------------------------------------
|
|||
|
Cartesian basis used.
|
|||
|
(Note that d, f, ... atomic GTOs are not all normalized.)
|
|||
|
|
|||
|
Threshold for neglecting AO integrals: 1.00D-12
|
|||
|
|
|||
|
|
|||
|
Cartesian Coordinates (a.u.)
|
|||
|
----------------------------
|
|||
|
|
|||
|
Total number of coordinates: 6
|
|||
|
C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9997275398
|
|||
|
O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.5002724602
|
|||
|
|
|||
|
|
|||
|
Symmetry Coordinates
|
|||
|
--------------------
|
|||
|
|
|||
|
Number of coordinates in each symmetry: 2 2 2 0
|
|||
|
|
|||
|
Symmetry A1 ( 1)
|
|||
|
|
|||
|
1 C z 3
|
|||
|
2 O z 6
|
|||
|
|
|||
|
Symmetry B1 ( 2)
|
|||
|
|
|||
|
3 C x 1
|
|||
|
4 O x 4
|
|||
|
|
|||
|
Symmetry B2 ( 3)
|
|||
|
|
|||
|
5 C y 2
|
|||
|
6 O y 5
|
|||
|
|
|||
|
|
|||
|
Interatomic separations (in Angstrom):
|
|||
|
--------------------------------------
|
|||
|
|
|||
|
C O
|
|||
|
------ ------
|
|||
|
C : 0.000000
|
|||
|
O : 1.852120 0.000000
|
|||
|
|
|||
|
|
|||
|
Max interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
|
|||
|
between atoms 2 and 1, "O " and "C ".
|
|||
|
|
|||
|
Min YX interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
|
|||
|
|
|||
|
|
|||
|
Bond distances (Angstrom):
|
|||
|
--------------------------
|
|||
|
|
|||
|
atom 1 atom 2 distance
|
|||
|
------ ------ --------
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Principal moments of inertia (u*A**2) and principal axes
|
|||
|
--------------------------------------------------------
|
|||
|
|
|||
|
IA 0.000000 0.000000 0.000000 1.000000
|
|||
|
IB 23.519191 0.000000 1.000000 0.000000
|
|||
|
IC 23.519191 1.000000 0.000000 0.000000
|
|||
|
|
|||
|
|
|||
|
Rotational constants
|
|||
|
--------------------
|
|||
|
|
|||
|
@ The molecule is linear.
|
|||
|
|
|||
|
B = 21487.94 MHz ( 0.716761 cm-1)
|
|||
|
|
|||
|
|
|||
|
@ Nuclear repulsion energy : 13.714285714286 Hartree
|
|||
|
|
|||
|
|
|||
|
Symmetry Orbitals
|
|||
|
-----------------
|
|||
|
|
|||
|
Number of orbitals in each symmetry: 32 16 16 6
|
|||
|
|
|||
|
|
|||
|
Symmetry A1 ( 1)
|
|||
|
|
|||
|
1 C s 1
|
|||
|
2 C s 2
|
|||
|
3 C s 3
|
|||
|
4 C s 4
|
|||
|
5 C pz 7
|
|||
|
6 C pz 10
|
|||
|
7 C pz 13
|
|||
|
8 C dxx 14
|
|||
|
9 C dyy 17
|
|||
|
10 C dzz 19
|
|||
|
11 C dxx 20
|
|||
|
12 C dyy 23
|
|||
|
13 C dzz 25
|
|||
|
14 C fxxz 28
|
|||
|
15 C fyyz 33
|
|||
|
16 C fzzz 35
|
|||
|
17 O s 36
|
|||
|
18 O s 37
|
|||
|
19 O s 38
|
|||
|
20 O s 39
|
|||
|
21 O pz 42
|
|||
|
22 O pz 45
|
|||
|
23 O pz 48
|
|||
|
24 O dxx 49
|
|||
|
25 O dyy 52
|
|||
|
26 O dzz 54
|
|||
|
27 O dxx 55
|
|||
|
28 O dyy 58
|
|||
|
29 O dzz 60
|
|||
|
30 O fxxz 63
|
|||
|
31 O fyyz 68
|
|||
|
32 O fzzz 70
|
|||
|
|
|||
|
|
|||
|
Symmetry B1 ( 2)
|
|||
|
|
|||
|
33 C px 5
|
|||
|
34 C px 8
|
|||
|
35 C px 11
|
|||
|
36 C dxz 16
|
|||
|
37 C dxz 22
|
|||
|
38 C fxxx 26
|
|||
|
39 C fxyy 29
|
|||
|
40 C fxzz 31
|
|||
|
41 O px 40
|
|||
|
42 O px 43
|
|||
|
43 O px 46
|
|||
|
44 O dxz 51
|
|||
|
45 O dxz 57
|
|||
|
46 O fxxx 61
|
|||
|
47 O fxyy 64
|
|||
|
48 O fxzz 66
|
|||
|
|
|||
|
|
|||
|
Symmetry B2 ( 3)
|
|||
|
|
|||
|
49 C py 6
|
|||
|
50 C py 9
|
|||
|
51 C py 12
|
|||
|
52 C dyz 18
|
|||
|
53 C dyz 24
|
|||
|
54 C fxxy 27
|
|||
|
55 C fyyy 32
|
|||
|
56 C fyzz 34
|
|||
|
57 O py 41
|
|||
|
58 O py 44
|
|||
|
59 O py 47
|
|||
|
60 O dyz 53
|
|||
|
61 O dyz 59
|
|||
|
62 O fxxy 62
|
|||
|
63 O fyyy 67
|
|||
|
64 O fyzz 69
|
|||
|
|
|||
|
|
|||
|
Symmetry A2 ( 4)
|
|||
|
|
|||
|
65 C dxy 15
|
|||
|
66 C dxy 21
|
|||
|
67 C fxyz 30
|
|||
|
68 O dxy 50
|
|||
|
69 O dxy 56
|
|||
|
70 O fxyz 65
|
|||
|
|
|||
|
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
|
|||
|
|
|||
|
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
|
|||
|
|
|||
|
|
|||
|
.---------------------------------------.
