\BOOKMARK [0][]{chapter*.2}{Glossary}{}% 1 \BOOKMARK [0][]{chapter.1}{1 General Introduction}{}% 2 \BOOKMARK [0][]{chapter.2}{2 Computational Methods}{}% 3 \BOOKMARK [1][]{section.2.1}{2.1 Schr\366dinger Equation}{chapter.2}% 4 \BOOKMARK [1][]{section.2.2}{2.2 Born-Oppenheimer Approximation}{chapter.2}% 5 \BOOKMARK [1][]{section.2.3}{2.3 Computation of Electronic Energy}{chapter.2}% 6 \BOOKMARK [2][]{subsection.2.3.1}{2.3.1 Wavefunction based Methods}{section.2.3}% 7 \BOOKMARK [2][]{subsection.2.3.2}{2.3.2 Density Functional Theory}{section.2.3}% 8 \BOOKMARK [2][]{subsection.2.3.3}{2.3.3 Density Functional based Tight-Binding Theory}{section.2.3}% 9 \BOOKMARK [2][]{subsection.2.3.4}{2.3.4 Force Field Methods}{section.2.3}% 10 \BOOKMARK [1][]{section.2.4}{2.4 Exploration of PES}{chapter.2}% 11 \BOOKMARK [2][]{subsection.2.4.1}{2.4.1 Monte Carlo Simulations}{section.2.4}% 12 \BOOKMARK [2][]{subsection.2.4.2}{2.4.2 Classical Molecular Dynamics}{section.2.4}% 13 \BOOKMARK [2][]{subsection.2.4.3}{2.4.3 Parallel-Tempering Molecular Dynamics}{section.2.4}% 14 \BOOKMARK [2][]{subsection.2.4.4}{2.4.4 Global Optimization}{section.2.4}% 15 \BOOKMARK [0][]{chapter.3}{3 Investigation of Structural and Energetic Properties}{}% 16 \BOOKMARK [1][]{section.3.1}{3.1 Computational Details}{chapter.3}% 17 \BOOKMARK [2][]{subsection.3.1.1}{3.1.1 SCC-DFTB Potential}{section.3.1}% 18 \BOOKMARK [2][]{subsection.3.1.2}{3.1.2 SCC-DFTB Exploration of PES}{section.3.1}% 19 \BOOKMARK [2][]{subsection.3.1.3}{3.1.3 MP2 Geometry Optimizations, Relative and Binding Energies}{section.3.1}% 20 \BOOKMARK [2][]{subsection.3.1.4}{3.1.4 Structure Classification}{section.3.1}% 21 \BOOKMARK [1][]{section.3.2}{3.2 Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{chapter.3}% 22 \BOOKMARK [2][]{subsection.3.2.1}{3.2.1 General introduction}{section.3.2}% 23 \BOOKMARK [2][]{subsection.3.2.2}{3.2.2 Results and Discussion}{section.3.2}% 24 \BOOKMARK [3][]{subsubsection.3.2.2.1}{3.2.2.1 Dissociation Curves and SCC-DFTB Potential}{subsection.3.2.2}% 25 \BOOKMARK [3][]{subsubsection.3.2.2.2}{3.2.2.2 Small Species: \(H2O\)1-3NH4+ and \(H2O\)1-3NH3}{subsection.3.2.2}% 26 \BOOKMARK [3][]{subsubsection.3.2.2.3}{3.2.2.3 Properties of \(H2O\)4-10NH4+ Clusters}{subsection.3.2.2}% 27 \BOOKMARK [3][]{subsubsection.3.2.2.4}{3.2.2.4 Properties of \(H2O\)4-10NH3 Clusters}{subsection.3.2.2}% 28 \BOOKMARK [3][]{subsubsection.3.2.2.5}{3.2.2.5 Properties of \(H2O\)20NH4+ Cluster}{subsection.3.2.2}% 29 \BOOKMARK [2][]{subsection.3.2.3}{3.2.3 Conclusions for Ammonium/Ammonia Including Water Clusters}{section.3.2}% 30 \BOOKMARK [1][]{section.3.3}{3.3 Structural and Energetic Properties of Protonated Uracil Water Clusters}{chapter.3}% 31 \BOOKMARK [2][]{subsection.3.3.1}{3.3.1 General introduction}{section.3.3}% 32 \BOOKMARK [2][]{subsection.3.3.2}{3.3.2 Results and Discussion}{section.3.3}% 33 \BOOKMARK [3][]{subsubsection.3.3.2.1}{3.3.2.1 Experimental Results}{subsection.3.3.2}% 34 \BOOKMARK [3][]{subsubsection.3.3.2.2}{3.3.2.2 Calculated Structures of Protonated Uracil Water Clusters}{subsection.3.3.2}% 35 \BOOKMARK [2][]{subsection.3.3.3}{3.3.3 Conclusions on \(H2O\)nUH+ clusters}{section.3.3}% 36 \BOOKMARK [0][]{chapter.4}{4 Dynamical Simulation of Collision-Induced Dissociation}{}% 37 \BOOKMARK [1][]{section.4.1}{4.1 Experimental Methods}{chapter.4}% 38 \BOOKMARK [2][]{subsection.4.1.1}{4.1.1 Principle of TCID}{section.4.1}% 39 \BOOKMARK [2][]{subsection.4.1.2}{4.1.2 Experimental Setup}{section.4.1}% 40 \BOOKMARK [1][]{section.4.2}{4.2 Computational Details}{chapter.4}% 41 \BOOKMARK [2][]{subsection.4.2.1}{4.2.1 SCC-DFTB Potential}{section.4.2}% 42 \BOOKMARK [2][]{subsection.4.2.2}{4.2.2 Collision Trajectories}{section.4.2}% 43 \BOOKMARK [2][]{subsection.4.2.3}{4.2.3 Trajectory Analysis}{section.4.2}% 44 \BOOKMARK [1][]{section.4.3}{4.3 Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{chapter.4}% 45 \BOOKMARK [2][]{subsection.4.3.1}{4.3.1 Introduction}{section.4.3}% 46 \BOOKMARK [2][]{subsection.4.3.2}{4.3.2 Results and Discussion}{section.4.3}% 47 \BOOKMARK [3][]{subsubsection.4.3.2.1}{4.3.2.1 Statistical Convergence}{subsection.4.3.2}% 48 \BOOKMARK [2][]{subsection.4.3.3}{4.3.3 Time-Dependent Proportion of Fragments}{section.4.3}% 49 \BOOKMARK [2][]{subsection.4.3.4}{4.3.4 Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{section.4.3}% 50 \BOOKMARK [2][]{subsection.4.3.5}{4.3.5 Behaviour at Larger Sizes, the Cases of \(H2O\)11, 12UH+}{section.4.3}% 51 \BOOKMARK [2][]{subsection.4.3.6}{4.3.6 Mass Spectra of Fragments with Excess Proton}{section.4.3}% 52 \BOOKMARK [2][]{subsection.4.3.7}{4.3.7 Conclusions about CID of \(H2O\)nUH+}{section.4.3}% 53 \BOOKMARK [1][]{section.4.4}{4.4 Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{chapter.4}% 54 \BOOKMARK [2][]{subsection.4.4.1}{4.4.1 Introduction}{section.4.4}% 55 \BOOKMARK [2][]{subsection.4.4.2}{4.4.2 Calculation of Energies}{section.4.4}% 56 \BOOKMARK [2][]{subsection.4.4.3}{4.4.3 Simulation of the Experimental TOFMS}{section.4.4}% 57 \BOOKMARK [2][]{subsection.4.4.4}{4.4.4 Results and Discussion}{section.4.4}% 58 \BOOKMARK [3][]{subsubsection.4.4.4.1}{4.4.4.1 TOFMS Comparison}{subsection.4.4.4}% 59 \BOOKMARK [3][]{subsubsection.4.4.4.2}{4.4.4.2 Molecular Dynamics Analysis}{subsection.4.4.4}% 60 \BOOKMARK [2][]{subsection.4.4.5}{4.4.5 Conclusions about CID of Py2+}{section.4.4}% 61 \BOOKMARK [0][]{chapter.5}{5 General Conclusions and Perspectives}{}% 62 \BOOKMARK [1][]{section.5.1}{5.1 General Conclusions}{chapter.5}% 63 \BOOKMARK [1][]{section.5.2}{5.2 Perspectives}{chapter.5}% 64 \BOOKMARK [0][]{chapter*.82}{References}{}% 65