986 lines
42 KiB
Plaintext
986 lines
42 KiB
Plaintext
|
|
|||
|
|
|||
|
************************************************************************
|
|||
|
*************** Dalton - An Electronic Structure Program ***************
|
|||
|
************************************************************************
|
|||
|
|
|||
|
This is output from DALTON release Dalton2017.alpha (2017)
|
|||
|
( Web site: http://daltonprogram.org )
|
|||
|
|
|||
|
----------------------------------------------------------------------------
|
|||
|
|
|||
|
NOTE:
|
|||
|
|
|||
|
Dalton is an experimental code for the evaluation of molecular
|
|||
|
properties using (MC)SCF, DFT, CI, and CC wave functions.
|
|||
|
The authors accept no responsibility for the performance of
|
|||
|
the code or for the correctness of the results.
|
|||
|
|
|||
|
The code (in whole or part) is provided under a licence and
|
|||
|
is not to be reproduced for further distribution without
|
|||
|
the written permission of the authors or their representatives.
|
|||
|
|
|||
|
See the home page "http://daltonprogram.org" for further information.
|
|||
|
|
|||
|
If results obtained with this code are published,
|
|||
|
the appropriate citations would be both of:
|
|||
|
|
|||
|
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
|
|||
|
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
|
|||
|
P. Dahle, E. K. Dalskov, U. Ekstroem,
|
|||
|
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
|
|||
|
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
|
|||
|
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
|
|||
|
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
|
|||
|
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
|
|||
|
P. Joergensen, J. Kauczor, S. Kirpekar,
|
|||
|
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
|
|||
|
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
|
|||
|
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
|
|||
|
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
|
|||
|
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
|
|||
|
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
|
|||
|
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
|
|||
|
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
|
|||
|
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
|
|||
|
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
|
|||
|
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
|
|||
|
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
|
|||
|
and H. Agren,
|
|||
|
"The Dalton quantum chemistry program system",
|
|||
|
WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
Dalton, a Molecular Electronic Structure Program,
|
|||
|
Release Dalton2017.alpha (2017), see http://daltonprogram.org
|
|||
|
----------------------------------------------------------------------------
|
|||
|
|
|||
|
Authors in alphabetical order (major contribution(s) in parenthesis):
|
|||
|
|
|||
|
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
|
|||
|
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
|
|||
|
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
|
|||
|
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
|
|||
|
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
|
|||
|
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
|
|||
|
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
|
|||
|
Ove Christiansen, Aarhus University, Denmark (CC module)
|
|||
|
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
|
|||
|
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
|
|||
|
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
|
|||
|
Paal Dahle, University of Oslo, Norway (Parallelization)
|
|||
|
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
|
|||
|
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
|
|||
|
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
|
|||
|
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
|
|||
|
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
|
|||
|
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
|
|||
|
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
|
|||
|
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
|
|||
|
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
|
|||
|
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
|
|||
|
Kasper Hald, Aarhus University, Denmark (CC module)
|
|||
|
Asger Halkier, Aarhus University, Denmark (CC module)
|
|||
|
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
|
|||
|
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
|
|||
|
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
|
|||
|
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
|
|||
|
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
|
|||
|
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
|
|||
|
Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA)
|
|||
|
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
|
|||
|
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
|
|||
|
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
|
|||
|
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
|
|||
|
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
|
|||
|
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
|
|||
|
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
|
|||
|
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
|
|||
|
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
|
|||
|
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
|
|||
|
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
|
|||
|
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
|
|||
|
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
|
|||
|
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
|||
|
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
|
|||
|
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
|
|||
|
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
|
|||
|
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
|
|||
|
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
|
|||
|
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
|
|||
|
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
|
|||
|
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
|
|||
|
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Anders Osted, Copenhagen University, Denmark (QM/MM)
|
|||
|
Martin J. Packer, University of Sheffield, UK (SOPPA)
|
|||
|
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
|
|||
|
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
|||
|
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
|
|||
|
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
|
|||
|
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
|
|||
|
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
|
|||
|
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
|
|||
|
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
|
|||
|
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
|
|||
|
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
|
|||
|
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
|
|||
|
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
|
|||
|
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
|
|||
|
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
|
|||
|
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
|
|||
|
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
|
|||
|
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
|
|||
|
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
|
|||
|
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
|
|||
|
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
|
|||
|
David P. Tew, University of Bristol, England (CCSD(R12))
|
|||
|
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
|
|||
|
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
|
|||
|
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
|
|||
|
--------------------------------------------------------------------------------
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 14:38:52 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
* Work memory size : 6400000000 = 47.684 gigabytes.