|
|||
|
| Starting in Integral Section (HERMIT) |
|
|||
|
`---------------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
***************************************************************************************
|
|||
|
****************** Output from **INTEGRALS input processing (HERMIT) ******************
|
|||
|
***************************************************************************************
|
|||
|
|
|||
|
|
|||
|
|
|||
|
*************************************************************************
|
|||
|
****************** Output from HERMIT input processing ******************
|
|||
|
*************************************************************************
|
|||
|
|
|||
|
|
|||
|
Default print level: 1
|
|||
|
|
|||
|
* Nuclear model: Point charge
|
|||
|
|
|||
|
Calculation of one- and two-electron Hamiltonian integrals.
|
|||
|
|
|||
|
The following one-electron property integrals are calculated as requested:
|
|||
|
- overlap integrals
|
|||
|
- dipole length integrals
|
|||
|
- Geometrical derivatives of overlap integrals
|
|||
|
- Geometrical derivatives of one-electron Hamiltonian integrals
|
|||
|
|
|||
|
Center of mass (bohr): 0.000000000000 0.000000000000 -0.000000000000
|
|||
|
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
|
|||
|
Gauge origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
|
|||
|
Dipole origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
|
|||
|
|
|||
|
|
|||
|
************************************************************************
|
|||
|
************************** Output from HERINT **************************
|
|||
|
************************************************************************
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Nuclear contribution to dipole moments
|
|||
|
--------------------------------------
|
|||
|
|
|||
|
au Debye C m (/(10**-30)
|
|||
|
|
|||
|
z 0.00381444 0.00969535 0.03234019
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Threshold for neglecting two-electron integrals: 1.00D-12
|
|||
|
HERMIT - Number of two-electron integrals written: 757487 ( 24.5% )
|
|||
|
HERMIT - Megabytes written: 8.677
|
|||
|
|
|||
|
Time used in TWOINT is 0.63 seconds
|
|||
|
Total CPU time used in HERMIT: 0.66 seconds
|
|||
|
Total wall time used in HERMIT: 0.16 seconds
|
|||
|
|
|||
|
|
|||
|
.----------------------------------.
|
|||
|
| End of Integral Section (HERMIT) |
|
|||
|
`----------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
.--------------------------------------------.
|
|||
|
| Starting in Wave Function Section (SIRIUS) |
|
|||
|
`--------------------------------------------'
|
|||
|
|
|||
|
NCCEXCI for singlet: 3 3 3 3
|
|||
|
NCCEXCI for triplet: 3 3 3 3
|
|||
|
|
|||
|
*** Output from Huckel module :
|
|||
|
|
|||
|
Using EWMO model: T
|
|||
|
Using EHT model: F
|
|||
|
Number of Huckel orbitals each symmetry: 6 2 2 0
|
|||
|
|
|||
|
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
|
|||
|
which normally is better than Extended Huckel Theory.
|
|||
|
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
|
|||
|
|
|||
|
Huckel EWMO eigenvalues for symmetry : 1
|
|||
|
-20.681282 -11.338857 -1.328178 -0.793745 -0.550570
|
|||
|
-0.312269
|
|||
|
|
|||
|
Huckel EWMO eigenvalues for symmetry : 2
|
|||
|
-0.635675 -0.387425
|
|||
|
|
|||
|
Huckel EWMO eigenvalues for symmetry : 3
|
|||
|
-0.635675 -0.387425
|
|||
|
|
|||
|
**********************************************************************
|
|||
|
*SIRIUS* a direct, restricted step, second order MCSCF program *
|
|||
|
**********************************************************************
|
|||
|
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 15:04:25 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
Title lines from ".mol" input file:
|
|||
|
CO/Scan
|
|||
|
Dalton Run w/o symmetry
|
|||
|
|
|||
|
Print level on unit LUPRI = 2 is 0
|
|||
|
Print level on unit LUW4 = 2 is 5
|
|||
|
|
|||
|
@ (Integral direct) CC calculation.
|
|||
|
|
|||
|
@ This is a combination run starting with
|
|||
|
@ a restricted, closed shell Hartree-Fock calculation
|
|||
|
|
|||
|
|
|||
|
Initial molecular orbitals are obtained according to
|
|||
|
".MOSTART EWMO " input option
|
|||
|
|
|||
|
Wave function specification
|
|||
|
============================
|
|||
|
|
|||
|
For the specification of the Coupled Cluster: see later.
