Compare commits

...

6 Commits

Author SHA1 Message Date
debb6f898c after merge 2021-06-15 19:42:03 +02:00
d0e296b204 JC general intro 2021-06-15 19:40:14 +02:00
358a54e58f JC general intro 2021-06-15 19:39:59 +02:00
bebc62185a merge with linjie 2021-06-15 14:32:26 +02:00
a0335a6aff general conclusion 2021-06-15 14:13:20 +02:00
c1d2ca33cf to merge with linjie 2021-06-14 15:01:08 +02:00
23 changed files with 622 additions and 534 deletions

View File

@ -18,7 +18,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -19,7 +19,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -19,7 +19,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -18,7 +18,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -25,7 +25,7 @@
\citation{Berden1996,Buck2000}
\citation{Rapacioli2005stacked,Zhen2018}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:general_intro}{{1}{1}{General Introduction}{chapter.1}{}}
@ -115,7 +115,7 @@
\citation{Korchagina2017}
\citation{Hada2003,Chakraborty2020,Zamith2020threshold,Zheng2021}
\citation{Tibshirani2005}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Transition temperature of (H$_{2}$O)$_{n}$H$^{+}$ clusters (red squares) and (H$_{2}$O)$_{n-1}$OH$^{-}$ (blue circles) as a function of $n$. The results obtained by M. Schmidt \textit {et al.} on (H$_{2}$O)$_{n}$H$^{+}$ are also presented (black circles)\cite {Schmidt2012} as well as those by C. Hock \textit {et al.} on (H$_{2}$O)$_{n}^{-}$ clusters (black stars).\cite {Hock2009} Figure extracted from reference~\cite {Boulon2014}.\relax }}{4}{figure.caption.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Transition temperature of (H$_{2}$O)$_{n}$H$^{+}$ clusters (red squares) and (H$_{2}$O)$_{n-1}$OH$^{-}$ (blue circles) as a function of $n$. The results obtained by M. Schmidt \textit {et al.} on (H$_{2}$O)$_{n}$H$^{+}$ are also presented (black circles)\cite {Schmidt2012} as well as those by C. Hock \textit {et al.} on (H$_{2}$O)$_{n}^{-}$ clusters (black stars).\cite {Hock2009} Figure extracted from reference~\cite {Boulon2014}.\relax }}{4}{figure.caption.3}}
\@writefile{brf}{\backcite{Schmidt2012}{{4}{1.1}{figure.caption.3}}}
\@writefile{brf}{\backcite{Hock2009}{{4}{1.1}{figure.caption.3}}}
\@writefile{brf}{\backcite{Boulon2014}{{4}{1.1}{figure.caption.3}}}
@ -246,7 +246,7 @@
\citation{Scholz2013,Darghouth2015}
\citation{Rapacioli2006,Holm2010,Simon2017formation,Zhen2018,Chen2018,Zamith2020threshold}
\citation{Schmidt2006,Holm2010,Gatchell2015,Joblin2017,Gatchell2017,Zamith2019thermal}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Examples of several PAH molecules.\relax }}{8}{figure.caption.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Examples of several PAH molecules.\relax }}{8}{figure.caption.4}}
\newlabel{PAHs_sample}{{1.2}{8}{Examples of several PAH molecules.\relax }{figure.caption.4}{}}
\@writefile{brf}{\backcite{Leger1984}{{8}{1}{figure.caption.4}}}
\@writefile{brf}{\backcite{Allamandola1985}{{8}{1}{figure.caption.4}}}
@ -322,7 +322,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{2}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

Binary file not shown.

