BSE-PES/Data/diatomics/CO/TZ-FC/co_co-35.out

1175 lines
52 KiB
Plaintext
Raw Normal View History

2020-01-30 22:41:00 +01:00
************************************************************************
*************** Dalton - An Electronic Structure Program ***************
************************************************************************
This is output from DALTON release Dalton2017.alpha (2017)
( Web site: http://daltonprogram.org )
----------------------------------------------------------------------------
NOTE:
Dalton is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.
The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.
See the home page "http://daltonprogram.org" for further information.
If results obtained with this code are published,
the appropriate citations would be both of:
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
P. Dahle, E. K. Dalskov, U. Ekstroem,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
P. Joergensen, J. Kauczor, S. Kirpekar,
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
and H. Agren,
"The Dalton quantum chemistry program system",
WIREs Comput. Mol. Sci. 2014, 4:269284 (doi: 10.1002/wcms.1172)
and
Dalton, a Molecular Electronic Structure Program,
Release Dalton2017.alpha (2017), see http://daltonprogram.org
----------------------------------------------------------------------------
Authors in alphabetical order (major contribution(s) in parenthesis):
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA)
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Anders Osted, Copenhagen University, Denmark (QM/MM)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
--------------------------------------------------------------------------------
Date and time (Linux) : Wed Oct 9 15:27:21 2019
Host name : nazare063.cluster
* Work memory size : 6400000000 = 47.684 gigabytes.
* Directories for basis set searches:
1) /home/CEISAM/jacquemin-d/TITOU/CO/TZ-FC
2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis
Compilation information
-----------------------
Who compiled | blondel-a
Host | jaws.cluster
System | Linux-3.10.0-862.9.1.el7.x86_64
CMake generator | Unix Makefiles
Processor | x86_64
64-bit integers | ON
MPI | OFF
Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
| ibraries_2018.3.222/linux/bin/intel64/ifort
Fortran compiler version | ifort (IFORT) 18.0.3 20180410
C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
| ibraries_2018.3.222/linux/bin/intel64/icc
C compiler version | icc (ICC) 18.0.3 20180410
C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
| ibraries_2018.3.222/linux/bin/intel64/icpc
C++ compiler version | icpc (ICC) 18.0.3 20180410
Static linking | ON
Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083
Git branch | master
Configuration time | 2018-07-26 15:11:23.544354
Content of the .dal input file
----------------------------------
**DALTON INPUT
.RUN WAVE FUNCTIONS
**INTEGRALS
.DIPLEN
.DEROVL
.DERHAM
**WAVE FUNCTIONS
.CC
*CC INP
.CC2
.CCSD
.CC3
.FREEZE
2 0
*CCEXCI
.NCCEXCI
3 3 3 3
3 3 3 3
**END OF DALTON INPUT
Content of the .mol file
----------------------------
BASIS
cc-pVTZ
CO/Scan
Dalton Run w/o symmetry
AtomTypes=2 Charge=0 Cartesian
Charge=6.0 Atoms=1
C 0.0000000 0.0000000000 0.000
Charge=8.0 Atoms=1
O 0.00000000 0.0000000000 3.500
*******************************************************************
*********** Output from DALTON general input processing ***********
*******************************************************************
--------------------------------------------------------------------------------
Overall default print level: 0
Print level for DALTON.STAT: 1
HERMIT 1- and 2-electron integral sections will be executed
"Old" integral transformation used (limited to max 255 basis functions)
Wave function sections will be executed (SIRIUS module)
--------------------------------------------------------------------------------
****************************************************************************
*************** Output of molecule and basis set information ***************
****************************************************************************
The two title cards from your ".mol" input:
------------------------------------------------------------------------
1: CO/Scan
2: Dalton Run w/o symmetry
------------------------------------------------------------------------
Atomic type no. 1
--------------------
Nuclear charge: 6.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 6 :
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ"
Atomic type no. 2
--------------------
Nuclear charge: 8.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 8 :
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ"
SYMADD: Requested addition of symmetry
--------------------------------------
Symmetry test threshold: 5.00E-06
@ The molecule is centered at center of mass and rotated
@ so principal axes of inertia are along coordinate axes.
Symmetry class found: C(oo,v)
Symmetry Independent Centres
----------------------------
8 : 0.00000000 0.00000000 1.50027246 Isotope 1
6 : 0.00000000 0.00000000 -1.99972754 Isotope 1
The following elements were found: X Y
SYMGRP: Point group information
-------------------------------
@ Full point group is: C(oo,v)
@ Represented as: C2v
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
* The point group was generated by:
Reflection in the yz-plane
Reflection in the xz-plane
* Group multiplication table
| E C2z Oxz Oyz
-----+--------------------
E | E C2z Oxz Oyz
C2z | C2z E Oyz Oxz
Oxz | Oxz Oyz E C2z
Oyz | Oyz Oxz C2z E
* Character table
| E C2z Oxz Oyz
-----+--------------------
A1 | 1 1 1 1
B1 | 1 -1 1 -1
B2 | 1 -1 -1 1
A2 | 1 1 -1 -1
* Direct product table
| A1 B1 B2 A2
-----+--------------------
A1 | A1 B1 B2 A2
B1 | B1 A1 A2 B2
B2 | B2 A2 A1 B1
A2 | A2 B2 B1 A1
Isotopic Masses
---------------
C 12.000000
O 15.994915
Total mass: 27.994915 amu
Natural abundance: 98.663 %
Center-of-mass coordinates (a.u.): 0.000000 0.000000 -0.000000
Atoms and basis sets
--------------------
Number of atom types : 2
Total number of atoms: 2
Basis set used is "cc-pVTZ" from the basis set library.
