These_linjie_JC/thesis/3/structure_stability.aux

346 lines
31 KiB
TeX

\relax
\providecommand\hyper@newdestlabel[2]{}
\citation{deMonNano2009}
\citation{Elstner1998}
\citation{Gaus2013para}
\citation{Li1998,Thompson2003,Rapacioli2009corr}
\citation{Rapacioli2009corr,Elstner2001,Zhechkov2005}
\citation{Simon2012,Odutola1980}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:structure}{{3}{49}{Exploration of Structural and Energetic Properties}{chapter.3}{}}
\citation{Sugita1999,Sugita2000,Earl2005}
\citation{Elstner1998}
\citation{Nose1984M,Hoover1985}
\citation{Douady2009}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}}
\newlabel{sec:structure-methods}{{3.1}{50}{Computational Details}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}}
\@writefile{brf}{\backcite{deMonNano2009}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Li1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner2001}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Zhechkov2005}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Simon2012}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Odutola1980}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}}
\@writefile{brf}{\backcite{Earl2005}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita1999}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita2000}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.2}{subsection.3.1.2}}}
\citation{Nose1984M,Hoover1985}
\citation{Wolken2000,Pedersen2014}
\citation{Weigend2005,Weigend2006}
\citation{GaussianCode}
\citation{Boys2002}
\@writefile{brf}{\backcite{Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Douady2009}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Wolken2000}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Pedersen2014}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}}
\@writefile{brf}{\backcite{Weigend2005}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Weigend2006}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{GaussianCode}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{52}{figure.caption.9}}
\newlabel{uracil_s}{{3.1}{52}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }{figure.caption.9}{}}
\@writefile{brf}{\backcite{Boys2002}{{52}{3.1.3}{subsection.3.1.3}}}
\citation{Keesee1989,Gilligan2000,Sennikov2005,Cabellos2016,Orabi2013,Bommer2016,Rodgers2003,Van2004,Gibb2004,Tielens2005,Parise2005,Boogert2015,Dulieu2010,Michoulier2018}
\citation{Kulmala2004}
\citation{Ziereis1986}
\citation{Perkins1984,Arnold1997}
\citation{Dunne2016}
\citation{Kirkby2011}
\citation{Perkins1984,Herbine1985,Stockman1992,Hulthe1997,Wang1998,Chang1998,Jiang1999,Hvelplund2010,Douady2009,Douady2008,Morrell2010,Bacelo2002,Galashev2013}
\citation{Perkins1984}
\citation{Hulthe1997}
\citation{Hvelplund2010}
\citation{Lee1996,Chang1998,Skurski1998,Jiang1999,Donaldson1999,Sadlej1999,Hvelplund2010,Bacelo2002,Galashev2013}
\citation{Lee1996}
\citation{Bacelo2002}
\citation{Douady2008,Kozack1992polar}
\citation{Morrell2010}
\citation{Pei2015}
\citation{Walters2018}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{53}{subsection.3.1.4}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}}
\newlabel{sec:ammoniumwater}{{3.2}{53}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}}
\@writefile{brf}{\backcite{Tielens2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Keesee1989}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gilligan2000}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sennikov2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Cabellos2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Orabi2013}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bommer2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rodgers2003}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Van2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gibb2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Parise2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Boogert2015}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dulieu2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Michoulier2018}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kulmala2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Ziereis1986}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Arnold1997}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dunne2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kirkby2011}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2009}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Herbine1985}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Stockman1992}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hulthe1997}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Wang1998}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\citation{Choi2010,Choi2013,Korchagina2017,Simon2019}