|
|||
|
|
|||
|
@ Wave function type --- CC ---
|
|||
|
@ Number of closed shell electrons 14
|
|||
|
@ Number of electrons in active shells 0
|
|||
|
@ Total charge of the molecule 0
|
|||
|
|
|||
|
@ Spin multiplicity and 2 M_S 1 0
|
|||
|
@ Total number of symmetries 4 (point group: C2v)
|
|||
|
@ Reference state symmetry 1 (irrep name : A1 )
|
|||
|
|
|||
|
Orbital specifications
|
|||
|
======================
|
|||
|
@ Abelian symmetry species All | 1 2 3 4
|
|||
|
@ | A1 B1 B2 A2
|
|||
|
--- | --- --- --- ---
|
|||
|
@ Total number of orbitals 70 | 32 16 16 6
|
|||
|
@ Number of basis functions 70 | 32 16 16 6
|
|||
|
|
|||
|
** Automatic occupation of RHF orbitals **
|
|||
|
|
|||
|
-- Initial occupation of symmetries is determined from extended Huckel guess.
|
|||
|
-- Initial occupation of symmetries is :
|
|||
|
@ Occupied SCF orbitals 7 | 5 1 1 0
|
|||
|
|
|||
|
Maximum number of Fock iterations 0
|
|||
|
Maximum number of DIIS iterations 60
|
|||
|
Maximum number of QC-SCF iterations 60
|
|||
|
Threshold for SCF convergence 1.00D-06
|
|||
|
|
|||
|
|
|||
|
Changes of defaults for CC:
|
|||
|
---------------------------
|
|||
|
|
|||
|
|
|||
|
-Iterative triple excitations included
|
|||
|
-Excitation energies calculated
|
|||
|
|
|||
|
|
|||
|
|
|||
|
***********************************************
|
|||
|
***** DIIS acceleration of SCF iterations *****
|
|||
|
***********************************************
|
|||
|
|
|||
|
C1-DIIS algorithm; max error vectors = 8
|
|||
|
|
|||
|
Automatic occupation of symmetries with 14 electrons.
|
|||
|
|
|||
|
Iter Total energy Error norm Delta(E) SCF occupation
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
|
|||
|
Calculating AOSUPINT
|
|||
|
(Precalculated AO two-electron integrals are transformed to P-supermatrix elements.
|
|||
|
Threshold for discarding integrals : 1.00D-12 )
|
|||
|
CPU time used in FORMSUP is 0.21 seconds
|
|||
|
WALL time used in FORMSUP is 0.04 seconds
|
|||
|
@ 1 -112.013543095 2.50D+00 -1.12D+02 5 1 1 0
|
|||
|
Virial theorem: -V/T = 1.987149
|
|||
|
@ MULPOP C 1.24; O -1.24;
|
|||
|
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 2 -111.113674312 4.94D+00 9.00D-01 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.025082
|
|||
|
@ MULPOP C -1.36; O 1.36;
|
|||
|
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 3 -112.280107027 1.28D+00 -1.17D+00 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.017125
|
|||
|
@ MULPOP C -0.07; O 0.07;
|
|||
|
3 Level shift: doubly occupied orbital energies shifted by -1.00D-01
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 4 -112.372446151 2.28D-01 -9.23D-02 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.009674
|
|||
|
@ MULPOP C 0.33; O -0.33;
|
|||
|
4 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 5 -112.381907247 1.28D-01 -9.46D-03 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.008039
|
|||
|
@ MULPOP C 0.46; O -0.46;
|
|||
|
5 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 6 -112.383995563 1.25D-01 -2.09D-03 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007969
|
|||
|
@ MULPOP C 0.46; O -0.46;
|
|||
|
6 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 7 -112.400280837 8.65D-02 -1.63D-02 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007095
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
7 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 8 -112.402475007 2.22D-02 -2.19D-03 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.006313
|
|||
|
@ MULPOP C 0.40; O -0.40;
|
|||
|
8 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 9 -112.402788274 2.71D-02 -3.13D-04 5 1 1 0
|
|||
|
|
|||
|
!!! Info: DIIS restarted because it was stalled ...
|
|||
|
- energy changed by -3.133E-04
|
|||
|
- gradient changed by 4.913E-03
|
|||
|
- or strange C vector coeff. for current index (= 1) :
|
|||
|
0.959312 -0.000521 0.000237 0.120579 -1.835559 2.007890 -0.456700 0.204762
|
|||
|
Virial theorem: -V/T = 2.005566
|
|||
|
@ MULPOP C 0.38; O -0.38;
|
|||
|
9 Level shift: doubly occupied orbital energies shifted by -1.56D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 10 -112.402838079 2.84D-02 -4.98D-05 5 1 1 0
|
|||
|
|
|||
|
Info: SCF gradient has been lower than now,
|
|||
|
therefore 1 old iterations are removed from DIIS.
|
|||
|
Virial theorem: -V/T = 2.005386
|
|||
|
@ MULPOP C 0.40; O -0.40;
|
|||
|
10 Level shift: doubly occupied orbital energies shifted by -1.56D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 11 -112.402850456 3.21D-02 -1.24D-05 5 1 1 0
|
|||
|
|
|||
|
Info: SCF gradient has been lower than now,
|
|||
|
therefore 1 old iterations are removed from DIIS.