View File

@ -2,24 +2,24 @@
\providecommand\hyper@newdestlabel[2]{}
\FN@pp@footnotehinttrue
\citation{Brown2009}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:comput_method}{{2}{13}{Computational Methods}{chapter.2}{}}
\@writefile{brf}{\backcite{Brown2009}{{13}{2}{chapter.2}}}
\citation{MCTDH}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Comparison of the computational efficiency, \textit {i.e.} system sizes and simulation times, of various computational chemistry methods. The \textit {y}-axis indicates the length of time accessible from classical molecular simulations for average system sizes tackle by each method. The \textit {x}-axis indicates the approximative maximum system size tractable by each method in a single-point energy calculation.\relax }}{14}{figure.caption.5}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Comparison of the computational efficiency, \textit {i.e.} system sizes and simulation times, of various computational chemistry methods. The \textit {y}-axis indicates the length of time accessible from classical molecular simulations for average system sizes tackle by each method. The \textit {x}-axis indicates the approximative maximum system size tractable by each method in a single-point energy calculation.\relax }}{14}{figure.caption.5}}
\newlabel{methods}{{2.1}{14}{Comparison of the computational efficiency, \textit {i.e.} system sizes and simulation times, of various computational chemistry methods. The \textit {y}-axis indicates the length of time accessible from classical molecular simulations for average system sizes tackle by each method. The \textit {x}-axis indicates the approximative maximum system size tractable by each method in a single-point energy calculation.\relax }{figure.caption.5}{}}
\@writefile{brf}{\backcite{MCTDH}{{14}{2}{figure.caption.5}}}
\citation{Griffiths2018}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}}
\@writefile{brf}{\backcite{Griffiths2018}{{15}{2.1}{section.2.1}}}
\newlabel{TDSE}{{2.1}{15}{Schr{\"o}dinger Equation}{equation.2.1.1}{}}
\newlabel{TISE}{{2.2}{15}{Schr{\"o}dinger Equation}{equation.2.1.2}{}}
\newlabel{waveFunc}{{2.3}{15}{Schr{\"o}dinger Equation}{equation.2.1.3}{}}
\newlabel{operatorH}{{2.4}{16}{Schr{\"o}dinger Equation}{equation.2.1.4}{}}
\newlabel{laplace}{{2.5}{16}{Schr{\"o}dinger Equation}{equation.2.1.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}}
\newlabel{BO_approx}{{2.2}{16}{Born-Oppenheimer Approximation}{section.2.2}{}}
\citation{Born1927}
\citation{Born1927}
@ -35,7 +35,7 @@
\newlabel{classical}{{2.11}{18}{Born-Oppenheimer Approximation}{equation.2.2.11}{}}
\@writefile{brf}{\backcite{Epstein1966}{{18}{2.2}{equation.2.2.11}}}
\@writefile{brf}{\backcite{Butler1998}{{18}{2.2}{equation.2.2.11}}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}}
\newlabel{electronicEnergy}{{2.3}{18}{Computation of Electronic Energy}{section.2.3}{}}
\citation{Jensen2017}
\citation{dftb1,dftb2,Elstner1998,Elstner2014}
@ -55,7 +55,7 @@
\@writefile{brf}{\backcite{Singh1986}{{19}{2.3}{section.2.3}}}
\@writefile{brf}{\backcite{Gao1996}{{19}{2.3}{section.2.3}}}
\@writefile{brf}{\backcite{Mordasini1998}{{19}{2.3}{section.2.3}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}}
\@writefile{brf}{\backcite{Hartree1928}{{19}{2.3.1}{subsection.2.3.1}}}
\@writefile{brf}{\backcite{Hartree1947}{{19}{2.3.1}{subsection.2.3.1}}}
\@writefile{brf}{\backcite{Slater1968}{{19}{2.3.1}{subsection.2.3.1}}}
@ -102,7 +102,7 @@
\@writefile{brf}{\backcite{Head1994}{{21}{2.3.1}{equation.2.3.15}}}
\@writefile{brf}{\backcite{Magnasco2009}{{21}{2.3.1}{equation.2.3.15}}}
\@writefile{brf}{\backcite{Dacosta2011}{{21}{2.3.1}{equation.2.3.15}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}}
\@writefile{brf}{\backcite{Kohn1965}{{21}{2.3.2}{subsection.2.3.2}}}
\@writefile{brf}{\backcite{kohn1999nobel}{{21}{2.3.2}{subsection.2.3.2}}}
\citation{Hohenberg1964}
@ -118,7 +118,7 @@
\@writefile{brf}{\backcite{Fermi1928}{{22}{2.3.2}{equation.2.3.16}}}
\newlabel{N}{{2.17}{22}{Density Functional Theory}{equation.2.3.17}{}}
\citation{Kohn1965}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Interdependence of basic variables in the Hohenberg-Kohn theorem.}}{23}{figure.caption.6}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Interdependence of basic variables in the Hohenberg-Kohn theorem.}}{23}{figure.caption.6}}
\newlabel{variables}{{2.2}{23}{Interdependence of basic variables in the Hohenberg-Kohn theorem}{figure.caption.6}{}}
\newlabel{HK}{{2.18}{23}{Density Functional Theory}{equation.2.3.18}{}}
\@writefile{brf}{\backcite{Kohn1965}{{23}{2.3.2}{equation.2.3.18}}}
@ -156,7 +156,7 @@
\@writefile{brf}{\backcite{Krukau2006}{{26}{2.3.2}{equation.2.3.27}}}
\@writefile{brf}{\backcite{Zhao2008}{{26}{2.3.2}{equation.2.3.27}}}
\@writefile{brf}{\backcite{Li2018}{{26}{2.3.2}{equation.2.3.27}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}}
\newlabel{sec:DFTB}{{2.3.3}{26}{Density Functional based Tight-Binding Theory}{subsection.2.3.3}{}}
\@writefile{brf}{\backcite{Foulkes1989}{{26}{2.3.3}{subsection.2.3.3}}}
\@writefile{brf}{\backcite{Porezag1995}{{26}{2.3.3}{subsection.2.3.3}}}
@ -229,7 +229,7 @@
\citation{Morse1929,Girifalco1959}
\citation{Jones1924,Lennard1924}
\citation{Lennard1931}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{33}{subsection.2.3.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{33}{subsection.2.3.4}}
\@writefile{brf}{\backcite{Frenkel2001}{{33}{2.3.4}{subsection.2.3.4}}}
\@writefile{brf}{\backcite{Jones1924}{{33}{2.3.4}{subsection.2.3.4}}}
\@writefile{brf}{\backcite{Lennard1924}{{33}{2.3.4}{subsection.2.3.4}}}
@ -249,13 +249,13 @@
\newlabel{LennarsJones}{{2.54}{34}{Force Field Methods}{equation.2.3.54}{}}
\@writefile{brf}{\backcite{Monticelli2013}{{34}{2.3.4}{equation.2.3.54}}}
\newlabel{potential}{{2.55}{34}{Force Field Methods}{equation.2.3.55}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Exploration of PES}{35}{section.2.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Schematic representation of some key points on a model potential energy surface.}}{35}{figure.caption.7}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Exploration of PES}{35}{section.2.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Schematic representation of some key points on a model potential energy surface.}}{35}{figure.caption.7}}
\newlabel{PES}{{2.3}{35}{Schematic representation of some key points on a model potential energy surface}{figure.caption.7}{}}
\citation{Metropolis1987}
\citation{Metropolis1949}
\citation{Kroese2014}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{36}{subsection.2.4.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{36}{subsection.2.4.1}}
\@writefile{brf}{\backcite{Metropolis1987}{{36}{2.4.1}{subsection.2.4.1}}}
\@writefile{brf}{\backcite{Metropolis1949}{{36}{2.4.1}{subsection.2.4.1}}}
\@writefile{brf}{\backcite{Kroese2014}{{36}{2.4.1}{subsection.2.4.1}}}
@ -282,7 +282,7 @@
\citation{Mondello1997,Hess2002,Yeh2004,Zhang2015}
\citation{Aragon1976,Vuilleumier1999,Pavone2006,Brancato2006}
\newlabel{thermalAverage}{{2.66}{39}{Monte Carlo Simulations}{equation.2.4.66}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{39}{subsection.2.4.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{39}{subsection.2.4.2}}
\citation{Beck2000,Wang2003}
\citation{Wei1994,Light2000}
\@writefile{brf}{\backcite{Alder1957}{{40}{2.4.2}{subsection.2.4.2}}}
@ -367,7 +367,7 @@
\citation{Falcioni1999}
\citation{Earl2005}
\citation{Sugita1999}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{44}{subsection.2.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{44}{subsection.2.4.3}}
\newlabel{sec:PTMD}{{2.4.3}{44}{Parallel-Tempering Molecular Dynamics}{subsection.2.4.3}{}}
\@writefile{brf}{\backcite{Torrie1977}{{44}{2.4.3}{subsection.2.4.3}}}
\@writefile{brf}{\backcite{Hansmann1993}{{44}{2.4.3}{subsection.2.4.3}}}
@ -385,13 +385,13 @@
\@writefile{brf}{\backcite{Falcioni1999}{{44}{2.4.3}{subsection.2.4.3}}}
\@writefile{brf}{\backcite{Earl2005}{{44}{2.4.3}{subsection.2.4.3}}}
\@writefile{brf}{\backcite{Sugita1999}{{44}{2.4.3}{subsection.2.4.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Schematics of the PTMD algorithm in its synchronous version. Replicas of the same system, numbered from $C_1$ to $C_N$, are simulated subject to different temperatures (from T$_1$ to T$_N$). Once $X$ MD steps (straight solid arrows) have been performed by each replica, configuration exchanges are attempted between neighbouring simulations according to the Metropolis criterion. Some of them undergo successful swapping (solid curved arrows) while other not (dashed curved arrows). MD simulations then proceed for $X$ additional MD steps before new attempts of exchange.\relax }}{45}{figure.caption.8}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Schematics of the PTMD algorithm in its synchronous version. Replicas of the same system, numbered from $C_1$ to $C_N$, are simulated subject to different temperatures (from T$_1$ to T$_N$). Once $X$ MD steps (straight solid arrows) have been performed by each replica, configuration exchanges are attempted between neighbouring simulations according to the Metropolis criterion. Some of them undergo successful swapping (solid curved arrows) while other not (dashed curved arrows). MD simulations then proceed for $X$ additional MD steps before new attempts of exchange.\relax }}{45}{figure.caption.8}}
\newlabel{ptmd_s}{{2.4}{45}{Schematics of the PTMD algorithm in its synchronous version. Replicas of the same system, numbered from $C_1$ to $C_N$, are simulated subject to different temperatures (from T$_1$ to T$_N$). Once $X$ MD steps (straight solid arrows) have been performed by each replica, configuration exchanges are attempted between neighbouring simulations according to the Metropolis criterion. Some of them undergo successful swapping (solid curved arrows) while other not (dashed curved arrows). MD simulations then proceed for $X$ additional MD steps before new attempts of exchange.\relax }{figure.caption.8}{}}
\citation{Wales1997,Wales1999}
\citation{Hartke1993,Unger1993,Sivanandam2008,Toledo2014}
\newlabel{Metropolis}{{2.78}{46}{Parallel-Tempering Molecular Dynamics}{equation.2.4.78}{}}
\newlabel{newVelo}{{2.79}{46}{Parallel-Tempering Molecular Dynamics}{equation.2.4.79}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{46}{subsection.2.4.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{46}{subsection.2.4.4}}
\@writefile{brf}{\backcite{Wales1997}{{46}{2.4.4}{subsection.2.4.4}}}
\@writefile{brf}{\backcite{Wales1999}{{46}{2.4.4}{subsection.2.4.4}}}
\@writefile{brf}{\backcite{Hartke1993}{{46}{2.4.4}{subsection.2.4.4}}}
@ -417,7 +417,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{4}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