|
|||
|
|
|||
|
* Directories for basis set searches:
|
|||
|
1) /home/CEISAM/jacquemin-d/TITOU/CO/DZ
|
|||
|
2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis
|
|||
|
|
|||
|
|
|||
|
Compilation information
|
|||
|
-----------------------
|
|||
|
|
|||
|
Who compiled | blondel-a
|
|||
|
Host | jaws.cluster
|
|||
|
System | Linux-3.10.0-862.9.1.el7.x86_64
|
|||
|
CMake generator | Unix Makefiles
|
|||
|
Processor | x86_64
|
|||
|
64-bit integers | ON
|
|||
|
MPI | OFF
|
|||
|
Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
|||
|
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
|||
|
| ibraries_2018.3.222/linux/bin/intel64/ifort
|
|||
|
Fortran compiler version | ifort (IFORT) 18.0.3 20180410
|
|||
|
C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
|||
|
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
|||
|
| ibraries_2018.3.222/linux/bin/intel64/icc
|
|||
|
C compiler version | icc (ICC) 18.0.3 20180410
|
|||
|
C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
|||
|
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
|||
|
| ibraries_2018.3.222/linux/bin/intel64/icpc
|
|||
|
C++ compiler version | icpc (ICC) 18.0.3 20180410
|
|||
|
Static linking | ON
|
|||
|
Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083
|
|||
|
Git branch | master
|
|||
|
Configuration time | 2018-07-26 15:11:23.544354
|
|||
|
|
|||
|
|
|||
|
Content of the .dal input file
|
|||
|
----------------------------------
|
|||
|
|
|||
|
**DALTON INPUT
|
|||
|
.RUN WAVE FUNCTIONS
|
|||
|
**INTEGRALS
|
|||
|
.DIPLEN
|
|||
|
.DEROVL
|
|||
|
.DERHAM
|
|||
|
**WAVE FUNCTIONS
|
|||
|
.CC
|
|||
|
*CC INP
|
|||
|
.CC2
|
|||
|
.CCSD
|
|||
|
.CC3
|
|||
|
*CCEXCI
|
|||
|
.NCCEXCI
|
|||
|
3 3 3 3
|
|||
|
3 3 3 3
|
|||
|
**END OF DALTON INPUT
|
|||
|
|
|||
|
|
|||
|
Content of the .mol file
|
|||
|
----------------------------
|
|||
|
|
|||
|
BASIS
|
|||
|
cc-pVDZ
|
|||
|
CO/Scan
|
|||
|
Dalton Run w/o symmetry
|
|||
|
AtomTypes=2 Charge=0 Cartesian
|
|||
|
Charge=6.0 Atoms=1
|
|||
|
C 0.0000000 0.0000000000 0.000
|
|||
|
Charge=8.0 Atoms=1
|
|||
|
O 0.00000000 0.0000000000 3.400
|
|||
|
|
|||
|
|
|||
|
*******************************************************************
|
|||
|
*********** Output from DALTON general input processing ***********
|
|||
|
*******************************************************************
|
|||
|
|
|||
|
--------------------------------------------------------------------------------
|
|||
|
Overall default print level: 0
|
|||
|
Print level for DALTON.STAT: 1
|
|||
|
|
|||
|
HERMIT 1- and 2-electron integral sections will be executed
|
|||
|
"Old" integral transformation used (limited to max 255 basis functions)
|
|||
|
Wave function sections will be executed (SIRIUS module)
|
|||
|
--------------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
****************************************************************************
|
|||
|
*************** Output of molecule and basis set information ***************
|
|||
|
****************************************************************************
|
|||
|
|
|||
|
|
|||
|
The two title cards from your ".mol" input:
|
|||
|
------------------------------------------------------------------------
|
|||
|
1: CO/Scan
|
|||
|
2: Dalton Run w/o symmetry
|
|||
|
------------------------------------------------------------------------
|
|||
|
|
|||
|
Atomic type no. 1
|
|||
|
--------------------
|
|||
|
Nuclear charge: 6.00000
|
|||
|
Number of symmetry independent centers: 1
|
|||
|
Number of basis sets to read; 2
|
|||
|
Basis set file used for this atomic type with Z = 6 :
|
|||
|
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVDZ"
|
|||
|
|
|||
|
Atomic type no. 2
|
|||
|
--------------------
|
|||
|
Nuclear charge: 8.00000
|
|||
|
Number of symmetry independent centers: 1
|
|||
|
Number of basis sets to read; 2
|
|||
|
Basis set file used for this atomic type with Z = 8 :
|
|||
|
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVDZ"
|
|||
|
|
|||
|
|
|||
|
SYMADD: Requested addition of symmetry
|
|||
|
--------------------------------------
|
|||
|
|
|||
|
Symmetry test threshold: 5.00E-06
|
|||
|
|
|||
|
@ The molecule is centered at center of mass and rotated
|
|||
|
@ so principal axes of inertia are along coordinate axes.