|
|||
|
Virial theorem: -V/T = 2.005926
|
|||
|
@ MULPOP C 0.38; O -0.38;
|
|||
|
11 Level shift: doubly occupied orbital energies shifted by -1.56D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 12 -112.402849129 3.58D-02 1.33D-06 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.005335
|
|||
|
@ MULPOP C 0.40; O -0.40;
|
|||
|
12 Level shift: doubly occupied orbital energies shifted by -1.56D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 13 -112.402918038 4.22D-03 -6.89D-05 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.005676
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 14 -112.402932926 1.26D-03 -1.49D-05 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.005751
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 15 -112.402933500 3.23D-04 -5.75D-07 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.005761
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 16 -112.402933529 6.34D-05 -2.88D-08 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.005764
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 17 -112.402933529 5.78D-06 -2.12D-10 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.005765
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 18 -112.402933529 9.76D-07 -5.74D-12 5 1 1 0
|
|||
|
|
|||
|
@ *** DIIS converged in 18 iterations !
|
|||
|
@ Converged SCF energy, gradient: -112.402933529215 9.76D-07
|
|||
|
- total time used in SIRFCK : 0.00 seconds
|
|||
|
|
|||
|
|
|||
|
*** SCF orbital energy analysis ***
|
|||
|
|
|||
|
Only the 20 lowest virtual orbital energies printed in each symmetry.
|
|||
|
|
|||
|
Number of electrons : 14
|
|||
|
Orbital occupations : 5 1 1 0
|
|||
|
|
|||
|
Sym Hartree-Fock orbital energies
|
|||
|
|
|||
|
1 A1 -20.60870330 -11.51909362 -1.20432269 -0.80844936 -0.46521372
|
|||
|
0.13412122 0.26642460 0.39402167 0.69183770 0.79154058
|
|||
|
0.97885917 1.14026975 1.24329939 1.78630850 1.81216113
|
|||
|
2.45152471 2.66862657 2.87636692 3.01277441 3.14245746
|
|||
|
3.44656561 3.91516774 4.57348126 5.50868509 5.59886097
|
|||
|
|
|||
|
2 B1 -0.47257168 -0.02060215 0.40842012 0.76361006 0.90970551
|
|||
|
1.73900633 1.94603785 2.83501363 2.97296242 3.29005435
|
|||
|
3.44346990 3.78127919 5.62404799 5.67489902 6.88379287
|
|||
|
7.19373689
|
|||
|
|
|||
|
3 B2 -0.47257168 -0.02060215 0.40842012 0.76361006 0.90970551
|
|||
|
1.73900633 1.94603785 2.83501363 2.97296242 3.29005435
|
|||
|
3.44346990 3.78127919 5.62404799 5.67489902 6.88379287
|
|||
|
7.19373689
|
|||
|
|
|||
|
4 A2 0.79154058 1.78630850 2.87636692 3.14245746 5.59886097
|
|||
|
6.74824933
|
|||
|
|
|||
|
E(LUMO) : -0.02060215 au (symmetry 2)
|
|||
|
- E(HOMO) : -0.46521372 au (symmetry 1)
|
|||
|
------------------------------------------
|
|||
|
gap : 0.44461157 au
|
|||
|
|
|||
|
--- Writing SIRIFC interface file
|
|||
|
|
|||
|
CPU and wall time for SCF : 0.468 0.105
|
|||
|
|
|||
|
|
|||
|
.-----------------------------------.
|
|||
|
| --- Final results from SIRIUS --- |
|
|||
|
`-----------------------------------'
|
|||
|
|
|||
|
|
|||
|
@ Spin multiplicity: 1
|
|||
|
@ Spatial symmetry: 1 ( irrep A1 in C2v )
|
|||
|
@ Total charge of molecule: 0
|
|||
|
|
|||
|
@ Final HF energy: -112.402933529215
|
|||
|
@ Nuclear repulsion: 13.714285714286
|
|||
|
@ Electronic energy: -126.117219243501
|
|||
|
|
|||
|
@ Final gradient norm: 0.000000975566
|
|||
|
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 15:04:26 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
|
|||
|
INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs
|
|||
|
|
|||
|
File label for MO orbitals: 9Oct19 FOCKDIIS
|
|||
|
|
|||
|
(Only coefficients > 0.0100 are printed.)