label atoms charge prim cont basis
----------------------------------------------------------------------
C 1 6.0000 47 35 [10s5p2d1f|4s3p2d1f]
O 1 8.0000 47 35 [10s5p2d1f|4s3p2d1f]
----------------------------------------------------------------------
total: 2 14.0000 94 70
----------------------------------------------------------------------
Cartesian basis used.
(Note that d, f, ... atomic GTOs are not all normalized.)
Threshold for neglecting AO integrals: 1.00D-12
Cartesian Coordinates (a.u.)
----------------------------
Total number of coordinates: 6
C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9997275398
O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.5002724602
Symmetry Coordinates
--------------------
Number of coordinates in each symmetry: 2 2 2 0
Symmetry A1 ( 1)
1 C z 3
2 O z 6
Symmetry B1 ( 2)
3 C x 1
4 O x 4
Symmetry B2 ( 3)
5 C y 2
6 O y 5
Interatomic separations (in Angstrom):
--------------------------------------
C O
------ ------
C : 0.000000
O : 1.852120 0.000000
Max interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
between atoms 2 and 1, "O " and "C ".
Min YX interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
Bond distances (Angstrom):
--------------------------
atom 1 atom 2 distance
------ ------ --------
Principal moments of inertia (u*A**2) and principal axes
--------------------------------------------------------
IA 0.000000 0.000000 0.000000 1.000000
IB 23.519191 0.000000 1.000000 0.000000
IC 23.519191 1.000000 0.000000 0.000000
Rotational constants
--------------------
@ The molecule is linear.
B = 21487.94 MHz ( 0.716761 cm-1)
@ Nuclear repulsion energy : 13.714285714286 Hartree
Symmetry Orbitals
-----------------
Number of orbitals in each symmetry: 32 16 16 6
Symmetry A1 ( 1)
1 C s 1
2 C s 2
3 C s 3
4 C s 4
5 C pz 7
6 C pz 10
7 C pz 13
8 C dxx 14
9 C dyy 17
10 C dzz 19
11 C dxx 20
12 C dyy 23
13 C dzz 25
14 C fxxz 28
15 C fyyz 33
16 C fzzz 35
17 O s 36
18 O s 37
19 O s 38
20 O s 39
21 O pz 42
22 O pz 45
23 O pz 48
24 O dxx 49
25 O dyy 52
26 O dzz 54
27 O dxx 55
28 O dyy 58
29 O dzz 60
30 O fxxz 63
31 O fyyz 68
32 O fzzz 70
Symmetry B1 ( 2)
33 C px 5
34 C px 8
35 C px 11
36 C dxz 16
37 C dxz 22
38 C fxxx 26
39 C fxyy 29
40 C fxzz 31
41 O px 40
42 O px 43
43 O px 46
44 O dxz 51
45 O dxz 57
46 O fxxx 61
47 O fxyy 64
48 O fxzz 66
Symmetry B2 ( 3)
49 C py 6
50 C py 9
51 C py 12
52 C dyz 18
53 C dyz 24
54 C fxxy 27
55 C fyyy 32
56 C fyzz 34
57 O py 41
58 O py 44
59 O py 47
60 O dyz 53
61 O dyz 59
62 O fxxy 62
63 O fyyy 67
64 O fyzz 69
Symmetry A2 ( 4)
65 C dxy 15
66 C dxy 21
67 C fxyz 30
68 O dxy 50
69 O dxy 56
70 O fxyz 65
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
.---------------------------------------.
| Starting in Integral Section (HERMIT) |
`---------------------------------------'
***************************************************************************************
****************** Output from **INTEGRALS input processing (HERMIT) ******************
***************************************************************************************
*************************************************************************
****************** Output from HERMIT input processing ******************
*************************************************************************
Default print level: 1
* Nuclear model: Point charge
Calculation of one- and two-electron Hamiltonian integrals.