|
|||
|
|
|||
|
Symmetry class found: C(oo,v)
|
|||
|
|
|||
|
Symmetry Independent Centres
|
|||
|
----------------------------
|
|||
|
8 : 0.00000000 0.00000000 1.45740753 Isotope 1
|
|||
|
6 : 0.00000000 0.00000000 -1.94259247 Isotope 1
|
|||
|
|
|||
|
The following elements were found: X Y
|
|||
|
|
|||
|
|
|||
|
SYMGRP: Point group information
|
|||
|
-------------------------------
|
|||
|
|
|||
|
@ Full point group is: C(oo,v)
|
|||
|
@ Represented as: C2v
|
|||
|
|
|||
|
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
|
|||
|
|
|||
|
* The point group was generated by:
|
|||
|
|
|||
|
Reflection in the yz-plane
|
|||
|
Reflection in the xz-plane
|
|||
|
|
|||
|
* Group multiplication table
|
|||
|
|
|||
|
| E C2z Oxz Oyz
|
|||
|
-----+--------------------
|
|||
|
E | E C2z Oxz Oyz
|
|||
|
C2z | C2z E Oyz Oxz
|
|||
|
Oxz | Oxz Oyz E C2z
|
|||
|
Oyz | Oyz Oxz C2z E
|
|||
|
|
|||
|
* Character table
|
|||
|
|
|||
|
| E C2z Oxz Oyz
|
|||
|
-----+--------------------
|
|||
|
A1 | 1 1 1 1
|
|||
|
B1 | 1 -1 1 -1
|
|||
|
B2 | 1 -1 -1 1
|
|||
|
A2 | 1 1 -1 -1
|
|||
|
|
|||
|
* Direct product table
|
|||
|
|
|||
|
| A1 B1 B2 A2
|
|||
|
-----+--------------------
|
|||
|
A1 | A1 B1 B2 A2
|
|||
|
B1 | B1 A1 A2 B2
|
|||
|
B2 | B2 A2 A1 B1
|
|||
|
A2 | A2 B2 B1 A1
|
|||
|
|
|||
|
|
|||
|
Isotopic Masses
|
|||
|
---------------
|
|||
|
|
|||
|
C 12.000000
|
|||
|
O 15.994915
|
|||
|
|
|||
|
Total mass: 27.994915 amu
|
|||
|
Natural abundance: 98.663 %
|
|||
|
|
|||
|
Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000
|
|||
|
|
|||
|
|
|||
|
Atoms and basis sets
|
|||
|
--------------------
|
|||
|
|
|||
|
Number of atom types : 2
|
|||
|
Total number of atoms: 2
|
|||
|
|
|||
|
Basis set used is "cc-pVDZ" from the basis set library.
|
|||
|
|
|||
|
label atoms charge prim cont basis
|
|||
|
----------------------------------------------------------------------
|
|||
|
C 1 6.0000 27 15 [9s4p1d|3s2p1d]
|
|||
|
O 1 8.0000 27 15 [9s4p1d|3s2p1d]
|
|||
|
----------------------------------------------------------------------
|
|||
|
total: 2 14.0000 54 30
|
|||
|
----------------------------------------------------------------------
|
|||
|
Cartesian basis used.
|
|||
|
(Note that d, f, ... atomic GTOs are not all normalized.)
|
|||
|
|
|||
|
Threshold for neglecting AO integrals: 1.00D-12
|
|||
|
|
|||
|
|
|||
|
Cartesian Coordinates (a.u.)
|
|||
|
----------------------------
|
|||
|
|
|||
|
Total number of coordinates: 6
|
|||
|
C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9425924672
|
|||
|
O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.4574075328
|
|||
|
|
|||
|
|
|||
|
Symmetry Coordinates
|
|||
|
--------------------
|
|||
|
|
|||
|
Number of coordinates in each symmetry: 2 2 2 0
|
|||
|
|
|||
|
Symmetry A1 ( 1)
|
|||
|
|
|||
|
1 C z 3
|
|||
|
2 O z 6
|
|||
|
|
|||
|
Symmetry B1 ( 2)
|
|||
|
|
|||
|
3 C x 1
|
|||
|
4 O x 4
|
|||
|
|
|||
|
Symmetry B2 ( 3)
|
|||
|
|
|||
|
5 C y 2
|
|||
|
6 O y 5
|
|||
|
|
|||
|
|
|||
|
Interatomic separations (in Angstrom):
|
|||
|
--------------------------------------
|
|||
|
|
|||
|
C O
|
|||
|
------ ------
|
|||
|
C : 0.000000
|
|||
|
O : 1.799203 0.000000
|
|||
|
|
|||
|
|
|||
|
Max interatomic separation is 1.7992 Angstrom ( 3.4000 Bohr)
|
|||
|
between atoms 2 and 1, "O " and "C ".
|
|||
|
|
|||
|
Min YX interatomic separation is 1.7992 Angstrom ( 3.4000 Bohr)
|
|||
|
|
|||
|
|
|||
|
Bond distances (Angstrom):
|
|||
|
--------------------------
|
|||
|
|
|||
|
atom 1 atom 2 distance
|
|||
|
------ ------ --------
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Principal moments of inertia (u*A**2) and principal axes
|
|||
|
--------------------------------------------------------
|
|||
|
|
|||
|
IA 0.000000 0.000000 0.000000 1.000000
|
|||
|
IB 22.194437 0.000000 1.000000 0.000000
|
|||
|
IC 22.194437 1.000000 0.000000 0.000000
|
|||
|
|
|||
|
|
|||
|
Rotational constants
|
|||
|
--------------------
|
|||
|
|
|||
|
@ The molecule is linear.