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 1 (A1 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6 7
|
|||
|
1 C :s 0.0001 0.9973 -0.0008 -0.0016 0.0004 -0.0023 -0.0102
|
|||
|
2 C :s 0.0006 -0.0122 0.1896 -1.0021 -0.0999 0.3157 -0.3958
|
|||
|
3 C :s -0.0002 0.0034 -0.0029 -0.0284 0.0037 0.0875 -0.8989
|
|||
|
4 C :s 0.0007 -0.0007 -0.0228 0.1275 -0.0793 -0.0804 4.1981
|
|||
|
5 C :pz -0.0001 0.0037 0.1020 0.0655 0.8135 0.6156 0.1889
|
|||
|
6 C :pz 0.0005 -0.0032 -0.0083 -0.0146 0.0151 -0.1278 0.2202
|
|||
|
7 C :pz 0.0005 -0.0011 -0.0168 0.0059 -0.0422 0.4544 -0.0866
|
|||
|
8 C :dxx -0.0000 0.0008 -0.0019 -0.0025 -0.0019 0.0163 -0.1073
|
|||
|
9 C :dyy -0.0000 0.0008 -0.0019 -0.0025 -0.0019 0.0163 -0.1073
|
|||
|
10 C :dzz -0.0001 0.0012 0.0031 -0.0043 0.0067 -0.0012 -0.1053
|
|||
|
11 C :dxx -0.0002 0.0019 -0.0047 -0.0093 0.0031 0.0641 -0.6715
|
|||
|
12 C :dyy -0.0002 0.0019 -0.0047 -0.0093 0.0031 0.0641 -0.6715
|
|||
|
13 C :dzz 0.0001 0.0019 0.0058 -0.0163 0.0252 0.0500 -0.7047
|
|||
|
14 C :fxxz -0.0001 0.0001 -0.0001 0.0014 -0.0002 0.0115 -0.0126
|
|||
|
15 C :fyyz -0.0001 0.0001 -0.0001 0.0014 -0.0002 0.0115 -0.0126
|
|||
|
16 C :fzzz -0.0000 0.0000 0.0018 -0.0004 -0.0009 0.0070 -0.0165
|
|||
|
17 O :s 0.9957 -0.0001 -0.0077 0.0010 -0.0045 0.0128 0.0084
|
|||
|
18 O :s -0.0157 -0.0003 0.9217 0.2518 -0.1807 -0.1440 -0.0829
|
|||
|
19 O :s 0.0053 -0.0000 0.0027 0.0006 0.0120 0.0183 0.0047
|
|||
|
20 O :s -0.0002 0.0007 0.0125 0.0396 -0.1378 -0.4338 -0.3372
|
|||
|
21 O :pz -0.0025 0.0002 -0.0083 0.1530 -0.4598 0.7529 0.1205
|
|||
|
22 O :pz 0.0013 -0.0010 -0.0144 0.0044 -0.0012 -0.1368 -0.1336
|
|||
|
23 O :pz 0.0012 -0.0003 -0.0013 -0.0057 -0.0219 0.4074 0.1623
|
|||
|
27 O :dxx 0.0025 -0.0001 -0.0005 0.0005 0.0072 0.0212 0.0071
|
|||
|
28 O :dyy 0.0025 -0.0001 -0.0005 0.0005 0.0072 0.0212 0.0071
|
|||
|
29 O :dzz 0.0022 0.0002 0.0016 -0.0074 0.0222 0.0164 0.0200
|
|||
|
32 O :fzzz 0.0001 0.0000 0.0006 0.0005 -0.0017 0.0115 0.0087
|
|||
|
|
|||
|
Orbital 8 9 10 11 12 13 14
|
|||
|
1 C :s 0.0650 0.0341 0.0000 0.1458 0.2382 -0.5856 -0.0000
|
|||
|
2 C :s 0.3275 0.1363 0.0000 0.7052 1.3729 -3.0105 -0.0000
|
|||
|
3 C :s 0.2078 0.1183 -0.0000 -0.1877 -0.9384 0.9990 0.0000
|
|||
|
4 C :s -1.6039 -0.6761 -0.0000 -0.9584 3.6216 -0.7712 -0.0000
|
|||
|
5 C :pz 0.2741 -0.1258 0.0000 0.2713 0.1769 0.6272 -0.0000
|
|||
|
6 C :pz 1.2829 0.3838 -0.0000 -0.9361 -0.2098 -0.9074 0.0000
|
|||
|
7 C :pz -1.9396 -0.2529 -0.0000 -0.7544 1.4010 0.5873 -0.0000
|
|||
|
8 C :dxx 0.0146 0.0117 0.0141 -0.0316 -0.1172 0.1393 -0.0131
|
|||
|
9 C :dyy 0.0146 0.0117 -0.0141 -0.0316 -0.1172 0.1393 0.0131
|
|||
|
10 C :dzz 0.0338 0.0005 -0.0000 -0.0366 -0.1200 0.1439 0.0000
|
|||
|
11 C :dxx 0.1904 0.0046 -0.5054 -0.2155 -1.1283 0.7235 -0.0462
|
|||
|
12 C :dyy 0.1904 0.0046 0.5054 -0.2155 -1.1283 0.7235 0.0462
|
|||
|
13 C :dzz 0.0966 0.3210 -0.0000 -0.1742 -0.1009 1.3619 -0.0000
|
|||
|
14 C :fxxz -0.0779 -0.0292 -0.0007 0.0698 0.0161 0.0721 0.0362
|
|||
|
15 C :fyyz -0.0779 -0.0292 0.0007 0.0698 0.0161 0.0721 -0.0362
|
|||
|
16 C :fzzz -0.0895 -0.0180 0.0000 0.0372 0.0220 0.0627 0.0000
|
|||
|
17 O :s -0.0419 0.0391 0.0000 -0.0830 0.1204 0.0405 -0.0000
|
|||
|
18 O :s -0.0673 -0.2238 0.0000 -0.5141 0.5344 0.0765 -0.0000
|
|||
|
19 O :s -0.0807 -0.6219 -0.0000 -0.5987 0.5720 0.1709 0.0000