The following one-electron property integrals are calculated as requested:
- overlap integrals
- dipole length integrals
- Geometrical derivatives of overlap integrals
- Geometrical derivatives of one-electron Hamiltonian integrals
Center of mass (bohr): 0.000000000000 0.000000000000 -0.000000000000
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
Gauge origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
Dipole origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
************************************************************************
************************** Output from HERINT **************************
************************************************************************
Nuclear contribution to dipole moments
--------------------------------------
au Debye C m (/(10**-30)
z 0.00381444 0.00969535 0.03234019
Threshold for neglecting two-electron integrals: 1.00D-12
HERMIT - Number of two-electron integrals written: 757487 ( 24.5% )
HERMIT - Megabytes written: 8.677
Time used in TWOINT is 0.63 seconds
Total CPU time used in HERMIT: 0.66 seconds
Total wall time used in HERMIT: 0.17 seconds
.----------------------------------.
| End of Integral Section (HERMIT) |
`----------------------------------'
.--------------------------------------------.
| Starting in Wave Function Section (SIRIUS) |
`--------------------------------------------'
NCCEXCI for singlet: 3 3 3 3
NCCEXCI for triplet: 3 3 3 3
*** Output from Huckel module :
Using EWMO model: T
Using EHT model: F
Number of Huckel orbitals each symmetry: 6 2 2 0
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
which normally is better than Extended Huckel Theory.
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
Huckel EWMO eigenvalues for symmetry : 1
-20.681282 -11.338857 -1.328178 -0.793745 -0.550570
-0.312269
Huckel EWMO eigenvalues for symmetry : 2
-0.635675 -0.387425
Huckel EWMO eigenvalues for symmetry : 3
-0.635675 -0.387425
**********************************************************************
*SIRIUS* a direct, restricted step, second order MCSCF program *
**********************************************************************
Date and time (Linux) : Wed Oct 9 15:27:21 2019
Host name : nazare063.cluster
Title lines from ".mol" input file:
CO/Scan
Dalton Run w/o symmetry
Print level on unit LUPRI = 2 is 0
Print level on unit LUW4 = 2 is 5
@ (Integral direct) CC calculation.
@ This is a combination run starting with
@ a restricted, closed shell Hartree-Fock calculation
Initial molecular orbitals are obtained according to
".MOSTART EWMO " input option
Wave function specification
============================
For the specification of the Coupled Cluster: see later.
@ Wave function type --- CC ---
@ Number of closed shell electrons 14
@ Number of electrons in active shells 0
@ Total charge of the molecule 0
@ Spin multiplicity and 2 M_S 1 0
@ Total number of symmetries 4 (point group: C2v)
@ Reference state symmetry 1 (irrep name : A1 )
Orbital specifications
======================
@ Abelian symmetry species All | 1 2 3 4
@ | A1 B1 B2 A2
--- | --- --- --- ---
@ Total number of orbitals 70 | 32 16 16 6
@ Number of basis functions 70 | 32 16 16 6
** Automatic occupation of RHF orbitals **
-- Initial occupation of symmetries is determined from extended Huckel guess.
-- Initial occupation of symmetries is :
@ Occupied SCF orbitals 7 | 5 1 1 0
Maximum number of Fock iterations 0
Maximum number of DIIS iterations 60
Maximum number of QC-SCF iterations 60
Threshold for SCF convergence 1.00D-06
Changes of defaults for CC:
---------------------------
-Iterative triple excitations included
-Implicit frozen core calculation
-Excitation energies calculated
***********************************************
***** DIIS acceleration of SCF iterations *****
***********************************************
C1-DIIS algorithm; max error vectors = 8
Automatic occupation of symmetries with 14 electrons.
Iter Total energy Error norm Delta(E) SCF occupation
-----------------------------------------------------------------------------
Calculating AOSUPINT
(Precalculated AO two-electron integrals are transformed to P-supermatrix elements.
Threshold for discarding integrals : 1.00D-12 )
CPU time used in FORMSUP is 0.21 seconds
WALL time used in FORMSUP is 0.04 seconds
@ 1 -112.013543095 2.50D+00 -1.12D+02 5 1 1 0
Virial theorem: -V/T = 1.987149
@ MULPOP C 1.24; O -1.24;
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
-----------------------------------------------------------------------------
@ 2 -111.113674312 4.94D+00 9.00D-01 5 1 1 0
Virial theorem: -V/T = 2.025082
@ MULPOP C -1.36; O 1.36;
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
-----------------------------------------------------------------------------
@ 3 -112.280107027 1.28D+00 -1.17D+00 5 1 1 0
Virial theorem: -V/T = 2.017125
@ MULPOP C -0.07; O 0.07;
3 Level shift: doubly occupied orbital energies shifted by -1.00D-01
-----------------------------------------------------------------------------
@ 4 -112.372446151 2.28D-01 -9.23D-02 5 1 1 0
Virial theorem: -V/T = 2.009674
@ MULPOP C 0.33; O -0.33;
4 Level shift: doubly occupied orbital energies shifted by -2.50D-02
-----------------------------------------------------------------------------
@ 5 -112.381907247 1.28D-01 -9.46D-03 5 1 1 0
Virial theorem: -V/T = 2.008039
@ MULPOP C 0.46; O -0.46;
5 Level shift: doubly occupied orbital energies shifted by -2.50D-02
-----------------------------------------------------------------------------
@ 6 -112.383995563 1.25D-01 -2.09D-03 5 1 1 0
Virial theorem: -V/T = 2.007969
@ MULPOP C 0.46; O -0.46;
6 Level shift: doubly occupied orbital energies shifted by -2.50D-02
-----------------------------------------------------------------------------
@ 7 -112.400280837 8.65D-02 -1.63D-02 5 1 1 0
Virial theorem: -V/T = 2.007095
@ MULPOP C 0.39; O -0.39;
7 Level shift: doubly occupied orbital energies shifted by -2.50D-02
-----------------------------------------------------------------------------
@ 8 -112.402475007 2.22D-02 -2.19D-03 5 1 1 0
Virial theorem: -V/T = 2.006313
@ MULPOP C 0.40; O -0.40;
8 Level shift: doubly occupied orbital energies shifted by -1.25D-02
-----------------------------------------------------------------------------
@ 9 -112.402788274 2.71D-02 -3.13D-04 5 1 1 0
!!! Info: DIIS restarted because it was stalled ...
