BSE-PES/Data/diatomics/CO/DZ-FC/co_co-35.out

1015 lines
43 KiB
Plaintext
Raw Normal View History

2020-01-30 22:41:00 +01:00
************************************************************************
*************** Dalton - An Electronic Structure Program ***************
************************************************************************
This is output from DALTON release Dalton2017.alpha (2017)
( Web site: http://daltonprogram.org )
----------------------------------------------------------------------------
NOTE:
Dalton is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.
The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.
See the home page "http://daltonprogram.org" for further information.
If results obtained with this code are published,
the appropriate citations would be both of:
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
P. Dahle, E. K. Dalskov, U. Ekstroem,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
P. Joergensen, J. Kauczor, S. Kirpekar,
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
and H. Agren,
"The Dalton quantum chemistry program system",
WIREs Comput. Mol. Sci. 2014, 4:269284 (doi: 10.1002/wcms.1172)
and
Dalton, a Molecular Electronic Structure Program,
Release Dalton2017.alpha (2017), see http://daltonprogram.org
----------------------------------------------------------------------------
Authors in alphabetical order (major contribution(s) in parenthesis):
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA)
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Anders Osted, Copenhagen University, Denmark (QM/MM)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
--------------------------------------------------------------------------------
Date and time (Linux) : Wed Oct 9 14:41:07 2019
Host name : nazare064.cluster
* Work memory size : 6400000000 = 47.684 gigabytes.
* Directories for basis set searches:
1) /home/CEISAM/jacquemin-d/TITOU/CO/DZ-FC
2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis
Compilation information
-----------------------
Who compiled | blondel-a
Host | jaws.cluster
System | Linux-3.10.0-862.9.1.el7.x86_64
CMake generator | Unix Makefiles
Processor | x86_64
64-bit integers | ON
MPI | OFF
Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
| ibraries_2018.3.222/linux/bin/intel64/ifort
Fortran compiler version | ifort (IFORT) 18.0.3 20180410
C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
| ibraries_2018.3.222/linux/bin/intel64/icc
C compiler version | icc (ICC) 18.0.3 20180410
C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
| ibraries_2018.3.222/linux/bin/intel64/icpc
C++ compiler version | icpc (ICC) 18.0.3 20180410
Static linking | ON
Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083
Git branch | master
Configuration time | 2018-07-26 15:11:23.544354
Content of the .dal input file
----------------------------------
**DALTON INPUT
.RUN WAVE FUNCTIONS
**INTEGRALS
.DIPLEN
.DEROVL
.DERHAM
**WAVE FUNCTIONS
.CC
*CC INP
.CC2
.CCSD
.CC3
.FREEZE
2 0
*CCEXCI
.NCCEXCI
3 3 3 3
3 3 3 3
**END OF DALTON INPUT
Content of the .mol file
----------------------------
BASIS
cc-pVDZ
CO/Scan
Dalton Run w/o symmetry
AtomTypes=2 Charge=0 Cartesian
Charge=6.0 Atoms=1
C 0.0000000 0.0000000000 0.000
Charge=8.0 Atoms=1
O 0.00000000 0.0000000000 3.500
*******************************************************************
*********** Output from DALTON general input processing ***********
*******************************************************************
--------------------------------------------------------------------------------
Overall default print level: 0
Print level for DALTON.STAT: 1
HERMIT 1- and 2-electron integral sections will be executed
"Old" integral transformation used (limited to max 255 basis functions)
Wave function sections will be executed (SIRIUS module)
--------------------------------------------------------------------------------
****************************************************************************
*************** Output of molecule and basis set information ***************
****************************************************************************
The two title cards from your ".mol" input:
------------------------------------------------------------------------
1: CO/Scan
2: Dalton Run w/o symmetry
------------------------------------------------------------------------
Atomic type no. 1
--------------------
Nuclear charge: 6.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 6 :
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVDZ"
Atomic type no. 2
--------------------
Nuclear charge: 8.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 8 :
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVDZ"
SYMADD: Requested addition of symmetry
--------------------------------------
Symmetry test threshold: 5.00E-06
@ The molecule is centered at center of mass and rotated
@ so principal axes of inertia are along coordinate axes.