BIN
thesis/3/.DS_Store vendored

Binary file not shown.

View File

@ -7,7 +7,7 @@
\citation{Li1998,Thompson2003,Rapacioli2009corr}
\citation{Rapacioli2009corr,Elstner2001,Zhechkov2005}
\citation{Simon2012,Odutola1980}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:structure}{{3}{49}{Exploration of Structural and Energetic Properties}{chapter.3}{}}
@ -15,9 +15,9 @@
\citation{Elstner1998}
\citation{Nose1984M,Hoover1985}
\citation{Douady2009}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}}
\newlabel{sec:structure-methods}{{3.1}{50}{Computational Details}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}}
\@writefile{brf}{\backcite{deMonNano2009}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{50}{3.1.1}{subsection.3.1.1}}}
@ -29,7 +29,7 @@
\@writefile{brf}{\backcite{Zhechkov2005}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Simon2012}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Odutola1980}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}}
\@writefile{brf}{\backcite{Earl2005}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita1999}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita2000}{{50}{3.1.2}{subsection.3.1.2}}}
@ -46,14 +46,14 @@
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Wolken2000}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Pedersen2014}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}}
\@writefile{brf}{\backcite{Weigend2005}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Weigend2006}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{GaussianCode}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{52}{figure.caption.9}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{52}{figure.caption.9}}
\newlabel{uracil_s}{{3.1}{52}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }{figure.caption.9}{}}
\@writefile{brf}{\backcite{Boys2002}{{52}{3.1.3}{subsection.3.1.3}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{52}{subsection.3.1.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{52}{subsection.3.1.4}}
\citation{Keesee1989,Gilligan2000,Sennikov2005,Cabellos2016,Orabi2013,Bommer2016,Rodgers2003,Van2004,Gibb2004,Tielens2005,Parise2005,Boogert2015,Dulieu2010,Michoulier2018}
\citation{Kulmala2004}
\citation{Ziereis1986}
@ -71,9 +71,9 @@
\citation{Morrell2010}
\citation{Pei2015}
\citation{Walters2018}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}}
\newlabel{sec:ammoniumwater}{{3.2}{53}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}}
\@writefile{brf}{\backcite{Tielens2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Keesee1989}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gilligan2000}{{53}{3.2.1}{subsection.3.2.1}}}
@ -147,32 +147,32 @@
\@writefile{brf}{\backcite{Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}}
\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}}
\citation{Winget2003,Gaus2013para}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}}
\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}}
\citation{Wang1998,Jiang1999}
\citation{Wang1998,Jiang1999}
\citation{Douady2008}
\@writefile{brf}{\backcite{Gaus2013para}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{brf}{\backcite{Winget2003}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}}
\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}}
\@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Douady2008}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.13}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.13}}
\newlabel{fig:nh3-nh4-1w}{{3.5}{59}{Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.14}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.14}}
\newlabel{fig:nh3-nh4-2-3w}{{3.6}{59}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Douady2009,Morrell2010}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.15}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.15}}
\newlabel{fig:nh3-nh4-3w}{{3.7}{60}{Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.15}{}}
\@writefile{brf}{\backcite{Douady2009}{{60}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Wang1998}{{60}{3.2.2.2}{table.caption.16}}}
@ -183,9 +183,9 @@
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Pickard2005}
\citation{Chang1998,Wang1998}
\citation{Jiang1999}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}}
\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
@ -194,11 +194,11 @@
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Chang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{62}{table.caption.18}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{62}{table.caption.18}}
\newlabel{reBindE}{{3.2}{62}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal·mol\textsuperscript {-1}.\relax }{table.caption.18}{}}
\citation{Douady2008,Morrell2010}
\citation{Jiang1999}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{63}{figure.caption.17}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{63}{figure.caption.17}}
\newlabel{fig:nh4-4-6w}{{3.8}{63}{Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal·mol\textsuperscript {-1}.\relax }{figure.caption.17}{}}
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{63}{3.2.2.3}{table.caption.18}}}
@ -223,7 +223,7 @@
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{66}{figure.caption.19}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{66}{figure.caption.19}}
\newlabel{fig:nh4-7-10w}{{3.9}{66}{The five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.19}{}}
\@writefile{brf}{\backcite{Douady2008}{{66}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
@ -234,32 +234,32 @@
\citation{Lee1996}
\citation{Bacelo2002}
\citation{Bacelo2002}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}}
\@writefile{brf}{\backcite{Lee1996}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{69}{figure.caption.20}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{69}{figure.caption.20}}
\newlabel{fig:nh3-4-7w}{{3.10}{69}{The five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{72}{figure.caption.21}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{72}{figure.caption.21}}
\newlabel{fig:nh3-8-10w}{{3.11}{72}{The five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.21}{}}
\citation{Kazimirski2003,Douady2009,Bandow2006}
\citation{Douady2009}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{73}{subsubsection.3.2.2.5}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{73}{subsubsection.3.2.2.5}}
\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Kazimirski2003}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Bandow2006}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{74}{figure.caption.22}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{74}{figure.caption.22}}
\newlabel{fig:nh3-nh4-20w}{{3.12}{74}{The five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}}
\citation{Maclot2011,Domaracka2012,Markush2016,Castrovilli2017}
\citation{Wincel2009}
\citation{Boudaiffa2000}
\citation{Smyth2011,Siefermann2011,Alizadeh2013}
\citation{Rasmussen2010}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}}
\newlabel{structureUH}{{3.3}{75}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}}
\@writefile{brf}{\backcite{Castrovilli2017}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Maclot2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Domaracka2012}{{75}{3.3.1}{subsection.3.3.1}}}
@ -310,12 +310,12 @@
\citation{Dalleska1993}
\citation{Zamith2012}
\@writefile{brf}{\backcite{Braud2019}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}}
\newlabel{exp_ur}{{3.3.2.1}{77}{Experimental Results}{subsubsection.3.3.2.1}{}}
\citation{Myers2007}
\citation{Zamith2012}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{78}{figure.caption.23}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{78}{figure.caption.23}}
\newlabel{mass7w}{{3.13}{78}{Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}}
\@writefile{brf}{\backcite{Dalleska1993}{{78}{3.3.2.1}{figure.caption.23}}}
\@writefile{brf}{\backcite{Zamith2012}{{78}{3.3.2.1}{figure.caption.23}}}