- energy changed by -3.133E-04
- gradient changed by 4.913E-03
- or strange C vector coeff. for current index (= 1) :
0.959312 -0.000521 0.000237 0.120579 -1.835559 2.007890 -0.456700 0.204762
Virial theorem: -V/T = 2.005566
@ MULPOP C 0.38; O -0.38;
9 Level shift: doubly occupied orbital energies shifted by -1.56D-02
-----------------------------------------------------------------------------
@ 10 -112.402838079 2.84D-02 -4.98D-05 5 1 1 0
Info: SCF gradient has been lower than now,
therefore 1 old iterations are removed from DIIS.
Virial theorem: -V/T = 2.005386
@ MULPOP C 0.40; O -0.40;
10 Level shift: doubly occupied orbital energies shifted by -1.56D-02
-----------------------------------------------------------------------------
@ 11 -112.402850456 3.21D-02 -1.24D-05 5 1 1 0
Info: SCF gradient has been lower than now,
therefore 1 old iterations are removed from DIIS.
Virial theorem: -V/T = 2.005926
@ MULPOP C 0.38; O -0.38;
11 Level shift: doubly occupied orbital energies shifted by -1.56D-02
-----------------------------------------------------------------------------
@ 12 -112.402849129 3.58D-02 1.33D-06 5 1 1 0
Virial theorem: -V/T = 2.005335
@ MULPOP C 0.40; O -0.40;
12 Level shift: doubly occupied orbital energies shifted by -1.56D-02
-----------------------------------------------------------------------------
@ 13 -112.402918038 4.22D-03 -6.89D-05 5 1 1 0
Virial theorem: -V/T = 2.005676
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 14 -112.402932926 1.26D-03 -1.49D-05 5 1 1 0
Virial theorem: -V/T = 2.005751
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 15 -112.402933500 3.23D-04 -5.75D-07 5 1 1 0
Virial theorem: -V/T = 2.005761
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 16 -112.402933529 6.34D-05 -2.88D-08 5 1 1 0
Virial theorem: -V/T = 2.005764
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 17 -112.402933529 5.78D-06 -2.12D-10 5 1 1 0
Virial theorem: -V/T = 2.005765
@ MULPOP C 0.39; O -0.39;
-----------------------------------------------------------------------------
@ 18 -112.402933529 9.76D-07 -5.74D-12 5 1 1 0
@ *** DIIS converged in 18 iterations !
@ Converged SCF energy, gradient: -112.402933529215 9.76D-07
- total time used in SIRFCK : 0.00 seconds
*** SCF orbital energy analysis ***
Only the 20 lowest virtual orbital energies printed in each symmetry.
Number of electrons : 14
Orbital occupations : 5 1 1 0
Sym Hartree-Fock orbital energies
1 A1 -20.60870330 -11.51909362 -1.20432269 -0.80844936 -0.46521372
0.13412122 0.26642460 0.39402167 0.69183770 0.79154058
0.97885917 1.14026975 1.24329939 1.78630850 1.81216113
2.45152471 2.66862657 2.87636692 3.01277441 3.14245746
3.44656561 3.91516774 4.57348126 5.50868509 5.59886097
2 B1 -0.47257168 -0.02060215 0.40842012 0.76361006 0.90970551
1.73900633 1.94603785 2.83501363 2.97296242 3.29005435
3.44346990 3.78127919 5.62404799 5.67489902 6.88379287
7.19373689
3 B2 -0.47257168 -0.02060215 0.40842012 0.76361006 0.90970551
1.73900633 1.94603785 2.83501363 2.97296242 3.29005435
3.44346990 3.78127919 5.62404799 5.67489902 6.88379287
7.19373689
4 A2 0.79154058 1.78630850 2.87636692 3.14245746 5.59886097
6.74824933
E(LUMO) : -0.02060215 au (symmetry 2)
- E(HOMO) : -0.46521372 au (symmetry 1)
------------------------------------------
gap : 0.44461157 au
--- Writing SIRIFC interface file
CPU and wall time for SCF : 0.469 0.105
.-----------------------------------.