|
|||
|
|
|||
|
B = 22770.53 MHz ( 0.759543 cm-1)
|
|||
|
|
|||
|
|
|||
|
@ Nuclear repulsion energy : 14.117647058824 Hartree
|
|||
|
|
|||
|
|
|||
|
Symmetry Orbitals
|
|||
|
-----------------
|
|||
|
|
|||
|
Number of orbitals in each symmetry: 16 6 6 2
|
|||
|
|
|||
|
|
|||
|
Symmetry A1 ( 1)
|
|||
|
|
|||
|
1 C s 1
|
|||
|
2 C s 2
|
|||
|
3 C s 3
|
|||
|
4 C pz 6
|
|||
|
5 C pz 9
|
|||
|
6 C dxx 10
|
|||
|
7 C dyy 13
|
|||
|
8 C dzz 15
|
|||
|
9 O s 16
|
|||
|
10 O s 17
|
|||
|
11 O s 18
|
|||
|
12 O pz 21
|
|||
|
13 O pz 24
|
|||
|
14 O dxx 25
|
|||
|
15 O dyy 28
|
|||
|
16 O dzz 30
|
|||
|
|
|||
|
|
|||
|
Symmetry B1 ( 2)
|
|||
|
|
|||
|
17 C px 4
|
|||
|
18 C px 7
|
|||
|
19 C dxz 12
|
|||
|
20 O px 19
|
|||
|
21 O px 22
|
|||
|
22 O dxz 27
|
|||
|
|
|||
|
|
|||
|
Symmetry B2 ( 3)
|
|||
|
|
|||
|
23 C py 5
|
|||
|
24 C py 8
|
|||
|
25 C dyz 14
|
|||
|
26 O py 20
|
|||
|
27 O py 23
|
|||
|
28 O dyz 29
|
|||
|
|
|||
|
|
|||
|
Symmetry A2 ( 4)
|
|||
|
|
|||
|
29 C dxy 11
|
|||
|
30 O dxy 26
|
|||
|
|
|||
|
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
|
|||
|
|
|||
|
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
|
|||
|
|
|||
|
|
|||
|
.---------------------------------------.
|
|||
|
| Starting in Integral Section (HERMIT) |
|
|||
|
`---------------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
***************************************************************************************
|
|||
|
****************** Output from **INTEGRALS input processing (HERMIT) ******************
|
|||
|
***************************************************************************************
|
|||
|
|
|||
|
|
|||
|
|
|||
|
*************************************************************************
|
|||
|
****************** Output from HERMIT input processing ******************
|
|||
|
*************************************************************************
|
|||
|
|
|||
|
|
|||
|
Default print level: 1
|
|||
|
|
|||
|
* Nuclear model: Point charge
|
|||
|
|
|||
|
Calculation of one- and two-electron Hamiltonian integrals.
|
|||
|
|
|||
|
The following one-electron property integrals are calculated as requested:
|
|||
|
- overlap integrals
|
|||
|
- dipole length integrals
|
|||
|
- Geometrical derivatives of overlap integrals
|
|||
|
- Geometrical derivatives of one-electron Hamiltonian integrals
|
|||
|
|
|||
|
Center of mass (bohr): 0.000000000000 0.000000000000 0.000000000000
|
|||
|
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
|
|||
|
Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000
|
|||
|
Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000
|
|||
|
|
|||
|
|
|||
|
************************************************************************
|
|||
|
************************** Output from HERINT **************************
|
|||
|
************************************************************************
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Nuclear contribution to dipole moments
|
|||
|
--------------------------------------
|
|||
|
|
|||
|
au Debye C m (/(10**-30)
|
|||
|
|
|||
|
z 0.00370546 0.00941834 0.03141619
|
|||
|
|
|||
|
|
|||
|
|
|||
|
Threshold for neglecting two-electron integrals: 1.00D-12
|
|||
|
HERMIT - Number of two-electron integrals written: 28697 ( 26.5% )
|
|||
|
HERMIT - Megabytes written: 0.330
|
|||
|
|
|||
|
Total CPU time used in HERMIT: 0.08 seconds
|
|||
|
Total wall time used in HERMIT: 0.05 seconds
|
|||
|
|
|||
|
|
|||
|
.----------------------------------.
|
|||
|
| End of Integral Section (HERMIT) |
|
|||
|
`----------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
.--------------------------------------------.
|
|||
|
| Starting in Wave Function Section (SIRIUS) |
|
|||
|
`--------------------------------------------'
|
|||
|
|
|||
|
NCCEXCI for singlet: 3 3 3 3
|
|||
|
NCCEXCI for triplet: 3 3 3 3
|
|||
|
|
|||
|
*** Output from Huckel module :
|
|||
|
|
|||
|
Using EWMO model: T
|
|||
|
Using EHT model: F
|
|||
|
Number of Huckel orbitals each symmetry: 6 2 2 0
|
|||
|
|
|||
|
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
|
|||
|
which normally is better than Extended Huckel Theory.
|
|||
|
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
|
|||
|
|
|||
|
Huckel EWMO eigenvalues for symmetry : 1
|
|||
|
-20.681356 -11.338967 -1.339136 -0.796680 -0.545386
|
|||
|
-0.303374
|
|||
|
|
|||
|
Huckel EWMO eigenvalues for symmetry : 2
|
|||
|
-0.638440 -0.384660
|
|||
|
|
|||
|
Huckel EWMO eigenvalues for symmetry : 3
|
|||
|
-0.638440 -0.384660
|
|||
|
|
|||
|
**********************************************************************
|
|||
|
*SIRIUS* a direct, restricted step, second order MCSCF program *
|
|||
|
**********************************************************************
|
|||
|
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 14:38:52 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
Title lines from ".mol" input file:
|
|||
|
CO/Scan
|
|||
|
Dalton Run w/o symmetry
|
|||
|
|
|||
|
Print level on unit LUPRI = 2 is 0
|
|||
|
Print level on unit LUW4 = 2 is 5
|
|||
|
|
|||
|
@ (Integral direct) CC calculation.