\citation{Simon2012,Simon2013water}
\citation{Korchagina2016}
\citation{Simon2017formation}
\citation{Winget2003}
\citation{Gaus2013para}
\@writefile{brf}{\backcite{Hulthe1997}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Skurski1998}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Donaldson1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sadlej1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kozack1992polar}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Pei2015}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Walters2018}{{54}{3.2.1}{subsection.3.2.1}}}
\citation{Thompson2003,Rapacioli2009}
\citation{Simon2019}
\@writefile{brf}{\backcite{Korchagina2017}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2013}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2012}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2013water}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Korchagina2016}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2017formation}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Winget2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}}
\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}}
\citation{Winget2003,Gaus2013para}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}}
\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}}
\citation{Maclot2011,Domaracka2012,Markush2016,Castrovilli2017}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}}
\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}}
\@writefile{brf}{\backcite{Gaus2013para}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{brf}{\backcite{Winget2003}{{58}{3.2.2.1}{figure.caption.11}}}
\citation{Wincel2009}
\citation{Boudaiffa2000}
\citation{Smyth2011,Siefermann2011,Alizadeh2013}
\citation{Rasmussen2010}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{59}{subsubsection.3.2.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{59}{subsubsection.3.2.2.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{59}{subsection.3.2.3}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{59}{section.3.3}}
\newlabel{structureUH}{{3.3}{59}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{59}{subsection.3.3.1}}
\@writefile{brf}{\backcite{Castrovilli2017}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Maclot2011}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Domaracka2012}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Markush2016}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Wincel2009}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Boudaiffa2000}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Smyth2011}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Siefermann2011}{{59}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Alizadeh2013}{{59}{3.3.1}{subsection.3.3.1}}}
\citation{Coates2018}
\citation{Nelson1994,Sadr2014,Molina2016}
\citation{Bakker2008}
\citation{Shishkin2000,Gadre2000,Van2001diffu,Gaigeot2001,Danilov2006,Bacchus2015}
\citation{Gadre2000,Van2001diffu,Gaigeot2001,Danilov2006,Bacchus2015}
\citation{Gaigeot2001}
\citation{Shishkin2000}
\citation{Bacchus2015}
\citation{Danilov2006}
\citation{Bacchus2015}
\citation{Gadre2000}
\citation{Danilov2006,Bacchus2015}
\citation{Braud2019}
\@writefile{brf}{\backcite{Rasmussen2010}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Coates2018}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Nelson1994}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Sadr2014}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Molina2016}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{60}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{61}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{61}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Braud2019}{{61}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{61}{subsection.3.3.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{61}{subsubsection.3.3.2.1}}
\newlabel{exp_ur}{{3.3.2.1}{61}{Experimental Results}{subsubsection.3.3.2.1}{}}
\citation{Dalleska1993}
\citation{Zamith2012}
\citation{Myers2007}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{62}{figure.caption.13}}
\newlabel{mass7w}{{3.5}{62}{Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.13}{}}
\@writefile{brf}{\backcite{Dalleska1993}{{62}{3.3.2.1}{figure.caption.13}}}
\@writefile{brf}{\backcite{Zamith2012}{{62}{3.3.2.1}{figure.caption.13}}}
\newlabel{cross-section-geo}{{3.3}{62}{Experimental Results}{equation.3.3.3}{}}
\citation{Zamith2012}
\citation{Dalleska1993}
\citation{Dalleska1993,Hansen2009}
\citation{Wincel2009}
\citation{Bakker2008}
\citation{Dalleska1993,Hansen2009}
\citation{Wincel2009}
\citation{Dalleska1993}
\citation{Zamith2012}
\citation{Dalleska1993}
\citation{Zamith2012}