|
|||
|
20 O :s 1.3317 2.6728 0.0000 3.6986 -4.3949 -1.5470 0.0000
|
|||
|
21 O :pz 0.1746 -0.1721 -0.0000 0.1408 0.1561 0.1819 0.0000
|
|||
|
22 O :pz 0.1561 -0.7121 0.0000 1.3589 -0.2330 0.2947 -0.0000
|
|||
|
23 O :pz -0.4982 0.8309 -0.0000 -1.9723 1.1523 0.4045 -0.0000
|
|||
|
24 O :dxx -0.0030 -0.0696 0.0007 -0.0482 0.0405 0.0079 -0.0081
|
|||
|
25 O :dyy -0.0030 -0.0696 -0.0007 -0.0482 0.0405 0.0079 0.0081
|
|||
|
26 O :dzz -0.0058 -0.0611 -0.0000 -0.0591 0.0559 0.0241 0.0000
|
|||
|
27 O :dxx -0.0924 -0.4480 -0.0231 -0.4632 0.4512 0.1454 0.5012
|
|||
|
28 O :dyy -0.0924 -0.4480 0.0231 -0.4632 0.4512 0.1454 -0.5012
|
|||
|
29 O :dzz -0.0483 -0.4833 -0.0000 -0.5011 0.4955 0.1280 -0.0000
|
|||
|
30 O :fxxz -0.0084 0.0482 0.0016 -0.0881 0.0087 -0.0261 -0.0024
|
|||
|
31 O :fyyz -0.0084 0.0482 -0.0016 -0.0881 0.0087 -0.0261 0.0024
|
|||
|
32 O :fzzz -0.0084 0.0506 -0.0000 -0.0890 0.0112 -0.0180 0.0000
|
|||
|
|
|||
|
Orbital 15
|
|||
|
1 C :s 0.0396
|
|||
|
3 C :s -0.0252
|
|||
|
4 C :s -0.3532
|
|||
|
5 C :pz -3.5868
|
|||
|
6 C :pz 4.9898
|
|||
|
7 C :pz 0.2966
|
|||
|
8 C :dxx -0.0265
|
|||
|
9 C :dyy -0.0265
|
|||
|
10 C :dzz 0.0467
|
|||
|
11 C :dxx 0.0786
|
|||
|
12 C :dyy 0.0786
|
|||
|
13 C :dzz -0.0804
|
|||
|
14 C :fxxz -0.3119
|
|||
|
15 C :fyyz -0.3119
|
|||
|
16 C :fzzz -0.3332
|
|||
|
17 O :s -0.1391
|
|||
|
18 O :s -0.6893
|
|||
|
19 O :s 0.0132
|
|||
|
20 O :s 0.9671
|
|||
|
21 O :pz 0.2450
|
|||
|
22 O :pz 0.0190
|
|||
|
23 O :pz -0.3390
|
|||
|
24 O :dxx 0.0135
|
|||
|
25 O :dyy 0.0135
|
|||
|
26 O :dzz 0.0126
|
|||
|
27 O :dxx -0.1446
|
|||
|
28 O :dyy -0.1446
|
|||
|
29 O :dzz 0.2850
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 2 (B1 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6 7
|
|||
|
1 C :px -0.1797 -0.8503 0.2598 0.0274 0.1050 3.8621 2.5064
|
|||
|
2 C :px 0.0115 0.1271 1.6366 -0.0712 0.0130 -5.8584 -3.8285
|
|||
|
3 C :px -0.0288 -0.2671 -1.4741 -0.1770 -0.3949 -0.3385 -0.4095
|
|||
|
4 C :dxz -0.0043 0.0001 0.0015 -0.0027 0.0157 0.0111 -0.0209
|
|||
|
5 C :dxz -0.0283 0.0121 0.0371 0.5299 -0.8902 0.2339 -0.3141
|
|||
|
6 C :fxxx -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
|
|||
|
7 C :fxyy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
|
|||
|
8 C :fxzz -0.0043 -0.0063 -0.1115 -0.0010 -0.0060 0.3486 0.3877
|
|||
|
9 O :px -0.9192 0.3033 0.0632 -0.2822 -0.0269 0.1789 -0.0599
|
|||
|
10 O :px 0.0364 -0.0486 0.0027 -1.1127 -1.0108 -0.1083 -0.0039
|
|||
|
11 O :px -0.0644 0.0851 0.0997 1.0705 1.1630 -0.2648 0.1713
|
|||
|
13 O :dxz 0.0126 0.0069 -0.0188 -0.0268 0.1095 0.4819 -0.8563
|
|||
|
14 O :fxxx -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
|
|||
|
15 O :fxyy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
|
|||
|
16 O :fxzz -0.0056 0.0034 -0.0002 0.0779 0.0689 0.0080 0.0005
|
|||
|
|
|||
|
Orbital 8 9 10 11
|
|||
|
1 C :px 0.0000 -0.0889 -0.0041 0.1019
|
|||
|
2 C :px -0.0000 0.1308 -0.0994 0.7366
|
|||
|
3 C :px -0.0000 0.1158 0.1622 -0.0029
|
|||
|
4 C :dxz -0.0000 0.4507 -1.1113 0.0525
|
|||
|
5 C :dxz 0.0000 -0.1066 0.7398 -0.0311
|
|||
|
6 C :fxxx -0.2041 -0.1435 -0.0423 -0.0903
|
|||
|
7 C :fxyy 0.6124 -0.1435 -0.0423 -0.0903
|
|||
|
8 C :fxzz -0.0000 0.5310 0.2405 -0.3482
|
|||
|
9 O :px -0.0000 -1.0753 -0.6480 -3.7850
|
|||
|
10 O :px -0.0000 1.8102 1.0634 6.0541
|