|
|||
|
|
|||
|
@ This is a combination run starting with
|
|||
|
@ a restricted, closed shell Hartree-Fock calculation
|
|||
|
|
|||
|
|
|||
|
Initial molecular orbitals are obtained according to
|
|||
|
".MOSTART EWMO " input option
|
|||
|
|
|||
|
Wave function specification
|
|||
|
============================
|
|||
|
|
|||
|
For the specification of the Coupled Cluster: see later.
|
|||
|
|
|||
|
@ Wave function type --- CC ---
|
|||
|
@ Number of closed shell electrons 14
|
|||
|
@ Number of electrons in active shells 0
|
|||
|
@ Total charge of the molecule 0
|
|||
|
|
|||
|
@ Spin multiplicity and 2 M_S 1 0
|
|||
|
@ Total number of symmetries 4 (point group: C2v)
|
|||
|
@ Reference state symmetry 1 (irrep name : A1 )
|
|||
|
|
|||
|
Orbital specifications
|
|||
|
======================
|
|||
|
@ Abelian symmetry species All | 1 2 3 4
|
|||
|
@ | A1 B1 B2 A2
|
|||
|
--- | --- --- --- ---
|
|||
|
@ Total number of orbitals 30 | 16 6 6 2
|
|||
|
@ Number of basis functions 30 | 16 6 6 2
|
|||
|
|
|||
|
** Automatic occupation of RHF orbitals **
|
|||
|
|
|||
|
-- Initial occupation of symmetries is determined from extended Huckel guess.
|
|||
|
-- Initial occupation of symmetries is :
|
|||
|
@ Occupied SCF orbitals 7 | 5 1 1 0
|
|||
|
|
|||
|
Maximum number of Fock iterations 0
|
|||
|
Maximum number of DIIS iterations 60
|
|||
|
Maximum number of QC-SCF iterations 60
|
|||
|
Threshold for SCF convergence 1.00D-06
|
|||
|
|
|||
|
|
|||
|
Changes of defaults for CC:
|
|||
|
---------------------------
|
|||
|
|
|||
|
|
|||
|
-Iterative triple excitations included
|
|||
|
-Excitation energies calculated
|
|||
|
|
|||
|
|
|||
|
|
|||
|
***********************************************
|
|||
|
***** DIIS acceleration of SCF iterations *****
|
|||
|
***********************************************
|
|||
|
|
|||
|
C1-DIIS algorithm; max error vectors = 8
|
|||
|
|
|||
|
Automatic occupation of symmetries with 14 electrons.
|
|||
|
|
|||
|
Iter Total energy Error norm Delta(E) SCF occupation
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
|
|||
|
Calculating AOSUPINT
|
|||
|
(Precalculated AO two-electron integrals are transformed to P-supermatrix elements.
|
|||
|
Threshold for discarding integrals : 1.00D-12 )
|
|||
|
@ 1 -112.062445076 2.20D+00 -1.12D+02 5 1 1 0
|
|||
|
Virial theorem: -V/T = 1.991192
|
|||
|
@ MULPOP C 1.13; O -1.13;
|
|||
|
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 2 -111.475294054 4.16D+00 5.87D-01 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.025511
|
|||
|
@ MULPOP C -1.12; O 1.12;
|
|||
|
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 3 -112.300247269 1.11D+00 -8.25D-01 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.016500
|
|||
|
@ MULPOP C -0.03; O 0.03;
|
|||
|
3 Level shift: doubly occupied orbital energies shifted by -1.00D-01
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 4 -112.372867189 1.76D-01 -7.26D-02 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.010347
|
|||
|
@ MULPOP C 0.35; O -0.35;
|
|||
|
4 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 5 -112.379865240 1.20D-01 -7.00D-03 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.008980
|
|||
|
@ MULPOP C 0.46; O -0.46;
|
|||
|
5 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 6 -112.384843503 8.43D-02 -4.98D-03 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.008990
|
|||
|
@ MULPOP C 0.45; O -0.45;
|
|||
|
6 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 7 -112.393242652 7.83D-02 -8.40D-03 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007779
|
|||
|
@ MULPOP C 0.39; O -0.39;
|
|||
|
7 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 8 -112.393730117 1.18D-02 -4.87D-04 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007535
|
|||
|
@ MULPOP C 0.42; O -0.42;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 9 -112.393808144 2.82D-03 -7.80D-05 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007193
|
|||
|
@ MULPOP C 0.41; O -0.41;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 10 -112.393808755 2.14D-03 -6.11D-07 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007214
|
|||
|
@ MULPOP C 0.41; O -0.41;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 11 -112.393809554 1.29D-03 -7.99D-07 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007236
|
|||
|
@ MULPOP C 0.42; O -0.42;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 12 -112.393809798 2.39D-04 -2.44D-07 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007229
|
|||
|
@ MULPOP C 0.42; O -0.42;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 13 -112.393809809 2.96D-05 -1.05D-08 5 1 1 0
|
|||
|
Virial theorem: -V/T = 2.007230
|
|||
|
@ MULPOP C 0.42; O -0.42;
|
|||
|
-----------------------------------------------------------------------------
|
|||
|
@ 14 -112.393809809 2.97D-07 -1.46D-10 5 1 1 0
|
|||
|
|
|||
|
@ *** DIIS converged in 14 iterations !
|
|||
|
@ Converged SCF energy, gradient: -112.393809809100 2.97D-07
|
|||
|
- total time used in SIRFCK : 0.00 seconds
|
|||
|
|
|||
|
|
|||
|
*** SCF orbital energy analysis ***
|
|||
|
|
|||
|
Only the 20 lowest virtual orbital energies printed in each symmetry.