| --- Final results from SIRIUS --- |
`-----------------------------------'
@ Spin multiplicity: 1
@ Spatial symmetry: 1 ( irrep A1 in C2v )
@ Total charge of molecule: 0
@ Final HF energy: -112.402933529215
@ Nuclear repulsion: 13.714285714286
@ Electronic energy: -126.117219243501
@ Final gradient norm: 0.000000975566
Date and time (Linux) : Wed Oct 9 15:27:21 2019
Host name : nazare063.cluster
INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs
File label for MO orbitals: 9Oct19 FOCKDIIS
(Only coefficients > 0.0100 are printed.)
Molecular orbitals for symmetry species 1 (A1 )
------------------------------------------------
Orbital 1 2 3 4 5 6 7
1 C :s 0.0001 0.9973 -0.0008 -0.0016 0.0004 -0.0023 -0.0102
2 C :s 0.0006 -0.0122 0.1896 -1.0021 -0.0999 0.3157 -0.3958
3 C :s -0.0002 0.0034 -0.0029 -0.0284 0.0037 0.0875 -0.8989
4 C :s 0.0007 -0.0007 -0.0228 0.1275 -0.0793 -0.0804 4.1981
5 C :pz -0.0001 0.0037 0.1020 0.0655 0.8135 0.6156 0.1889
6 C :pz 0.0005 -0.0032 -0.0083 -0.0146 0.0151 -0.1278 0.2202
7 C :pz 0.0005 -0.0011 -0.0168 0.0059 -0.0422 0.4544 -0.0866
8 C :dxx -0.0000 0.0008 -0.0019 -0.0025 -0.0019 0.0163 -0.1073
9 C :dyy -0.0000 0.0008 -0.0019 -0.0025 -0.0019 0.0163 -0.1073
10 C :dzz -0.0001 0.0012 0.0031 -0.0043 0.0067 -0.0012 -0.1053
11 C :dxx -0.0002 0.0019 -0.0047 -0.0093 0.0031 0.0641 -0.6715
12 C :dyy -0.0002 0.0019 -0.0047 -0.0093 0.0031 0.0641 -0.6715
13 C :dzz 0.0001 0.0019 0.0058 -0.0163 0.0252 0.0500 -0.7047
14 C :fxxz -0.0001 0.0001 -0.0001 0.0014 -0.0002 0.0115 -0.0126
15 C :fyyz -0.0001 0.0001 -0.0001 0.0014 -0.0002 0.0115 -0.0126
16 C :fzzz -0.0000 0.0000 0.0018 -0.0004 -0.0009 0.0070 -0.0165
17 O :s 0.9957 -0.0001 -0.0077 0.0010 -0.0045 0.0128 0.0084
18 O :s -0.0157 -0.0003 0.9217 0.2518 -0.1807 -0.1440 -0.0829
19 O :s 0.0053 -0.0000 0.0027 0.0006 0.0120 0.0183 0.0047
20 O :s -0.0002 0.0007 0.0125 0.0396 -0.1378 -0.4338 -0.3372
21 O :pz -0.0025 0.0002 -0.0083 0.1530 -0.4598 0.7529 0.1205
22 O :pz 0.0013 -0.0010 -0.0144 0.0044 -0.0012 -0.1368 -0.1336
23 O :pz 0.0012 -0.0003 -0.0013 -0.0057 -0.0219 0.4074 0.1623
27 O :dxx 0.0025 -0.0001 -0.0005 0.0005 0.0072 0.0212 0.0071
28 O :dyy 0.0025 -0.0001 -0.0005 0.0005 0.0072 0.0212 0.0071
29 O :dzz 0.0022 0.0002 0.0016 -0.0074 0.0222 0.0164 0.0200
32 O :fzzz 0.0001 0.0000 0.0006 0.0005 -0.0017 0.0115 0.0087
Orbital 8 9 10 11 12 13 14
1 C :s 0.0650 0.0341 0.0000 0.1458 0.2382 -0.5856 -0.0000
2 C :s 0.3275 0.1363 0.0000 0.7052 1.3729 -3.0105 -0.0000
3 C :s 0.2078 0.1183 -0.0000 -0.1877 -0.9384 0.9990 0.0000
4 C :s -1.6039 -0.6761 -0.0000 -0.9584 3.6216 -0.7712 -0.0000
5 C :pz 0.2741 -0.1258 0.0000 0.2713 0.1769 0.6272 -0.0000
6 C :pz 1.2829 0.3838 -0.0000 -0.9361 -0.2098 -0.9074 0.0000
7 C :pz -1.9396 -0.2529 -0.0000 -0.7544 1.4010 0.5873 -0.0000
8 C :dxx 0.0146 0.0117 0.0141 -0.0316 -0.1172 0.1393 -0.0131
9 C :dyy 0.0146 0.0117 -0.0141 -0.0316 -0.1172 0.1393 0.0131
10 C :dzz 0.0338 0.0005 -0.0000 -0.0366 -0.1200 0.1439 0.0000