@ -340,7 +340,7 @@
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{80}{figure.caption.24}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{80}{figure.caption.24}}
\@writefile{brf}{\backcite{Dalleska1993}{{80}{3.14}{figure.caption.24}}}
\@writefile{brf}{\backcite{Zamith2012}{{80}{3.14}{figure.caption.24}}}
\newlabel{fragcrosssec}{{3.14}{80}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
@ -355,23 +355,23 @@
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Bakker2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{81}{figure.caption.25}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{81}{figure.caption.25}}
\newlabel{Uloss}{{3.15}{81}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}}
\@writefile{brf}{\backcite{Kurinovich2002}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Magnera1991}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Bakker2008}{{81}{3.3.2.1}{figure.caption.26}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{82}{figure.caption.26}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{82}{figure.caption.26}}
\@writefile{brf}{\backcite{Magnera1991}{{82}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Cheng1998}{{82}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Kurinovich2002}{{82}{3.16}{figure.caption.26}}}
\newlabel{protonAffinity}{{3.16}{82}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.26}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{83}{table.caption.28}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{83}{table.caption.28}}
\newlabel{tab:DNH}{{3.3}{83}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.28}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}}
\newlabel{calcul_ur}{{3.3.2.2}{83}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{83}{figure.caption.27}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{83}{figure.caption.27}}
\newlabel{uracil_i}{{3.17}{83}{Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }{figure.caption.27}{}}
\citation{Wolken2000}
\citation{Pedersen2014}
@ -381,32 +381,32 @@
\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Bakker2008}{{84}{3.3.2.2}{table.caption.28}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{85}{figure.caption.29}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{85}{figure.caption.29}}
\newlabel{1a-f}{{3.18}{85}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.29}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{86}{figure.caption.30}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{86}{figure.caption.30}}
\newlabel{1a-f-b3lyp}{{3.19}{86}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}}
\citation{Zundel1968}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.31}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.31}}
\newlabel{2a-f}{{3.20}{87}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.32}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.32}}
\newlabel{3a-f}{{3.21}{88}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}}
\@writefile{brf}{\backcite{Zundel1968}{{88}{3.3.2.2}{figure.caption.34}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.33}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.33}}
\newlabel{4a-f}{{3.22}{89}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.34}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.34}}
\newlabel{5a-f}{{3.23}{90}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.35}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.35}}
\newlabel{6a-f}{{3.24}{91}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}}
\citation{Molina2015,Molina2016}
\@writefile{brf}{\backcite{Molina2015}{{92}{3.3.2.2}{figure.caption.38}}}
\@writefile{brf}{\backcite{Molina2016}{{92}{3.3.2.2}{figure.caption.38}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}}
\FN@pp@footnotehinttrue
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.36}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.36}}
\newlabel{7a-f}{{3.25}{93}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{94}{figure.caption.37}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{94}{figure.caption.37}}
\newlabel{11a-f}{{3.26}{94}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.38}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.38}}
\newlabel{12a-f}{{3.27}{95}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.38}{}}
\@setckpt{3/structure_stability}{
\setcounter{page}{96}
@ -426,7 +426,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{27}
\setcounter{table}{3}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -5,11 +5,11 @@
\citation{Wong2004,Bush2008}
\citation{Holm2010,Gatchell2014,Gatchell2017}
\citation{Boering1992,Wells2005,Zamith2019thermal}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:collision}{{4}{97}{Dynamical Simulation of Collision-Induced Dissociation}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}}
\newlabel{exp_cid}{{4.1}{97}{Experimental Methods}{section.4.1}{}}
\@writefile{brf}{\backcite{Brechignac1989}{{97}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Brechignac1994}{{97}{4.1}{section.4.1}}}
@ -89,7 +89,7 @@
\@writefile{brf}{\backcite{Armentrout2008}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Braud2019}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{99}{4.1}{section.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}}
\newlabel{principleTCID}{{4.1.1}{99}{Principle of TCID}{subsection.4.1.1}{}}
\@writefile{brf}{\backcite{Klippenstein1992}{{99}{4.1.1}{subsection.4.1.1}}}
\@writefile{brf}{\backcite{Baer1996}{{99}{4.1.1}{subsection.4.1.1}}}
@ -99,11 +99,11 @@
\newlabel{CIDcross}{{4.1}{100}{Principle of TCID}{equation.4.1.1}{}}
\@writefile{brf}{\backcite{Rodgers1998}{{100}{4.1.1}{equation.4.1.1}}}
\@writefile{brf}{\backcite{Armentrout2007}{{100}{4.1.1}{equation.4.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}}
\newlabel{EXPsetup}{{4.1.2}{100}{Experimental Setup}{subsection.4.1.2}{}}
\@writefile{brf}{\backcite{Braud2017}{{100}{4.1.2}{figure.caption.39}}}
\citation{Chirot2006new}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{101}{figure.caption.39}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{101}{figure.caption.39}}
\newlabel{experiment-setup}{{4.1}{101}{Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First WileyMcLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second WileyMcLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector}{figure.caption.39}{}}
\citation{Elstner1998,Porezag1995,Seifert1996,Frenzel2004,Elstner2014,Spiegelman2020}
\citation{Simon2017,Korchagina2017,Rapacioli2018,Simon2018}
@ -114,11 +114,11 @@
\citation{Simon2017}
\citation{Simon2017,Simon2018,Rapacioli2018atomic}
\@writefile{brf}{\backcite{Chirot2006new}{{102}{4.1.2}{figure.caption.39}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{102}{figure.caption.40}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{102}{figure.caption.40}}
\newlabel{exp-setup}{{4.2}{102}{Schematic of the simplified experimental setup}{figure.caption.40}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}}
\newlabel{Comput_meth}{{4.2}{102}{Computational Details}{section.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}}
\newlabel{DFTBpotential}{{4.2.1}{102}{SCC-DFTB Potential}{subsection.4.2.1}{}}
\@writefile{brf}{\backcite{Elstner1998}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Elstner2014}{{102}{4.2.1}{subsection.4.2.1}}}
@ -141,90 +141,90 @@
\@writefile{brf}{\backcite{Simon2017}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2018}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2018atomic}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}}
\newlabel{makingtrajectories}{{4.2.2}{103}{Collision Trajectories}{subsection.4.2.2}{}}
\@writefile{brf}{\backcite{Dontot2019}{{103}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Nose1984}{{103}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{103}{4.2.2}{subsection.4.2.2}}}