|
|||
|
|
|||
|
Number of electrons : 14
|
|||
|
Orbital occupations : 5 1 1 0
|
|||
|
|
|||
|
Sym Hartree-Fock orbital energies
|
|||
|
|
|||
|
1 A1 -20.61451905 -11.52351236 -1.21125662 -0.80444850 -0.46989289
|
|||
|
0.16372418 0.58199916 0.64006827 1.25166635 1.30589575
|
|||
|
1.48841784 1.87566952 2.44769266 2.98935853 3.35378461
|
|||
|
5.79785757
|
|||
|
|
|||
|
2 B1 -0.46512686 -0.01264809 0.64589580 1.17757244 1.43203208
|
|||
|
3.03236655
|
|||
|
|
|||
|
3 B2 -0.46512686 -0.01264809 0.64589580 1.17757244 1.43203208
|
|||
|
3.03236655
|
|||
|
|
|||
|
4 A2 1.30589575 2.98935853
|
|||
|
|
|||
|
E(LUMO) : -0.01264809 au (symmetry 3)
|
|||
|
- E(HOMO) : -0.46512686 au (symmetry 2)
|
|||
|
------------------------------------------
|
|||
|
gap : 0.45247877 au
|
|||
|
|
|||
|
--- Writing SIRIFC interface file
|
|||
|
|
|||
|
CPU and wall time for SCF : 0.039 0.010
|
|||
|
|
|||
|
|
|||
|
.-----------------------------------.
|
|||
|
| --- Final results from SIRIUS --- |
|
|||
|
`-----------------------------------'
|
|||
|
|
|||
|
|
|||
|
@ Spin multiplicity: 1
|
|||
|
@ Spatial symmetry: 1 ( irrep A1 in C2v )
|
|||
|
@ Total charge of molecule: 0
|
|||
|
|
|||
|
@ Final HF energy: -112.393809809100
|
|||
|
@ Nuclear repulsion: 14.117647058824
|
|||
|
@ Electronic energy: -126.511456867923
|
|||
|
|
|||
|
@ Final gradient norm: 0.000000297054
|
|||
|
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 14:38:52 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
|
|||
|
INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs
|
|||
|
|
|||
|
File label for MO orbitals: 9Oct19 FOCKDIIS
|
|||
|
|
|||
|
(Only coefficients > 0.0100 are printed.)
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 1 (A1 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6 7
|
|||
|
1 C :s -0.0001 0.9997 -0.0004 -0.0243 -0.0009 0.0177 -0.4511
|
|||
|
2 C :s -0.0002 -0.0004 0.2102 -1.0619 -0.1339 0.3800 -1.9369
|
|||
|
3 C :s 0.0010 0.0025 -0.0374 0.1372 -0.0622 0.0817 2.5996
|
|||
|
4 C :pz 0.0002 0.0014 0.1104 0.0545 0.8010 0.6199 0.9746
|
|||
|
5 C :pz 0.0005 -0.0011 -0.0234 0.0097 -0.0596 0.3041 -1.1789
|
|||
|
6 C :dxx -0.0001 -0.0009 -0.0031 -0.0001 -0.0019 0.0140 -0.1278
|
|||
|
7 C :dyy -0.0001 -0.0009 -0.0031 -0.0001 -0.0019 0.0140 -0.1278
|
|||
|
8 C :dzz 0.0001 -0.0004 0.0091 -0.0073 0.0244 -0.0204 -0.1493
|
|||
|
9 O :s 1.0003 -0.0000 -0.0048 0.0030 -0.0009 0.0123 -0.0310
|
|||
|
10 O :s 0.0020 0.0001 0.9273 0.2841 -0.1786 -0.1737 -0.1367
|
|||
|
11 O :s -0.0005 0.0002 0.0088 0.0334 -0.0911 -0.2814 0.2424
|
|||
|
12 O :pz -0.0013 -0.0004 -0.0274 0.1765 -0.4996 0.7065 0.1340
|
|||
|
13 O :pz 0.0015 0.0002 -0.0046 -0.0026 -0.0279 0.3023 -0.0847
|
|||
|
14 O :dxx -0.0005 0.0000 -0.0026 0.0010 -0.0011 0.0042 -0.0115
|
|||
|
15 O :dyy -0.0005 0.0000 -0.0026 0.0010 -0.0011 0.0042 -0.0115
|
|||
|
16 O :dzz -0.0008 -0.0001 0.0006 -0.0080 0.0145 0.0072 -0.0088
|
|||
|
|
|||
|
Orbital 8 9 10 11 12 13 14
|
|||
|
1 C :s -0.4611 -0.0380 0.0000 -0.0606 0.2675 -0.1492 -0.0000
|
|||
|
2 C :s -1.8812 -0.1601 0.0000 -0.2388 1.1065 -2.4590 -0.0000
|
|||
|