Symmetry class found: C(oo,v)
Symmetry Independent Centres
----------------------------
8 : 0.00000000 0.00000000 1.50027246 Isotope 1
6 : 0.00000000 0.00000000 -1.99972754 Isotope 1
The following elements were found: X Y
SYMGRP: Point group information
-------------------------------
@ Full point group is: C(oo,v)
@ Represented as: C2v
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
* The point group was generated by:
Reflection in the yz-plane
Reflection in the xz-plane
* Group multiplication table
| E C2z Oxz Oyz
-----+--------------------
E | E C2z Oxz Oyz
C2z | C2z E Oyz Oxz
Oxz | Oxz Oyz E C2z
Oyz | Oyz Oxz C2z E
* Character table
| E C2z Oxz Oyz
-----+--------------------
A1 | 1 1 1 1
B1 | 1 -1 1 -1
B2 | 1 -1 -1 1
A2 | 1 1 -1 -1
* Direct product table
| A1 B1 B2 A2
-----+--------------------
A1 | A1 B1 B2 A2
B1 | B1 A1 A2 B2
B2 | B2 A2 A1 B1
A2 | A2 B2 B1 A1
Isotopic Masses
---------------
C 12.000000
O 15.994915
Total mass: 27.994915 amu
Natural abundance: 98.663 %
Center-of-mass coordinates (a.u.): 0.000000 0.000000 -0.000000
Atoms and basis sets
--------------------
Number of atom types : 2
Total number of atoms: 2
Basis set used is "cc-pVDZ" from the basis set library.
label atoms charge prim cont basis
----------------------------------------------------------------------
C 1 6.0000 27 15 [9s4p1d|3s2p1d]
O 1 8.0000 27 15 [9s4p1d|3s2p1d]
----------------------------------------------------------------------
total: 2 14.0000 54 30
----------------------------------------------------------------------
Cartesian basis used.
(Note that d, f, ... atomic GTOs are not all normalized.)
Threshold for neglecting AO integrals: 1.00D-12
Cartesian Coordinates (a.u.)
----------------------------
Total number of coordinates: 6
C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9997275398
O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.5002724602
Symmetry Coordinates
--------------------
Number of coordinates in each symmetry: 2 2 2 0
Symmetry A1 ( 1)
1 C z 3
2 O z 6
Symmetry B1 ( 2)
3 C x 1
4 O x 4
Symmetry B2 ( 3)
5 C y 2
6 O y 5
Interatomic separations (in Angstrom):
--------------------------------------
C O
------ ------
C : 0.000000
O : 1.852120 0.000000
Max interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
between atoms 2 and 1, "O " and "C ".
Min YX interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
Bond distances (Angstrom):
--------------------------
atom 1 atom 2 distance
------ ------ --------
Principal moments of inertia (u*A**2) and principal axes
--------------------------------------------------------
IA 0.000000 0.000000 0.000000 1.000000
IB 23.519191 0.000000 1.000000 0.000000
IC 23.519191 1.000000 0.000000 0.000000
Rotational constants
--------------------
@ The molecule is linear.
B = 21487.94 MHz ( 0.716761 cm-1)
@ Nuclear repulsion energy : 13.714285714286 Hartree
Symmetry Orbitals
-----------------
Number of orbitals in each symmetry: 16 6 6 2
Symmetry A1 ( 1)
1 C s 1
2 C s 2
3 C s 3
4 C pz 6
5 C pz 9
6 C dxx 10
7 C dyy 13
8 C dzz 15
9 O s 16
10 O s 17
11 O s 18
12 O pz 21
13 O pz 24
14 O dxx 25
15 O dyy 28
16 O dzz 30
Symmetry B1 ( 2)
17 C px 4
18 C px 7
19 C dxz 12
20 O px 19
21 O px 22
22 O dxz 27
Symmetry B2 ( 3)
23 C py 5
24 C py 8
25 C dyz 14
26 O py 20
27 O py 23
28 O dyz 29
Symmetry A2 ( 4)
29 C dxy 11
30 O dxy 26
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
.---------------------------------------.
| Starting in Integral Section (HERMIT) |
`---------------------------------------'
***************************************************************************************
****************** Output from **INTEGRALS input processing (HERMIT) ******************
***************************************************************************************
*************************************************************************
****************** Output from HERMIT input processing ******************
*************************************************************************
Default print level: 1
* Nuclear model: Point charge
Calculation of one- and two-electron Hamiltonian integrals.