|||
|
11 O :px 0.0000 -0.0203 -0.2022 0.3527
|
|||
|
12 O :dxz -0.0000 0.0291 0.0188 -0.0050
|
|||
|
13 O :dxz 0.0000 0.3099 0.2808 -0.0603
|
|||
|
14 O :fxxx -0.0007 -0.1464 -0.0782 -0.4213
|
|||
|
15 O :fxyy 0.0020 -0.1464 -0.0782 -0.4213
|
|||
|
16 O :fxzz 0.0000 -0.0882 -0.0453 -0.4475
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 3 (B2 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6 7
|
|||
|
1 C :py -0.1797 -0.8503 0.2598 0.0274 0.1050 3.8621 2.5064
|
|||
|
2 C :py 0.0115 0.1271 1.6366 -0.0712 0.0130 -5.8584 -3.8285
|
|||
|
3 C :py -0.0288 -0.2671 -1.4741 -0.1770 -0.3949 -0.3385 -0.4095
|
|||
|
4 C :dyz -0.0043 0.0001 0.0015 -0.0027 0.0157 0.0111 -0.0209
|
|||
|
5 C :dyz -0.0283 0.0121 0.0371 0.5299 -0.8902 0.2339 -0.3141
|
|||
|
6 C :fxxy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
|
|||
|
7 C :fyyy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
|
|||
|
8 C :fyzz -0.0043 -0.0063 -0.1115 -0.0010 -0.0060 0.3486 0.3877
|
|||
|
9 O :py -0.9192 0.3033 0.0632 -0.2822 -0.0269 0.1789 -0.0599
|
|||
|
10 O :py 0.0364 -0.0486 0.0027 -1.1127 -1.0108 -0.1083 -0.0039
|
|||
|
11 O :py -0.0644 0.0851 0.0997 1.0705 1.1630 -0.2648 0.1713
|
|||
|
13 O :dyz 0.0126 0.0069 -0.0188 -0.0268 0.1095 0.4819 -0.8563
|
|||
|
14 O :fxxy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
|
|||
|
15 O :fyyy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
|
|||
|
16 O :fyzz -0.0056 0.0034 -0.0002 0.0779 0.0689 0.0080 0.0005
|
|||
|
|
|||
|
Orbital 8 9 10 11
|
|||
|
1 C :py 0.0000 -0.0889 -0.0041 0.1019
|
|||
|
2 C :py -0.0000 0.1308 -0.0994 0.7366
|
|||
|
3 C :py -0.0000 0.1158 0.1622 -0.0029
|
|||
|
4 C :dyz -0.0000 0.4507 -1.1113 0.0525
|
|||
|
5 C :dyz 0.0000 -0.1066 0.7398 -0.0311
|
|||
|
6 C :fxxy 0.6124 -0.1435 -0.0423 -0.0903
|
|||
|
7 C :fyyy -0.2041 -0.1435 -0.0423 -0.0903
|
|||
|
8 C :fyzz 0.0000 0.5310 0.2405 -0.3482
|
|||
|
9 O :py -0.0000 -1.0753 -0.6480 -3.7850
|
|||
|
10 O :py 0.0000 1.8102 1.0634 6.0541
|
|||
|
11 O :py -0.0000 -0.0203 -0.2022 0.3527
|
|||
|
12 O :dyz 0.0000 0.0291 0.0188 -0.0050
|
|||
|
13 O :dyz 0.0000 0.3099 0.2808 -0.0603
|
|||
|
14 O :fxxy 0.0020 -0.1464 -0.0782 -0.4213
|
|||
|
15 O :fyyy -0.0007 -0.1464 -0.0782 -0.4213
|
|||
|
16 O :fyzz 0.0000 -0.0882 -0.0453 -0.4475
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 4 (A2 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6
|
|||
|
1 C :dxy -0.0283 -0.0262 0.0521 1.1790 -0.0297 -0.0219
|
|||
|
2 C :dxy 1.0109 -0.0923 -0.0194 -0.6069 0.0436 0.0389
|
|||
|
3 C :fxyz 0.0014 0.0724 0.9959 -0.0422 0.0488 0.0325
|
|||
|
4 O :dxy -0.0014 -0.0161 -0.0120 0.0063 -0.0196 1.1643
|
|||
|
5 O :dxy 0.0461 1.0025 -0.1029 0.0552 0.0084 -0.5861
|
|||
|
6 O :fxyz -0.0032 -0.0049 -0.0279 0.0125 1.0000 0.0177
|
|||
|
|
|||
|
Total CPU time used in SIRIUS : 0.52 seconds
|
|||
|
Total wall time used in SIRIUS : 0.12 seconds
|
|||
|
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 15:04:26 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
NOTE: 1 informational messages have been issued.
|
|||
|
Check output, result, and error files for "INFO".
|
|||
|
|
|||
|
|
|||
|
.---------------------------------------.
|
|||
|
| End of Wave Function Section (SIRIUS) |
|
|||
|
`---------------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
.------------------------------------------.