\newlabel{vectorq}{{4.2}{104}{Collision Trajectories}{equation.4.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{104}{figure.caption.41}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{104}{figure.caption.41}}
\newlabel{howinputs}{{4.3}{104}{Schematic of the generation of the initial inputs}{figure.caption.41}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}}
\newlabel{trajecanylysis}{{4.2.3}{104}{Trajectory Analysis}{subsection.4.2.3}{}}
\citation{Braud2019}
\newlabel{integ}{{4.3}{105}{Trajectory Analysis}{equation.4.2.3}{}}
\newlabel{sec:collisionwUH}{{4.3}{105}{Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{section.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}}
\@writefile{brf}{\backcite{Braud2019}{{105}{4.3.1}{subsection.4.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}}
\newlabel{resul_disc}{{4.3.2}{106}{Results and Discussion}{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}}
\newlabel{convergence}{{4.3.2.1}{106}{Statistical Convergence}{subsubsection.4.3.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{107}{figure.caption.42}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{107}{figure.caption.42}}
\newlabel{3b-sphere}{{4.4}{107}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively}{figure.caption.42}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{108}{figure.caption.43}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{108}{figure.caption.43}}
\newlabel{12f-sphere}{{4.5}{108}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively}{figure.caption.43}{}}
\newlabel{PNUL}{{4.4}{108}{Statistical Convergence}{equation.4.3.4}{}}
\citation{Braud2019}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}}
\newlabel{time}{{4.3.3}{109}{Time-Dependent Proportion of Fragments}{subsection.4.3.3}{}}
\@writefile{brf}{\backcite{Braud2019}{{109}{4.3.3}{subsection.4.3.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{110}{table.caption.44}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{110}{table.caption.44}}
\newlabel{tab:converge-1w-5w}{{4.1}{110}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.44}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{111}{table.caption.45}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{111}{table.caption.45}}
\newlabel{tab:converge-6w-12w}{{4.2}{111}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.45}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{112}{figure.caption.46}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{112}{figure.caption.46}}
\newlabel{proporEachFrag-1a2a}{{4.6}{112}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right)}{figure.caption.46}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}}
\newlabel{small}{{4.3.4}{112}{Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{subsection.4.3.4}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{113}{figure.caption.47}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{113}{figure.caption.47}}
\newlabel{proporEachFrag-3a4a-zoom}{{4.7}{113}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.47}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{114}{figure.caption.48}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{114}{figure.caption.48}}
\newlabel{proporEachFrag-5a6a-zoom}{{4.8}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{114}{figure.caption.49}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{114}{figure.caption.49}}
\newlabel{proporEachFrag-11a-zoom}{{4.9}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions}{figure.caption.49}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{115}{table.caption.52}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{115}{table.caption.52}}
\newlabel{tab:full}{{4.3}{115}{Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \AA $^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }{table.caption.52}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.50}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.50}}
\newlabel{proporEachFrag-7a12a-zoom}{{4.10}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.50}{}}
\@writefile{brf}{\backcite{Braud2019}{{116}{4.3.4}{table.caption.52}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{117}{figure.caption.51}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{117}{figure.caption.51}}
\newlabel{proporEachFrag-7d12c-zoom}{{4.11}{117}{Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{118}{figure.caption.53}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{118}{figure.caption.53}}
\newlabel{fig-1a-3b}{{4.12}{118}{Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.53}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{119}{figure.caption.54}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{119}{figure.caption.54}}
\newlabel{fig-4a-5d}{{4.13}{119}{Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.54}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.55}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.55}}
\newlabel{fig-6a-6f}{{4.14}{120}{Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.55}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.56}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.56}}
\newlabel{fig-7a-7d}{{4.15}{121}{Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.56}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{122}{figure.caption.57}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{122}{figure.caption.57}}
\newlabel{neutralUloss-Ne-Ar}{{4.16}{122}{Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.57}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}}
\newlabel{large}{{4.3.5}{122}{Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{subsection.4.3.5}{}}
\@writefile{brf}{\backcite{Braud2019}{{122}{4.3.5}{subsection.4.3.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{123}{figure.caption.58}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{123}{figure.caption.58}}
\newlabel{cross-section-Ne-Ar}{{4.17}{123}{Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.58}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.59}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.59}}
\newlabel{fig-11a-f}{{4.18}{125}{Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.59}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.60}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.60}}
\newlabel{fig-12a-f}{{4.19}{125}{Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.60}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}}
\newlabel{mass-spectra}{{4.3.6}{126}{Mass Spectra of Fragments with Excess Proton}{subsection.4.3.6}{}}
\@writefile{brf}{\backcite{Braud2019}{{126}{4.3.6}{subsection.4.3.6}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{126}{figure.caption.61}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{126}{figure.caption.61}}
\newlabel{MS-BR-1w-4w-Ne-Ar-branch}{{4.20}{126}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area)}{figure.caption.61}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{127}{figure.caption.62}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{127}{figure.caption.62}}
\newlabel{MS-BR-5w-11w-Ne-Ar-branch}{{4.21}{127}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area)}{figure.caption.62}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{128}{figure.caption.63}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{128}{figure.caption.63}}
\newlabel{MS-BR-12w-Ne-branch}{{4.22}{128}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green)}{figure.caption.63}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{129}{table.caption.64}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{129}{table.caption.64}}
\newlabel{tab:fragenergy}{{4.4}{129}{Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }{table.caption.64}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}}
\newlabel{Concl}{{4.3.7}{129}{Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{subsection.4.3.7}{}}
\citation{Chung2011,Saggese2015,Eaves2015,Mao2017,Wang2018}
\citation{Kyrtopoulos2001,Farmer2003}
@ -240,8 +240,8 @@
\citation{Delaunay2015}
\citation{Zhen2018}