\@writefile{brf}{\backcite{Myers2007}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Zamith2012}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Bakker2008}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{63}{3.3.2.1}{equation.3.3.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{64}{figure.caption.14}}
\@writefile{brf}{\backcite{Dalleska1993}{{64}{3.6}{figure.caption.14}}}
\@writefile{brf}{\backcite{Zamith2012}{{64}{3.6}{figure.caption.14}}}
\newlabel{fragcrosssec}{{3.6}{64}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.14}{}}
\citation{Kurinovich2002}
\citation{Magnera1991}
\citation{Cheng1998}
\citation{Cheng1998}
\citation{Magnera1991}
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Magnera1991}
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Bakker2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{65}{figure.caption.15}}
\newlabel{Uloss}{{3.7}{65}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.15}{}}
\@writefile{brf}{\backcite{Kurinovich2002}{{65}{3.3.2.1}{figure.caption.15}}}
\@writefile{brf}{\backcite{Magnera1991}{{65}{3.3.2.1}{figure.caption.15}}}
\@writefile{brf}{\backcite{Cheng1998}{{65}{3.3.2.1}{figure.caption.15}}}
\@writefile{brf}{\backcite{Cheng1998}{{65}{3.3.2.1}{figure.caption.15}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{66}{figure.caption.16}}
\@writefile{brf}{\backcite{Magnera1991}{{66}{3.8}{figure.caption.16}}}
\@writefile{brf}{\backcite{Cheng1998}{{66}{3.8}{figure.caption.16}}}
\@writefile{brf}{\backcite{Kurinovich2002}{{66}{3.8}{figure.caption.16}}}
\newlabel{protonAffinity}{{3.8}{66}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.16}{}}
\@writefile{brf}{\backcite{Bakker2008}{{66}{3.3.2.1}{figure.caption.16}}}
\citation{Wolken2000}
\citation{Pedersen2014}
\citation{Pedersen2014}
\citation{Bakker2008}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{67}{table.caption.17}}
\newlabel{tab:DNH}{{3.1}{67}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.17}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{67}{subsubsection.3.3.2.2}}
\newlabel{calcul_ur}{{3.3.2.2}{67}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{brf}{\backcite{Wolken2000}{{68}{3.3.2.2}{table.caption.17}}}
\@writefile{brf}{\backcite{Pedersen2014}{{68}{3.3.2.2}{table.caption.17}}}
\@writefile{brf}{\backcite{Pedersen2014}{{68}{3.3.2.2}{table.caption.17}}}
\@writefile{brf}{\backcite{Bakker2008}{{68}{3.3.2.2}{table.caption.17}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{69}{figure.caption.18}}
\newlabel{1a-f}{{3.9}{69}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{70}{figure.caption.19}}
\newlabel{1a-f-b3lyp}{{3.10}{70}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.19}{}}
\citation{Zundel1968}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{71}{figure.caption.20}}
\newlabel{2a-f}{{3.11}{71}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.20}{}}
\@writefile{brf}{\backcite{Zundel1968}{{71}{3.3.2.2}{figure.caption.23}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{72}{figure.caption.21}}
\newlabel{3a-f}{{3.12}{72}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.21}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{73}{figure.caption.22}}
\newlabel{4a-f}{{3.13}{73}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.22}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{74}{figure.caption.23}}
\newlabel{5a-f}{{3.14}{74}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.23}{}}
\citation{Molina2015,Molina2016}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{75}{figure.caption.24}}
\newlabel{6a-f}{{3.15}{75}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.24}{}}
\@writefile{brf}{\backcite{Molina2015}{{76}{3.3.2.2}{figure.caption.27}}}
\@writefile{brf}{\backcite{Molina2016}{{76}{3.3.2.2}{figure.caption.27}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{76}{subsection.3.3.3}}
\FN@pp@footnotehinttrue
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{77}{figure.caption.25}}
\newlabel{7a-f}{{3.16}{77}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.25}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{78}{figure.caption.26}}
\newlabel{11a-f}{{3.17}{78}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.26}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{79}{figure.caption.27}}
\newlabel{12a-f}{{3.18}{79}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.27}{}}
\@setckpt{3/structure_stability}{
\setcounter{page}{80}
\setcounter{equation}{3}
\setcounter{enumi}{5}
\setcounter{enumii}{0}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{3}
\setcounter{section}{3}
\setcounter{subsection}{3}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{18}
\setcounter{table}{1}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}
\setcounter{NAT@ctr}{0}
\setcounter{Item}{5}
\setcounter{Hfootnote}{0}
\setcounter{bookmark@seq@number}{34}
\setcounter{parentequation}{0}
\setcounter{section@level}{2}
}