|
|||
|
| Starting in Coupled Cluster Section (CC) |
|
|||
|
`------------------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
*******************************************************************************
|
|||
|
*******************************************************************************
|
|||
|
* *
|
|||
|
* *
|
|||
|
* START OF COUPLED CLUSTER CALCULATION *
|
|||
|
* *
|
|||
|
* *
|
|||
|
*******************************************************************************
|
|||
|
*******************************************************************************
|
|||
|
|
|||
|
|
|||
|
|
|||
|
CCR12 ANSATZ = 0
|
|||
|
|
|||
|
CCR12 APPROX = 0
|
|||
|
|
|||
|
|
|||
|
|
|||
|
*******************************************************************
|
|||
|
* *
|
|||
|
*---------- >---------*
|
|||
|
*---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------*
|
|||
|
*---------- >---------*
|
|||
|
* *
|
|||
|
*******************************************************************
|
|||
|
|
|||
|
|
|||
|
The Direct Coupled Cluster Energy Program
|
|||
|
-----------------------------------------
|
|||
|
|
|||
|
|
|||
|
Number of t1 amplitudes : 165
|
|||
|
Number of t2 amplitudes : 27297
|
|||
|
Total number of amplitudes in ccsd : 27462
|
|||
|
|
|||
|
Iter. 1: Coupled cluster MP2 energy : -112.8023457149946864
|
|||
|
Iter. 1: Coupled cluster CC2 energy : -112.8020519392733405
|
|||
|
Iter. 2: Coupled cluster CC2 energy : -112.8388093711078994
|
|||
|
Iter. 3: Coupled cluster CC2 energy : -112.8156115118085978
|
|||
|
Iter. 4: Coupled cluster CC2 energy : -112.6677535507889445
|
|||
|
Iter. 5: Coupled cluster CC2 energy : -112.6174131751864849
|
|||
|
Iter. 6: Coupled cluster CC2 energy : -112.6617051667174678
|
|||
|
Iter. 7: Coupled cluster CC2 energy : -112.6699762176847486
|
|||
|
Iter. 8: Coupled cluster CC2 energy : -112.6924004432380286
|
|||
|
Iter. 9: Coupled cluster CC2 energy : -112.7485836257576182
|
|||
|
Iter. 10: Coupled cluster CC2 energy : -112.7397521543649930
|
|||
|
Iter. 11: Coupled cluster CC2 energy : -112.7598352770052799
|
|||
|
Iter. 12: Coupled cluster CC2 energy : -112.7278147075538044
|
|||
|
Iter. 13: Coupled cluster CC2 energy : -112.7003247200288882
|
|||
|
Iter. 14: Coupled cluster CC2 energy : -112.5581646736121399
|
|||
|
Iter. 15: Coupled cluster CC2 energy : -112.7445184320676361
|
|||
|
Iter. 16: Coupled cluster CC2 energy : -112.8114629534504019
|
|||
|
Iter. 17: Coupled cluster CC2 energy : -112.8905941548332237
|
|||
|
Iter. 18: Coupled cluster CC2 energy : -112.8645102259292798
|
|||
|
Iter. 19: Coupled cluster CC2 energy : -112.9112311028697349
|
|||
|
Iter. 20: Coupled cluster CC2 energy : -112.8976753213043622
|
|||
|
Iter. 21: Coupled cluster CC2 energy : -112.8032112545410541
|
|||
|
Iter. 22: Coupled cluster CC2 energy : -112.6680115250197787
|
|||
|
Iter. 23: Coupled cluster CC2 energy : -112.7730410905156191
|
|||
|
Iter. 24: Coupled cluster CC2 energy : -112.6072606012021993
|
|||
|
Iter. 25: Coupled cluster CC2 energy : -112.6917536694793114
|
|||
|
Iter. 26: Coupled cluster CC2 energy : -112.7187893679180490
|
|||
|
Iter. 27: Coupled cluster CC2 energy : -112.6946878546881550
|
|||
|
Iter. 28: Coupled cluster CC2 energy : -112.6790387905103614
|
|||
|
Iter. 29: Coupled cluster CC2 energy : -112.7127447204753850
|
|||
|
Iter. 30: Coupled cluster CC2 energy : -112.7903373137439473
|
|||
|
Iter. 31: Coupled cluster CC2 energy : -112.8127161048277429
|
|||
|
Iter. 32: Coupled cluster CC2 energy : -112.6708095550552144
|
|||
|
Iter. 33: Coupled cluster CC2 energy : -112.6977396078256533
|
|||
|
Iter. 34: Coupled cluster CC2 energy : -112.7042604861207735
|
|||
|
Iter. 35: Coupled cluster CC2 energy : -112.7174607849879493
|
|||
|
Iter. 36: Coupled cluster CC2 energy : -112.7110297666966972
|
|||
|
Iter. 37: Coupled cluster CC2 energy : -112.7150959569447792
|
|||
|
Iter. 38: Coupled cluster CC2 energy : -113.1098819600233298
|
|||
|
Iter. 39: Coupled cluster CC2 energy : -112.9916268456766062
|
|||
|
Iter. 40: Coupled cluster CC2 energy : -112.5591219901514393
|
|||
|
Energy not converged in 40 iterations
|
|||
|
|
|||
|
--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
|
|||
|
Date and time (Linux) : Wed Oct 9 15:04:28 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
Reason: CC equations not converged.
|
|||
|
|
|||
|
Total CPU time used in DALTON: 21.19 seconds
|
|||
|
Total wall time used in DALTON: 2.35 seconds
|
|||
|
|
|||
|
|
|||
|
QTRACE dump of internal trace stack
|
|||
|
|
|||
|
========================
|
|||
|
level module
|
|||
|
========================
|
|||
|
5 CCSD_ENERGY
|
|||
|
4 CC_DRV
|
|||
|
3 CC
|
|||
|
2 DALTON
|
|||
|
1 DALTON main
|
|||
|
========================
|
|||
|
|