\citation{Chen2018}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}}
\@writefile{brf}{\backcite{Eaves2015}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Chung2011}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Saggese2015}{{131}{4.4.1}{subsection.4.4.1}}}
@ -309,7 +309,7 @@
\@writefile{brf}{\backcite{Gatchell2016knockout}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}}
\newlabel{Eparti}{{4.5}{133}{Calculation of Energies}{equation.4.4.5}{}}
\newlabel{Eintra}{{4.6}{134}{Calculation of Energies}{equation.4.4.6}{}}
\newlabel{Einter}{{4.7}{134}{Calculation of Energies}{equation.4.4.7}{}}
@ -317,66 +317,66 @@
\citation{Zamith2020threshold}
\citation{Levine1987}
\citation{Zamith2020threshold}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Levine1987}{{135}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}}
\citation{Dontot2019,Zamith2020threshold}
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{136}{figure.caption.65}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{136}{figure.caption.65}}
\newlabel{MDPST}{{4.23}{136}{Principle of MD+PST}{figure.caption.65}{}}
\newlabel{sec:results}{{4.4.4}{137}{Results and Discussion}{subsection.4.4.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.4}{subsection.4.4.4}}}
\@writefile{brf}{\backcite{Dontot2019}{{137}{4.4.4}{subsection.4.4.4}}}
\newlabel{sec:MS}{{4.4.4.1}{137}{TOFMS Comparison}{subsubsection.4.4.4.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{137}{figure.caption.66}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{137}{figure.caption.66}}
\newlabel{expTOF}{{4.24}{137}{Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model}{figure.caption.66}{}}
\newlabel{sec:MDanalysis}{{4.4.4.2}{138}{Molecular Dynamics Analysis}{subsubsection.4.4.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{139}{figure.caption.67}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{139}{figure.caption.67}}
\newlabel{collisions}{{4.25}{139}{Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\AA {} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively)}{figure.caption.67}{}}
\citation{Chen2014,Gatchell2016knockout}
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{141}{figure.caption.68}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{141}{figure.caption.68}}
\newlabel{distriPerc-Etf-175eV-d-bin03}{{4.26}{141}{Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model}{figure.caption.68}{}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{141}{4.4.4.2}{figure.caption.69}}}
\@writefile{brf}{\backcite{Chen2014}{{141}{4.4.4.2}{figure.caption.69}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{142}{figure.caption.69}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{142}{figure.caption.69}}
\newlabel{fragmentation}{{4.27}{142}{Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\AA {} and a collision energy of 27.5 eV leading to intramolecular fragmentation}{figure.caption.69}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{142}{figure.caption.70}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{142}{figure.caption.70}}
\newlabel{opacitycurves}{{4.28}{142}{Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies}{figure.caption.70}{}}
\citation{Zamith2020threshold}
\citation{Dontot2019,Zamith2020threshold}
\@writefile{brf}{\backcite{Zamith2020threshold}{{143}{4.4.4.2}{figure.caption.70}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{143}{4.4.4.2}{equation.4.4.12}}}
\@writefile{brf}{\backcite{Dontot2019}{{143}{4.4.4.2}{equation.4.4.12}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{144}{figure.caption.71}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{144}{figure.caption.71}}
\newlabel{cross-section}{{4.29}{144}{Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs}{figure.caption.71}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{145}{figure.caption.72}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{145}{figure.caption.72}}
\newlabel{transferredE-Ar-300}{{4.30}{145}{At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted}{figure.caption.72}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{146}{table.caption.73}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{146}{table.caption.73}}
\newlabel{tab:table1}{{4.5}{146}{The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }{table.caption.73}{}}
\newlabel{separately}{{4.13}{146}{Molecular Dynamics Analysis}{equation.4.4.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{147}{figure.caption.74}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{147}{figure.caption.74}}
\newlabel{Epartition-Ar-300-SP}{{4.31}{147}{Mean kinetic energy partition at the end of the MD simulations}{figure.caption.74}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{148}{table.caption.75}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{148}{table.caption.75}}
\newlabel{tab:table2}{{4.6}{148}{The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\AA .\relax }{table.caption.75}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{148}{figure.caption.76}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{148}{figure.caption.76}}
\newlabel{Epartition-Ar-300-Tstep-01}{{4.32}{148}{Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles}{figure.caption.76}{}}
\citation{Dontot2020}
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{149}{figure.caption.77}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{149}{figure.caption.77}}
\newlabel{prot-Ar-300}{{4.33}{149}{Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy}{figure.caption.77}{}}
\@writefile{brf}{\backcite{Dontot2020}{{149}{4.4.4.2}{figure.caption.78}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{150}{figure.caption.78}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{150}{figure.caption.78}}
\newlabel{Epartition-Ar-300-d-ud}{{4.34}{150}{Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy}{figure.caption.78}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{151}{figure.caption.79}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{151}{figure.caption.79}}
\newlabel{figuretimescale}{{4.35}{151}{Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue)}{figure.caption.79}{}}
\newlabel{kineticT}{{4.14}{151}{Molecular Dynamics Analysis}{equation.4.4.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{152}{figure.caption.80}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{152}{figure.caption.80}}
\newlabel{T-time-zoom_abcdef}{{4.36}{152}{Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\AA {}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel}{figure.caption.80}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{153}{figure.caption.81}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{153}{figure.caption.81}}
\newlabel{E-time-abcdef}{{4.37}{153}{Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \AA {}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation}{figure.caption.81}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}}
\citation{Chen2014,Gatchell2016knockout}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{155}{4.4.5}{subsection.4.4.5}}}
\@writefile{brf}{\backcite{Chen2014}{{155}{4.4.5}{subsection.4.4.5}}}
@ -399,7 +399,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{37}
\setcounter{table}{6}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -1,14 +1,20 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}}
\citation{Simon2019,Braud2019}
\@writefile{brf}{\backcite{Braud2019}{{158}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{Simon2019}{{158}{5.1}{section.5.1}}}
\citation{Zamith2020threshold,Zheng2021}
\@writefile{brf}{\backcite{Zamith2020threshold}{{160}{5.1}{section.5.1}}}
\@writefile{brf}{\backcite{Zheng2021}{{160}{5.1}{section.5.1}}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}}
\FN@pp@footnotehinttrue
\@setckpt{5/general_conclusion}{
\setcounter{page}{161}
\setcounter{page}{162}
\setcounter{equation}{0}
\setcounter{enumi}{5}
\setcounter{enumii}{0}
@ -25,7 +31,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