The following one-electron property integrals are calculated as requested:
- overlap integrals
- dipole length integrals
- Geometrical derivatives of overlap integrals
- Geometrical derivatives of one-electron Hamiltonian integrals
Center of mass (bohr): 0.000000000000 0.000000000000 -0.000000000000
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
Gauge origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
Dipole origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
************************************************************************
************************** Output from HERINT **************************
************************************************************************
Nuclear contribution to dipole moments
--------------------------------------
au Debye C m (/(10**-30)
z 0.00381444 0.00969535 0.03234019
Threshold for neglecting two-electron integrals: 1.00D-12
HERMIT - Number of two-electron integrals written: 28697 ( 26.5% )
HERMIT - Megabytes written: 0.330
Total CPU time used in HERMIT: 0.09 seconds
Total wall time used in HERMIT: 0.05 seconds
.----------------------------------.
| End of Integral Section (HERMIT) |
`----------------------------------'
.--------------------------------------------.
| Starting in Wave Function Section (SIRIUS) |
`--------------------------------------------'
NCCEXCI for singlet: 3 3 3 3
NCCEXCI for triplet: 3 3 3 3
*** Output from Huckel module :
Using EWMO model: T
Using EHT model: F
Number of Huckel orbitals each symmetry: 6 2 2 0
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
which normally is better than Extended Huckel Theory.
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
Huckel EWMO eigenvalues for symmetry : 1
-20.681282 -11.338857 -1.328178 -0.793745 -0.550570
-0.312269
Huckel EWMO eigenvalues for symmetry : 2
-0.635675 -0.387425
Huckel EWMO eigenvalues for symmetry : 3
-0.635675 -0.387425
**********************************************************************
*SIRIUS* a direct, restricted step, second order MCSCF program *
**********************************************************************
Date and time (Linux) : Wed Oct 9 14:41:07 2019
Host name : nazare064.cluster
Title lines from ".mol" input file:
CO/Scan
Dalton Run w/o symmetry
Print level on unit LUPRI = 2 is 0
Print level on unit LUW4 = 2 is 5
@ (Integral direct) CC calculation.
@ This is a combination run starting with
@ a restricted, closed shell Hartree-Fock calculation
Initial molecular orbitals are obtained according to
".MOSTART EWMO " input option
Wave function specification
============================
For the specification of the Coupled Cluster: see later.
@ Wave function type --- CC ---
@ Number of closed shell electrons 14
@ Number of electrons in active shells 0
@ Total charge of the molecule 0
@ Spin multiplicity and 2 M_S 1 0
@ Total number of symmetries 4 (point group: C2v)
@ Reference state symmetry 1 (irrep name : A1 )
Orbital specifications
======================
@ Abelian symmetry species All | 1 2 3 4
@ | A1 B1 B2 A2
--- | --- --- --- ---
@ Total number of orbitals 30 | 16 6 6 2
@ Number of basis functions 30 | 16 6 6 2
** Automatic occupation of RHF orbitals **
-- Initial occupation of symmetries is determined from extended Huckel guess.
-- Initial occupation of symmetries is :
@ Occupied SCF orbitals 7 | 5 1 1 0
Maximum number of Fock iterations 0
Maximum number of DIIS iterations 60
Maximum number of QC-SCF iterations 60
Threshold for SCF convergence 1.00D-06
Changes of defaults for CC:
---------------------------
-Iterative triple excitations included
-Implicit frozen core calculation
-Excitation energies calculated
***********************************************
***** DIIS acceleration of SCF iterations *****
***********************************************
C1-DIIS algorithm; max error vectors = 8
Automatic occupation of symmetries with 14 electrons.
Iter Total energy Error norm Delta(E) SCF occupation
-----------------------------------------------------------------------------
Calculating AOSUPINT
(Precalculated AO two-electron integrals are transformed to P-supermatrix elements.