3 C :s 2.7970 0.0723 -0.0000 0.2171 -1.7887 -0.4288 0.0000
|
|||
|
4 C :pz -1.0283 -0.1791 0.0000 -0.3693 -0.0586 -0.0167 0.0000
|
|||
|
5 C :pz 1.6926 0.0795 -0.0000 0.2744 -0.9600 -0.2481 0.0000
|
|||
|
6 C :dxx -0.1036 0.1061 -0.4998 -0.2349 0.1782 0.7990 0.0139
|
|||
|
7 C :dyy -0.1036 0.1061 0.4998 -0.2349 0.1782 0.7990 -0.0139
|
|||
|
8 C :dzz -0.1535 -0.2587 0.0000 0.3453 -0.4949 0.6261 0.0000
|
|||
|
9 O :s 0.0220 0.3110 -0.0000 -0.1591 -0.5980 -0.1350 0.0000
|
|||
|
10 O :s -0.0915 1.4283 -0.0000 -0.7758 -2.2878 -0.5913 0.0000
|
|||
|
11 O :s -0.6191 -1.7414 0.0000 0.8254 3.8269 0.9338 -0.0000
|
|||
|
12 O :pz -0.1926 0.9414 0.0000 1.0322 0.4337 0.1325 -0.0000
|
|||
|
13 O :pz 0.5162 -1.2947 -0.0000 -1.0720 -1.3368 -0.2672 0.0000
|
|||
|
14 O :dxx 0.0169 0.0951 -0.0089 -0.0380 -0.0766 -0.0545 -0.4999
|
|||
|
15 O :dyy 0.0169 0.0951 0.0089 -0.0380 -0.0766 -0.0545 0.4999
|
|||
|
16 O :dzz -0.0240 0.0563 -0.0000 -0.0192 -0.2718 0.0902 0.0000
|
|||
|
|
|||
|
Orbital 15
|
|||
|
1 C :s 0.1322
|
|||
|
2 C :s 0.9484
|
|||
|
3 C :s -0.5530
|
|||
|
4 C :pz -0.2128
|
|||
|
5 C :pz -0.2897
|
|||
|
6 C :dxx -0.0877
|
|||
|
7 C :dyy -0.0877
|
|||
|
8 C :dzz -0.4877
|
|||
|
9 O :s -0.2130
|
|||
|
10 O :s -0.8403
|
|||
|
11 O :s 1.2846
|
|||
|
12 O :pz 0.1764
|
|||
|
13 O :pz -0.6282
|
|||
|
14 O :dxx -0.2961
|
|||
|
15 O :dyy -0.2961
|
|||
|
16 O :dzz 0.5664
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 2 (B1 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6
|
|||
|
1 C :px -0.2110 -0.7998 -1.5618 0.0367 0.1034 -0.0253
|
|||
|
2 C :px -0.0423 -0.2137 1.7786 -0.1796 -0.2621 0.1085
|
|||
|
3 C :dxz -0.0265 0.0074 -0.0259 0.5458 -0.8446 0.1833
|
|||
|
4 O :px -0.8846 0.3215 -0.0986 -1.1379 -0.8259 0.0665
|
|||
|
5 O :px -0.0594 0.0702 -0.0442 1.3090 1.1776 -0.1166
|
|||
|
6 O :dxz 0.0119 0.0063 0.0016 -0.0343 0.0933 1.0003
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 3 (B2 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2 3 4 5 6
|
|||
|
1 C :py -0.2110 -0.7998 -1.5618 0.0367 0.1034 -0.0253
|
|||
|
2 C :py -0.0423 -0.2137 1.7786 -0.1796 -0.2621 0.1085
|
|||
|
3 C :dyz -0.0265 0.0074 -0.0259 0.5458 -0.8446 0.1833
|
|||
|
4 O :py -0.8846 0.3215 -0.0986 -1.1379 -0.8259 0.0665
|
|||
|
5 O :py -0.0594 0.0702 -0.0442 1.3090 1.1776 -0.1166
|
|||
|
6 O :dyz 0.0119 0.0063 0.0016 -0.0343 0.0933 1.0003
|
|||
|
|
|||
|
Molecular orbitals for symmetry species 4 (A2 )
|
|||
|
------------------------------------------------
|
|||
|
|
|||
|
Orbital 1 2
|
|||
|
1 C :dxy -0.9997 -0.0279
|
|||
|
2 O :dxy -0.0178 0.9999
|
|||
|
|
|||
|
Total CPU time used in SIRIUS : 0.07 seconds
|
|||
|
Total wall time used in SIRIUS : 0.02 seconds
|
|||
|
|
|||
|
|
|||
|
Date and time (Linux) : Wed Oct 9 14:38:52 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
NOTE: 1 informational messages have been issued.
|
|||
|
Check output, result, and error files for "INFO".
|
|||
|
|
|||
|
|
|||
|
.---------------------------------------.
|
|||
|
| End of Wave Function Section (SIRIUS) |
|
|||
|
`---------------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
.------------------------------------------.