View File

@ -0,0 +1,47 @@
This is BibTeX, Version 0.99d (TeX Live 2018)
Capacity: max_strings=100000, hash_size=100000, hash_prime=85009
The top-level auxiliary file: general_conclusion.aux
I found no \bibdata command---while reading file general_conclusion.aux
I found no \bibstyle command---while reading file general_conclusion.aux
You've used 2 entries,
0 wiz_defined-function locations,
87 strings with 546 characters,
and the built_in function-call counts, 0 in all, are:
= -- 0
> -- 0
< -- 0
+ -- 0
- -- 0
* -- 0
:= -- 0
add.period$ -- 0
call.type$ -- 0
change.case$ -- 0
chr.to.int$ -- 0
cite$ -- 0
duplicate$ -- 0
empty$ -- 0
format.name$ -- 0
if$ -- 0
int.to.chr$ -- 0
int.to.str$ -- 0
missing$ -- 0
newline$ -- 0
num.names$ -- 0
pop$ -- 0
preamble$ -- 0
purify$ -- 0
quote$ -- 0
skip$ -- 0
stack$ -- 0
substring$ -- 0
swap$ -- 0
text.length$ -- 0
text.prefix$ -- 0
top$ -- 0
type$ -- 0
warning$ -- 0
while$ -- 0
width$ -- 0
write$ -- 0
(There were 2 error messages)