11 C :dxx 0.1904 0.0046 -0.5054 -0.2155 -1.1283 0.7235 -0.0462
12 C :dyy 0.1904 0.0046 0.5054 -0.2155 -1.1283 0.7235 0.0462
13 C :dzz 0.0966 0.3210 -0.0000 -0.1742 -0.1009 1.3619 -0.0000
14 C :fxxz -0.0779 -0.0292 -0.0007 0.0698 0.0161 0.0721 0.0362
15 C :fyyz -0.0779 -0.0292 0.0007 0.0698 0.0161 0.0721 -0.0362
16 C :fzzz -0.0895 -0.0180 0.0000 0.0372 0.0220 0.0627 0.0000
17 O :s -0.0419 0.0391 0.0000 -0.0830 0.1204 0.0405 -0.0000
18 O :s -0.0673 -0.2238 0.0000 -0.5141 0.5344 0.0765 -0.0000
19 O :s -0.0807 -0.6219 -0.0000 -0.5987 0.5720 0.1709 0.0000
20 O :s 1.3317 2.6728 0.0000 3.6986 -4.3949 -1.5470 0.0000
21 O :pz 0.1746 -0.1721 -0.0000 0.1408 0.1561 0.1819 0.0000
22 O :pz 0.1561 -0.7121 0.0000 1.3589 -0.2330 0.2947 -0.0000
23 O :pz -0.4982 0.8309 -0.0000 -1.9723 1.1523 0.4045 -0.0000
24 O :dxx -0.0030 -0.0696 0.0007 -0.0482 0.0405 0.0079 -0.0081
25 O :dyy -0.0030 -0.0696 -0.0007 -0.0482 0.0405 0.0079 0.0081
26 O :dzz -0.0058 -0.0611 -0.0000 -0.0591 0.0559 0.0241 0.0000
27 O :dxx -0.0924 -0.4480 -0.0231 -0.4632 0.4512 0.1454 0.5012
28 O :dyy -0.0924 -0.4480 0.0231 -0.4632 0.4512 0.1454 -0.5012
29 O :dzz -0.0483 -0.4833 -0.0000 -0.5011 0.4955 0.1280 -0.0000
30 O :fxxz -0.0084 0.0482 0.0016 -0.0881 0.0087 -0.0261 -0.0024
31 O :fyyz -0.0084 0.0482 -0.0016 -0.0881 0.0087 -0.0261 0.0024
32 O :fzzz -0.0084 0.0506 -0.0000 -0.0890 0.0112 -0.0180 0.0000
Orbital 15
1 C :s 0.0396
3 C :s -0.0252
4 C :s -0.3532
5 C :pz -3.5868
6 C :pz 4.9898
7 C :pz 0.2966
8 C :dxx -0.0265
9 C :dyy -0.0265
10 C :dzz 0.0467
11 C :dxx 0.0786
12 C :dyy 0.0786
13 C :dzz -0.0804
14 C :fxxz -0.3119
15 C :fyyz -0.3119
16 C :fzzz -0.3332
17 O :s -0.1391
18 O :s -0.6893
19 O :s 0.0132
20 O :s 0.9671
21 O :pz 0.2450
22 O :pz 0.0190
23 O :pz -0.3390
24 O :dxx 0.0135
25 O :dyy 0.0135
26 O :dzz 0.0126
27 O :dxx -0.1446
28 O :dyy -0.1446
29 O :dzz 0.2850
Molecular orbitals for symmetry species 2 (B1 )
------------------------------------------------
Orbital 1 2 3 4 5 6 7
1 C :px -0.1797 -0.8503 0.2598 0.0274 0.1050 3.8621 2.5064
2 C :px 0.0115 0.1271 1.6366 -0.0712 0.0130 -5.8584 -3.8285
3 C :px -0.0288 -0.2671 -1.4741 -0.1770 -0.3949 -0.3385 -0.4095
4 C :dxz -0.0043 0.0001 0.0015 -0.0027 0.0157 0.0111 -0.0209
5 C :dxz -0.0283 0.0121 0.0371 0.5299 -0.8902 0.2339 -0.3141
6 C :fxxx -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
7 C :fxyy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
8 C :fxzz -0.0043 -0.0063 -0.1115 -0.0010 -0.0060 0.3486 0.3877
9 O :px -0.9192 0.3033 0.0632 -0.2822 -0.0269 0.1789 -0.0599
10 O :px 0.0364 -0.0486 0.0027 -1.1127 -1.0108 -0.1083 -0.0039
11 O :px -0.0644 0.0851 0.0997 1.0705 1.1630 -0.2648 0.1713
13 O :dxz 0.0126 0.0069 -0.0188 -0.0268 0.1095 0.4819 -0.8563
14 O :fxxx -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
15 O :fxyy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
16 O :fxzz -0.0056 0.0034 -0.0002 0.0779 0.0689 0.0080 0.0005
Orbital 8 9 10 11
1 C :px 0.0000 -0.0889 -0.0041 0.1019