Threshold for discarding integrals : 1.00D-12 )
@ 1 -112.002486274 2.28D+00 -1.12D+02 5 1 1 0
Virial theorem: -V/T = 1.989482
@ MULPOP C 1.19; O -1.19;
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
-----------------------------------------------------------------------------
@ 2 -111.073329465 4.90D+00 9.29D-01 5 1 1 0
Virial theorem: -V/T = 2.024138
@ MULPOP C -1.42; O 1.42;
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
-----------------------------------------------------------------------------
@ 3 -112.216440946 1.49D+00 -1.14D+00 5 1 1 0
Virial theorem: -V/T = 2.018161
@ MULPOP C -0.18; O 0.18;
3 Level shift: doubly occupied orbital energies shifted by -1.00D-01
-----------------------------------------------------------------------------
@ 4 -112.339216693 3.11D-01 -1.23D-01 5 1 1 0
Virial theorem: -V/T = 2.011117
@ MULPOP C 0.29; O -0.29;
4 Level shift: doubly occupied orbital energies shifted by -2.50D-02
-----------------------------------------------------------------------------
@ 5 -112.352134109 1.35D-01 -1.29D-02 5 1 1 0
Virial theorem: -V/T = 2.008807
@ MULPOP C 0.46; O -0.46;
5 Level shift: doubly occupied orbital energies shifted by -1.25D-02
-----------------------------------------------------------------------------
@ 6 -112.353812087 1.38D-01 -1.68D-03 5 1 1 0
Info: SCF gradient has been lower than now,
therefore 1 old iterations are removed from DIIS.
Virial theorem: -V/T = 2.008691
@ MULPOP C 0.47; O -0.47;
6 Level shift: doubly occupied orbital energies shifted by -1.25D-02
-----------------------------------------------------------------------------
@ 7 -112.355364389 1.30D-01 -1.55D-03 5 1 1 0
Virial theorem: -V/T = 2.008691
@ MULPOP C 0.46; O -0.46;
7 Level shift: doubly occupied orbital energies shifted by -1.25D-02
-----------------------------------------------------------------------------
@ 8 -112.370390305 1.72D-01 -1.50D-02 5 1 1 0
Info: SCF gradient has been lower than now,
therefore 2 old iterations are removed from DIIS.
Virial theorem: -V/T = 2.005718
@ MULPOP C 0.31; O -0.31;
8 Level shift: doubly occupied orbital energies shifted by -1.25D-02
-----------------------------------------------------------------------------
@ 9 -112.371064760 8.42D-02 -6.74D-04 5 1 1 0
Virial theorem: -V/T = 2.007404
@ MULPOP C 0.44; O -0.44;
-----------------------------------------------------------------------------
@ 10 -112.373691688 3.73D-02 -2.63D-03 5 1 1 0
Virial theorem: -V/T = 2.006229
@ MULPOP C 0.38; O -0.38;
-----------------------------------------------------------------------------
@ 11 -112.373870679 7.62D-03 -1.79D-04 5 1 1 0
Virial theorem: -V/T = 2.006389
@ MULPOP C 0.40; O -0.40;
-----------------------------------------------------------------------------
@ 12 -112.373880409 4.45D-04 -9.73D-06 5 1 1 0
Virial theorem: -V/T = 2.006351
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 13 -112.373880440 3.39D-04 -3.10D-08 5 1 1 0
Virial theorem: -V/T = 2.006356
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 14 -112.373880457 1.09D-04 -1.71D-08 5 1 1 0
Virial theorem: -V/T = 2.006354
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 15 -112.373880459 2.37D-05 -2.57D-09 5 1 1 0
Virial theorem: -V/T = 2.006355
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 16 -112.373880459 1.21D-06 -9.74D-11 5 1 1 0
Virial theorem: -V/T = 2.006354
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 17 -112.373880459 2.51D-07 -3.69D-13 5 1 1 0
@ *** DIIS converged in 17 iterations !
@ Converged SCF energy, gradient: -112.373880459356 2.51D-07
- total time used in SIRFCK : 0.00 seconds
*** SCF orbital energy analysis ***
Only the 20 lowest virtual orbital energies printed in each symmetry.