|
|||
|
| Starting in Coupled Cluster Section (CC) |
|
|||
|
`------------------------------------------'
|
|||
|
|
|||
|
|
|||
|
|
|||
|
*******************************************************************************
|
|||
|
*******************************************************************************
|
|||
|
* *
|
|||
|
* *
|
|||
|
* START OF COUPLED CLUSTER CALCULATION *
|
|||
|
* *
|
|||
|
* *
|
|||
|
*******************************************************************************
|
|||
|
*******************************************************************************
|
|||
|
|
|||
|
|
|||
|
|
|||
|
CCR12 ANSATZ = 0
|
|||
|
|
|||
|
CCR12 APPROX = 0
|
|||
|
|
|||
|
|
|||
|
|
|||
|
*******************************************************************
|
|||
|
* *
|
|||
|
*---------- >---------*
|
|||
|
*---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------*
|
|||
|
*---------- >---------*
|
|||
|
* *
|
|||
|
*******************************************************************
|
|||
|
|
|||
|
|
|||
|
The Direct Coupled Cluster Energy Program
|
|||
|
-----------------------------------------
|
|||
|
|
|||
|
|
|||
|
Number of t1 amplitudes : 65
|
|||
|
Number of t2 amplitudes : 3837
|
|||
|
Total number of amplitudes in ccsd : 3902
|
|||
|
|
|||
|
Iter. 1: Coupled cluster MP2 energy : -112.7287661797927143
|
|||
|
Iter. 1: Coupled cluster CC2 energy : -112.7253500636010841
|
|||
|
Iter. 2: Coupled cluster CC2 energy : -112.7703611533393513
|
|||
|
Iter. 3: Coupled cluster CC2 energy : -112.7494092047848966
|
|||
|
Iter. 4: Coupled cluster CC2 energy : -112.4958533269745686
|
|||
|
Iter. 5: Coupled cluster CC2 energy : -112.3785339093373921
|
|||
|
Iter. 6: Coupled cluster CC2 energy : -112.5482605985120443
|
|||
|
Iter. 7: Coupled cluster CC2 energy : -112.4827489228086677
|
|||
|
Iter. 8: Coupled cluster CC2 energy : -112.4937265599807290
|
|||
|
Iter. 9: Coupled cluster CC2 energy : -112.5514336976810057
|
|||
|
Iter. 10: Coupled cluster CC2 energy : -112.5770337148569524
|
|||
|
Iter. 11: Coupled cluster CC2 energy : -112.6001867881391831
|
|||
|
Iter. 12: Coupled cluster CC2 energy : -112.6039977537064942
|
|||
|
Iter. 13: Coupled cluster CC2 energy : -112.6503237577781675
|
|||
|
Iter. 14: Coupled cluster CC2 energy : -112.6261846122315262
|
|||
|
Iter. 15: Coupled cluster CC2 energy : -112.3175081067875283
|
|||
|
Iter. 16: Coupled cluster CC2 energy : -112.5088155925521107
|
|||
|
Iter. 17: Coupled cluster CC2 energy : -112.5667529942210621
|
|||
|
Iter. 18: Coupled cluster CC2 energy : -112.5911174858309067
|
|||
|
Iter. 19: Coupled cluster CC2 energy : -112.5993855868333213
|
|||
|
Iter. 20: Coupled cluster CC2 energy : -112.6043483840075510
|
|||
|
Iter. 21: Coupled cluster CC2 energy : -112.6665765059274378
|
|||
|
Iter. 22: Coupled cluster CC2 energy : -112.4001904900448778
|
|||
|
Iter. 23: Coupled cluster CC2 energy : -112.5535867058839585
|
|||
|
Iter. 24: Coupled cluster CC2 energy : -112.5788883489371131
|
|||
|
Iter. 25: Coupled cluster CC2 energy : -112.6323041916303964
|
|||
|
Iter. 26: Coupled cluster CC2 energy : -112.6353917807575868
|
|||
|
Iter. 27: Coupled cluster CC2 energy : -112.6582452553589491
|
|||
|
Iter. 28: Coupled cluster CC2 energy : -112.5258843044322816
|
|||
|
Iter. 29: Coupled cluster CC2 energy : -112.5611064354860957
|
|||
|
Iter. 30: Coupled cluster CC2 energy : -112.7622906944744159
|
|||
|
Iter. 31: Coupled cluster CC2 energy : -112.6268479215526668
|
|||
|
Iter. 32: Coupled cluster CC2 energy : -112.6083229350783057
|
|||
|
Iter. 33: Coupled cluster CC2 energy : -112.6556717241249430
|
|||
|
Iter. 34: Coupled cluster CC2 energy : -112.6595857744072191
|
|||
|
Iter. 35: Coupled cluster CC2 energy : -112.6882664911402685
|
|||
|
Iter. 36: Coupled cluster CC2 energy : -112.3503189730635228
|
|||
|
Iter. 37: Coupled cluster CC2 energy : -112.3510946966749628
|
|||
|
Iter. 38: Coupled cluster CC2 energy : -112.5428099917496780
|
|||
|
Iter. 39: Coupled cluster CC2 energy : -112.5462642365459516
|
|||
|
Iter. 40: Coupled cluster CC2 energy : -112.5461587007275881
|
|||
|
Energy not converged in 40 iterations
|
|||
|
|
|||
|
--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
|
|||
|
Date and time (Linux) : Wed Oct 9 14:38:52 2019
|
|||
|
Host name : nazare079.cluster
|
|||
|
|
|||
|
Reason: CC equations not converged.
|
|||
|
|
|||
|
Total CPU time used in DALTON: 1.29 seconds
|
|||
|
Total wall time used in DALTON: 0.36 seconds
|
|||
|
|
|||
|
|
|||
|
QTRACE dump of internal trace stack
|
|||
|
|
|||
|
========================
|
|||
|
level module
|
|||
|
========================
|
|||
|
5 CCSD_ENERGY
|
|||
|
4 CC_DRV
|
|||
|
3 CC
|
|||
|
2 DALTON
|
|||
|
1 DALTON main
|
|||
|
========================
|
|||
|
|