2 C :px -0.0000 0.1308 -0.0994 0.7366
3 C :px -0.0000 0.1158 0.1622 -0.0029
4 C :dxz -0.0000 0.4507 -1.1113 0.0525
5 C :dxz 0.0000 -0.1066 0.7398 -0.0311
6 C :fxxx -0.2041 -0.1435 -0.0423 -0.0903
7 C :fxyy 0.6124 -0.1435 -0.0423 -0.0903
8 C :fxzz -0.0000 0.5310 0.2405 -0.3482
9 O :px -0.0000 -1.0753 -0.6480 -3.7850
10 O :px -0.0000 1.8102 1.0634 6.0541
11 O :px 0.0000 -0.0203 -0.2022 0.3527
12 O :dxz -0.0000 0.0291 0.0188 -0.0050
13 O :dxz 0.0000 0.3099 0.2808 -0.0603
14 O :fxxx -0.0007 -0.1464 -0.0782 -0.4213
15 O :fxyy 0.0020 -0.1464 -0.0782 -0.4213
16 O :fxzz 0.0000 -0.0882 -0.0453 -0.4475
Molecular orbitals for symmetry species 3 (B2 )
------------------------------------------------
Orbital 1 2 3 4 5 6 7
1 C :py -0.1797 -0.8503 0.2598 0.0274 0.1050 3.8621 2.5064
2 C :py 0.0115 0.1271 1.6366 -0.0712 0.0130 -5.8584 -3.8285
3 C :py -0.0288 -0.2671 -1.4741 -0.1770 -0.3949 -0.3385 -0.4095
4 C :dyz -0.0043 0.0001 0.0015 -0.0027 0.0157 0.0111 -0.0209
5 C :dyz -0.0283 0.0121 0.0371 0.5299 -0.8902 0.2339 -0.3141
6 C :fxxy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
7 C :fyyy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260
8 C :fyzz -0.0043 -0.0063 -0.1115 -0.0010 -0.0060 0.3486 0.3877
9 O :py -0.9192 0.3033 0.0632 -0.2822 -0.0269 0.1789 -0.0599
10 O :py 0.0364 -0.0486 0.0027 -1.1127 -1.0108 -0.1083 -0.0039
11 O :py -0.0644 0.0851 0.0997 1.0705 1.1630 -0.2648 0.1713
13 O :dyz 0.0126 0.0069 -0.0188 -0.0268 0.1095 0.4819 -0.8563
14 O :fxxy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
15 O :fyyy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012
16 O :fyzz -0.0056 0.0034 -0.0002 0.0779 0.0689 0.0080 0.0005
Orbital 8 9 10 11
1 C :py 0.0000 -0.0889 -0.0041 0.1019
2 C :py -0.0000 0.1308 -0.0994 0.7366
3 C :py -0.0000 0.1158 0.1622 -0.0029
4 C :dyz -0.0000 0.4507 -1.1113 0.0525
5 C :dyz 0.0000 -0.1066 0.7398 -0.0311
6 C :fxxy 0.6124 -0.1435 -0.0423 -0.0903
7 C :fyyy -0.2041 -0.1435 -0.0423 -0.0903
8 C :fyzz 0.0000 0.5310 0.2405 -0.3482
9 O :py -0.0000 -1.0753 -0.6480 -3.7850
10 O :py 0.0000 1.8102 1.0634 6.0541
11 O :py -0.0000 -0.0203 -0.2022 0.3527
12 O :dyz 0.0000 0.0291 0.0188 -0.0050
13 O :dyz 0.0000 0.3099 0.2808 -0.0603
14 O :fxxy 0.0020 -0.1464 -0.0782 -0.4213
15 O :fyyy -0.0007 -0.1464 -0.0782 -0.4213
16 O :fyzz 0.0000 -0.0882 -0.0453 -0.4475
Molecular orbitals for symmetry species 4 (A2 )
------------------------------------------------
Orbital 1 2 3 4 5 6
1 C :dxy -0.0283 -0.0262 0.0521 1.1790 -0.0297 -0.0219
2 C :dxy 1.0109 -0.0923 -0.0194 -0.6069 0.0436 0.0389
3 C :fxyz 0.0014 0.0724 0.9959 -0.0422 0.0488 0.0325
4 O :dxy -0.0014 -0.0161 -0.0120 0.0063 -0.0196 1.1643
5 O :dxy 0.0461 1.0025 -0.1029 0.0552 0.0084 -0.5861
6 O :fxyz -0.0032 -0.0049 -0.0279 0.0125 1.0000 0.0177
Total CPU time used in SIRIUS : 0.52 seconds
Total wall time used in SIRIUS : 0.11 seconds
Date and time (Linux) : Wed Oct 9 15:27:21 2019
Host name : nazare063.cluster
NOTE: 1 informational messages have been issued.