Number of electrons : 14
Orbital occupations : 5 1 1 0
Sym Hartree-Fock orbital energies
1 A1 -20.60798087 -11.51557585 -1.19998557 -0.80277072 -0.45806513
0.15315405 0.58310027 0.64988908 1.25949674 1.30725419
1.44779131 1.88302002 2.44688940 2.99419320 3.31009555
5.78759481
2 B1 -0.46471725 -0.01269720 0.64830073 1.17538992 1.43171131
3.02270962
3 B2 -0.46471725 -0.01269720 0.64830073 1.17538992 1.43171131
3.02270962
4 A2 1.30725419 2.99419320
E(LUMO) : -0.01269720 au (symmetry 3)
- E(HOMO) : -0.45806513 au (symmetry 1)
------------------------------------------
gap : 0.44536793 au
--- Writing SIRIFC interface file
CPU and wall time for SCF : 0.046 0.012
.-----------------------------------.
| --- Final results from SIRIUS --- |
`-----------------------------------'
@ Spin multiplicity: 1
@ Spatial symmetry: 1 ( irrep A1 in C2v )
@ Total charge of molecule: 0
@ Final HF energy: -112.373880459356
@ Nuclear repulsion: 13.714285714286
@ Electronic energy: -126.088166173641
@ Final gradient norm: 0.000000251180
Date and time (Linux) : Wed Oct 9 14:41:07 2019
Host name : nazare064.cluster
INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs
File label for MO orbitals: 9Oct19 FOCKDIIS
(Only coefficients > 0.0100 are printed.)
Molecular orbitals for symmetry species 1 (A1 )
------------------------------------------------
Orbital 1 2 3 4 5 6 7
1 C :s -0.0001 0.9998 -0.0004 -0.0234 -0.0008 0.0196 -0.4609
2 C :s -0.0003 -0.0001 0.1903 -1.0676 -0.1078 0.3707 -1.9825
3 C :s 0.0009 0.0024 -0.0301 0.1311 -0.0495 0.0429 2.6603
4 C :pz 0.0002 0.0012 0.1010 0.0493 0.8308 0.5946 0.9477
5 C :pz 0.0005 -0.0010 -0.0194 0.0089 -0.0475 0.2524 -1.1448
6 C :dxx -0.0001 -0.0010 -0.0029 -0.0001 -0.0017 0.0141 -0.1314
7 C :dyy -0.0001 -0.0010 -0.0029 -0.0001 -0.0017 0.0141 -0.1314
8 C :dzz 0.0001 -0.0004 0.0075 -0.0072 0.0219 -0.0199 -0.1482
9 O :s 1.0003 -0.0000 -0.0048 0.0029 -0.0010 0.0096 -0.0278
10 O :s 0.0020 0.0001 0.9357 0.2622 -0.1790 -0.1557 -0.1241
11 O :s -0.0004 0.0002 0.0117 0.0296 -0.0928 -0.2273 0.2147
12 O :pz -0.0012 -0.0003 -0.0192 0.1526 -0.4545 0.7276 0.1239
13 O :pz 0.0014 0.0001 -0.0050 -0.0004 -0.0277 0.2931 -0.0730
14 O :dxx -0.0005 0.0000 -0.0025 0.0010 -0.0010 0.0033 -0.0103
15 O :dyy -0.0005 0.0000 -0.0025 0.0010 -0.0010 0.0033 -0.0103
16 O :dzz -0.0009 -0.0000 -0.0002 -0.0073 0.0142 0.0060 -0.0090
Orbital 8 9 10 11 12 13 14
1 C :s -0.4510 0.0385 0.0000 0.0574 -0.2647 0.1481 -0.0000
2 C :s -1.8331 0.1648 0.0000 0.2592 -1.0823 2.4567 -0.0000
3 C :s 2.7207 -0.1112 -0.0000 -0.2060 1.7120 0.4206 0.0000
4 C :pz -1.0539 0.1506 0.0000 0.3685 0.0156 -0.0028 -0.0000
5 C :pz 1.7040 -0.0917 -0.0000 -0.2710 0.9285 0.2485 0.0000
6 C :dxx -0.0990 -0.1117 -0.4999 0.2173 -0.1838 -0.8016 0.0112
7 C :dyy -0.0990 -0.1117 0.4999 0.2173 -0.1838 -0.8016 -0.0112
8 C :dzz -0.1614 0.2597 0.0000 -0.3440 0.4806 -0.6295 -0.0000
9 O :s 0.0182 -0.3375 -0.0000 0.1325 0.5772 0.1252 -0.0000
10 O :s -0.1123 -1.5314 -0.0000 0.6584 2.2238 0.5465 -0.0000
11 O :s -0.5573 1.9091 0.0000 -0.6864 -3.6471 -0.8635 0.0000
12 O :pz -0.1665 -0.8914 0.0000 -1.0619 -0.5034 -0.1081 -0.0000
13 O :pz 0.5158 1.1938 -0.0000 1.1018 1.3532 0.2436 0.0000
14 O :dxx 0.0151 -0.1015 -0.0073 0.0327 0.0717 0.0548 -0.5000
15 O :dyy 0.0151 -0.1015 0.0073 0.0327 0.0717 0.0548 0.5000
16 O :dzz -0.0232 -0.0631 -0.0000 0.0090 0.2691 -0.0963 0.0000
Orbital 15
1 C :s 0.1348
2 C :s 0.9560
3 C :s -0.5405
4 C :pz -0.1552
5 C :pz -0.2888
6 C :dxx -0.0867
7 C :dyy -0.0867
8 C :dzz -0.4582
9 O :s -0.1969
10 O :s -0.7904
11 O :s 1.1664
12 O :pz 0.1876
13 O :pz -0.5840
14 O :dxx -0.2907
15 O :dyy -0.2907
16 O :dzz 0.5624
Molecular orbitals for symmetry species 2 (B1 )
------------------------------------------------
Orbital 1 2 3 4 5 6
1 C :px -0.1759 -0.7975 -1.5669 0.0517 0.1020 -0.0318
2 C :px -0.0422 -0.2228 1.7729 -0.1886 -0.2474 0.1055
3 C :dxz -0.0233 0.0061 -0.0220 0.5480 -0.8431 0.1577
4 O :px -0.9008 0.2854 -0.1049 -1.1317 -0.8277 0.0581
5 O :px -0.0585 0.0605 -0.0309 1.3130 1.1593 -0.0987
6 O :dxz 0.0102 0.0061 -0.0006 -0.0312 0.0838 1.0000
Molecular orbitals for symmetry species 3 (B2 )
------------------------------------------------
Orbital 1 2 3 4 5 6
1 C :py -0.1759 -0.7975 -1.5669 0.0517 0.1020 -0.0318
2 C :py -0.0422 -0.2228 1.7729 -0.1886 -0.2474 0.1055
3 C :dyz -0.0233 0.0061 -0.0220 0.5480 -0.8431 0.1577
4 O :py -0.9008 0.2854 -0.1049 -1.1317 -0.8277 0.0581
5 O :py -0.0585 0.0605 -0.0309 1.3130 1.1593 -0.0987
6 O :dyz 0.0102 0.0061 -0.0006 -0.0312 0.0838 1.0000
Molecular orbitals for symmetry species 4 (A2 )
------------------------------------------------
Orbital 1 2
1 C :dxy -0.9998 -0.0225
2 O :dxy -0.0147 0.9999
Total CPU time used in SIRIUS : 0.07 seconds
Total wall time used in SIRIUS : 0.02 seconds
Date and time (Linux) : Wed Oct 9 14:41:07 2019
Host name : nazare064.cluster
NOTE: 1 informational messages have been issued.
Check output, result, and error files for "INFO".
.---------------------------------------.
| End of Wave Function Section (SIRIUS) |
`---------------------------------------'
.------------------------------------------.
| Starting in Coupled Cluster Section (CC) |
`------------------------------------------'
*******************************************************************************
*******************************************************************************
* *
* *
* START OF COUPLED CLUSTER CALCULATION *
* *
* *
*******************************************************************************
*******************************************************************************
I am freezing!