Check output, result, and error files for "INFO".
.---------------------------------------.
| End of Wave Function Section (SIRIUS) |
`---------------------------------------'
.------------------------------------------.
| Starting in Coupled Cluster Section (CC) |
`------------------------------------------'
*******************************************************************************
*******************************************************************************
* *
* *
* START OF COUPLED CLUSTER CALCULATION *
* *
* *
*******************************************************************************
*******************************************************************************
I am freezing!
Freezing HF-orbital 1 of symmetry 1 and with orbital energy -20.6087
Freezing HF-orbital 2 of symmetry 1 and with orbital energy -11.5191
In total frozen-core per symmetry-class: 2 0 0 0
CCR12 ANSATZ = 0
CCR12 APPROX = 0
*******************************************************************
* *
*---------- >---------*
*---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------*
*---------- >---------*
* *
*******************************************************************
The Direct Coupled Cluster Energy Program
-----------------------------------------
Number of t1 amplitudes : 111
Number of t2 amplitudes : 13554
Total number of amplitudes in ccsd : 13665
Iter. 1: Coupled cluster MP2 energy : -112.7773856028926502
Iter. 1: Coupled cluster CC2 energy : -112.7770933888469500
Iter. 2: Coupled cluster CC2 energy : -112.8137922537585496
Iter. 3: Coupled cluster CC2 energy : -112.7904242518014968
Iter. 4: Coupled cluster CC2 energy : -112.6423644822100840
Iter. 5: Coupled cluster CC2 energy : -112.5914453803792838
Iter. 6: Coupled cluster CC2 energy : -112.6369074663839172
Iter. 7: Coupled cluster CC2 energy : -112.6447203089726514
Iter. 8: Coupled cluster CC2 energy : -112.6665699511032983
Iter. 9: Coupled cluster CC2 energy : -112.7225305910940563
Iter. 10: Coupled cluster CC2 energy : -112.7138733952231746
Iter. 11: Coupled cluster CC2 energy : -112.7338279900195488
Iter. 12: Coupled cluster CC2 energy : -112.7024717340119508
Iter. 13: Coupled cluster CC2 energy : -112.6740504818013022
Iter. 14: Coupled cluster CC2 energy : -112.5429360260324927
Iter. 15: Coupled cluster CC2 energy : -112.7204802290550560
Iter. 16: Coupled cluster CC2 energy : -112.7934415671459334
Iter. 17: Coupled cluster CC2 energy : -112.8745073746495251
Iter. 18: Coupled cluster CC2 energy : -112.8456091602496087
Iter. 19: Coupled cluster CC2 energy : -112.8931642786740213
Iter. 20: Coupled cluster CC2 energy : -112.8915457836657055
Iter. 21: Coupled cluster CC2 energy : -112.8656715850652859
Iter. 22: Coupled cluster CC2 energy : -112.5967377263952898
Iter. 23: Coupled cluster CC2 energy : -113.1783083877397758
Iter. 24: Coupled cluster CC2 energy : -113.2041962137215592
Iter. 25: Coupled cluster CC2 energy : -112.7256774167516511
Iter. 26: Coupled cluster CC2 energy : -113.0077166610892334
Iter. 27: Coupled cluster CC2 energy : -112.9998497251534246
Iter. 28: Coupled cluster CC2 energy : -113.0600211061207006
Iter. 29: Coupled cluster CC2 energy : -113.0583365816296464
Iter. 30: Coupled cluster CC2 energy : -113.0442818421477824
Iter. 31: Coupled cluster CC2 energy : -113.0362152100644124
Iter. 32: Coupled cluster CC2 energy : -113.0348288119392208
Iter. 33: Coupled cluster CC2 energy : -113.0340084652755905
Iter. 34: Coupled cluster CC2 energy : -113.0342351407926031
Iter. 35: Coupled cluster CC2 energy : -113.0340592933379043
Iter. 36: Coupled cluster CC2 energy : -113.0338296743684623
Iter. 37: Coupled cluster CC2 energy : -113.0337665860615743
Iter. 38: Coupled cluster CC2 energy : -113.0338022391669028
Iter. 39: Coupled cluster CC2 energy : -113.0337964124492061
Iter. 40: Coupled cluster CC2 energy : -113.0337964329622196
Energy not converged in 40 iterations
--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
Date and time (Linux) : Wed Oct 9 15:27:23 2019
Host name : nazare063.cluster
Reason: CC equations not converged.
Total CPU time used in DALTON: 19.50 seconds
Total wall time used in DALTON: 2.20 seconds
QTRACE dump of internal trace stack
========================
level module
========================
5 CCSD_ENERGY
4 CC_DRV
3 CC
2 DALTON
1 DALTON main
========================