Freezing HF-orbital 1 of symmetry 1 and with orbital energy -20.6080
Freezing HF-orbital 2 of symmetry 1 and with orbital energy -11.5156
In total frozen-core per symmetry-class: 2 0 0 0
CCR12 ANSATZ = 0
CCR12 APPROX = 0
*******************************************************************
* *
*---------- >---------*
*---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------*
*---------- >---------*
* *
*******************************************************************
The Direct Coupled Cluster Energy Program
-----------------------------------------
Number of t1 amplitudes : 43
Number of t2 amplitudes : 1894
Total number of amplitudes in ccsd : 1937
Iter. 1: Coupled cluster MP2 energy : -112.6785286678473028
Iter. 1: Coupled cluster CC2 energy : -112.6778793075912830
Iter. 2: Coupled cluster CC2 energy : -112.7162357825599344
Iter. 3: Coupled cluster CC2 energy : -112.6697049638989370
Iter. 4: Coupled cluster CC2 energy : -112.4549426139659545
Iter. 5: Coupled cluster CC2 energy : -112.4414306150596872
Iter. 6: Coupled cluster CC2 energy : -112.5601076186379430
Iter. 7: Coupled cluster CC2 energy : -112.5427003672099175
Iter. 8: Coupled cluster CC2 energy : -112.5525522377534742
Iter. 9: Coupled cluster CC2 energy : -112.6051303409849709
Iter. 10: Coupled cluster CC2 energy : -112.6019212294590659
Iter. 11: Coupled cluster CC2 energy : -112.6214552085534280
Iter. 12: Coupled cluster CC2 energy : -112.5707903511461581
Iter. 13: Coupled cluster CC2 energy : -112.5531128164662960
Iter. 14: Coupled cluster CC2 energy : -112.7841925809878063
Iter. 15: Coupled cluster CC2 energy : -112.6748520806721388
Iter. 16: Coupled cluster CC2 energy : -112.5794036323818830
Iter. 17: Coupled cluster CC2 energy : -112.6082303848052817
Iter. 18: Coupled cluster CC2 energy : -112.6126811426658065
Iter. 19: Coupled cluster CC2 energy : -112.6355026202061254
Iter. 20: Coupled cluster CC2 energy : -112.4827791151865313
Iter. 21: Coupled cluster CC2 energy : -112.5189500756843870
Iter. 22: Coupled cluster CC2 energy : -112.5896487201257088
Iter. 23: Coupled cluster CC2 energy : -112.5954704745086445
Iter. 24: Coupled cluster CC2 energy : -112.5592279528753892
Iter. 25: Coupled cluster CC2 energy : -112.6027965828905906
Iter. 26: Coupled cluster CC2 energy : -112.6026218154419638
Iter. 27: Coupled cluster CC2 energy : -112.6226185381714799
Iter. 28: Coupled cluster CC2 energy : -112.5752880146339834
Iter. 29: Coupled cluster CC2 energy : -112.5123811013120019
Iter. 30: Coupled cluster CC2 energy : -112.6923958906808707
Iter. 31: Coupled cluster CC2 energy : -112.6080873048873201
Iter. 32: Coupled cluster CC2 energy : -112.6028633972740920
Iter. 33: Coupled cluster CC2 energy : -112.6546700124513336
Iter. 34: Coupled cluster CC2 energy : -112.6496153346171241
Iter. 35: Coupled cluster CC2 energy : -112.6817237132557779
Iter. 36: Coupled cluster CC2 energy : -112.5830301819034105
Iter. 37: Coupled cluster CC2 energy : -112.5476671757194822
Iter. 38: Coupled cluster CC2 energy : -112.3751307878590495
Iter. 39: Coupled cluster CC2 energy : -112.5764243815265644
Iter. 40: Coupled cluster CC2 energy : -112.6111675829807552
Energy not converged in 40 iterations
--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
Date and time (Linux) : Wed Oct 9 14:41:08 2019
Host name : nazare064.cluster
Reason: CC equations not converged.
Total CPU time used in DALTON: 0.88 seconds
Total wall time used in DALTON: 0.30 seconds
QTRACE dump of internal trace stack
========================
level module
========================
5 CCSD_ENERGY
4 CC_DRV
3 CC
2 DALTON
1 DALTON main
========================