View File

@ -5,49 +5,114 @@
\section{General Conclusions}
The goals of this thesis are: first, to characterize the structural, solvation, thermodynamic properties of the newly identified low-energy isomers of ammonium/ammonia water clusters, protonated uracil water clusters; second, to analyse the collision-induced dissociation of protonated uracil water clusters, and pyrene dimer cation. These systems selected are relevant to many scientific fields. The organic/inorganic molecules included water clusters can be viewed as an intermediate state of matter between the dilute gas phase and solution and the study of them helps to understand the solvation effect on gas-phase molecules and ions to be explored. PAHs are abundant in the interstellar medium, which plays a significant role in many fields such as astrophysics, environment science, combustion science, organic solar cell and so on.
As stated in the general introduction, the goal of this thesis was to go a step further into the theoretical description of properties
of molecular clusters in the view to complement complex experimental measurements. It has focused on two different types of
molecular clusters. I have first investigated water clusters containing an impurity, \textit{i.e.} an additional ion or molecule.
First, I have studied ammonium and ammonia water clusters in order to thoroughly explore their PES to characterize in details
low-energy isomers for various cluster sizes. I have then tackled the study of protonated uracil water clusters through two aspects:
characterize low-energy isomers and model collision-induced dissociation experiments to probe dissociation mechanism in relation
with recent experimental measurements by S. Zamith and J.-M. l'Hermite. Finally, I have addressed the study of the pyrene dimer cation
to explore collision trajectories, dissociation mechanism, energy partition, mass spectra, and cross-section. These four studies have
been organized in two chapters, each one gathering two studies involving similar computational tools. Below are gathered the main
conclusions obtained along this thesis.
\textbf{Structural and energetic properties study}
\textbf{Structural and energetic properties.}
The structures and binding energies of the lowest-energy isomers of (H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}$NH$_3$
clusters were obtained through a synergistic use of SCC-DFTB and PTMD. The reported low energy isomers were further optimized at
the MP2/Def2TZVP level of theory. In order to improve the description of sp$^3$ nitrogen, I have proposed a modified set of N-H
parameters. Through comparing the configurations and binding energies of the lowest-energy isomers obtained at SCC-DFTB an
MP2/Def2TZVP levels and by comparing the corresponding results to the literature, I demonstrated that this modified set of NH
parameters is accurate enough to model both ammonia and ammonium water clusters. This work has thus allowed to report a number
of new low-energy isomers for the studied species. Finally, PTMD simulation of (H$_2$O)$_{20}${NH$_4$}$^+$ was conducted and the
heat capacity curve of this aggregate was obtained. It is in agreement with previous results reported in the literature.
A similar exploration of the PES of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters was also performed. The reported low-energy isomers
for these systems are all new and therefore constitute new data set to discuss and analyse the hydration properties of RNA nucleobases.
They also complement available structures already reported for the non-protonated (H$_2$O)$_{n}$UH$^+$ species. These structures
have also helped use to provide preliminary explanations to recent collision-induced measurements performed by S. Zamith and J.-M.
l'Hermite. In particular, I show that when there are only 1 or 2 water molecules, the excess proton is chemically bond to the uracil.
When there are 3 or 4 water molecules, the proton is still bound to the uracil but it has a tendency to be transferred toward an adjacent water
molecule. From $n$ = 5 and above, clusters contain enough water molecules to allow for a net separation between uracil and the
excess proton. The latter is often bound to a water molecule which is separated from uracil by at least one other water molecule.
In the context of a direct dissociation mechanism, the nature of these isomers and the localisation of the proton as a function of
cluster size, helps in analysing the nature of the fragments and the location of the proton on them.
The structures and binding energies of lowest-energy isomers of clusters
(H$_2$O)$_{n=1-10}${NH$_4$}$^+$,
(H$_2$O)$_{n=1-10}$NH$_3$ and (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ were obtained through a combination of global (combination of SCC-DFTB and PTMD) and local (MP2/Def2TZVP) optimization.
Through comparing the configurations and binding energies of lowest-energy isomers of clusters (H$_2$O)$_{n=1-10}${NH$_4$}$^+$ and (H$_2$O)$_{n=1-10}$NH$_3$ at SCC-DFTB and MP2/Def2TZVP levels and the corresponding results in the literature, we proposed the proper N-H integral parameter 0.14 and bond parameter 1.28 in SCC-DFTB. Both structures and binding energies of clusters (H$_2$O)$_{n=1-10}${NH$_4$}$^+$ and (H$_2$O)$_{n=1-10}$NH$_3$ obtained with SCC-DFTB potential are in line with the MP2/Def2TZVP results, which confirms the good ability of SCC-DFTB to describe complex potential energy landscapes of molecular species and represents a first step towards to the modelling of complex aggregates of atmospheric interest.
The calculated results of clusters (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ show that when there are 1 or 2 water molecules, the proton is on the uracil. When there are 3 or 4 water molecules, the proton is still on the uracil but it has a tendency to be transferred to the water molecule which is directly bounded to uracil \textit{i.e.}, forming a strongly bound UH$_2$OH$^+$ complex.
From n = 5 and above, clusters contain enough water molecules to allow for a net separation between uracil and the excess proton: The latter is often bound to a water molecule which is separated from uracil by at least one other water molecule. The localization of the excess proton in different clusters (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ helps to understand the evaporation channels of clusters after collision.
These two studies finally provide a new proof that SCC-DFTB, when combined to efficient enhanced sampling methods, is a powerful
tool to explore complex potential energy surfaces of molecular aggregates. They have already given rise to two publications \cite{Simon2019,Braud2019}
and one other publication is in preparation.
\textbf{Collision-induced dissociation study}
\textbf{Collision-induced dissociation.}
The SCC-DFTB simulations conducted to model collision-induced dissociation of (H$_2$O)$_{1-7,11,12}$UH$^+$ clusters
and pyrene dimer cation were presented. These simulations have provided a wealth of important information to complement recent
experimental CID measurements.
The QM/MM dynamical simulations using SCC-DFTB method for collision-induced dissociation of low-energy protonated uracil water clusters (H$_2$O)$_{1-7,11,12}$UH$^+$ and pyrene dimer cation were performed, which provides a wealth of important information for recent experimental CID measurements.
For the collision simulations of (H$_2$O)$_{1-7,11,12}$UH$^+$ clusters at constant center of mass collision energy, the theoretical proportion
of formed neutral \textit{vs.} protonated uracil containing clusters, total fragmentation cross sections as well as the mass spectra of charged
fragments are consistent with the experimental data which highlights the accuracy of the simulations. They allow to probe which fragments
are formed on the short time scale and rationalize the location of the excess proton on these fragments. Analyses of the time evolution of
the fragments populations and theoretical and experimental branching ratios indicate that (H$_2$O)$_{1-7}$UH$^+$ engage a direct/shattering
mechanism (dissociation on a very short time scale) after collision whereas for (H$_2$O)$_{11-12}$UH$^+$ a significant contribution of structural
rearrangements occur. This suggests that a contribution of a statistical mechanism is more likely to occur for larger species such as
(H$_2$O)$_{11-12}$UH$^+$. Such study is almost unique as the modelling of the dissociation of aqueous aggregates is very scarce in the literature.
This study thus demonstrates that explicit molecular dynamics simulations at the SCC-DFTB level appear as a key tool to complement collision-induced
dissociation experiments of hydrated molecular clusters. This study opens new possibility in the domain and I hope it will motivate new experimental
measurements. One publication devoted to this study is in preparation.
For the explicit dynamical collision simulations of (H$_2$O)$_{1-7,11,12}$UH$^+$ at constant center of mass collision energy, the theoretical proportion of formed neutral \textit{vs.} protonated uracil containing clusters, total fragmentation cross sections as well as the mass spectra of charged fragments are consistent with the experimental data which highlights the accuracy of the simulations. They allow to probe which fragments are formed on the short time scale and rationalize the location of the excess proton on these fragments. The results show that this latter property is highly influenced by the nature of the aggregate undergoing the collision. Analyses of the time evolution of the fragments populations and theoretical and experimental branching ratios of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ indicate that (H$_2$O)$_{1-7}$UH$^+$ engage a direct/shattering mechanism (dissociation on a very short time scale) after collision whereas for (H$_2$O)$_{11-12}$UH$^+$ a significant contribution of structural rearrangements occur. This suggests that a contribution of a statistical mechanism is more likely to occur for larger species such as (H$_2$O)$_{11-12}$UH$^+$.
This study demonstrates that explicit molecular dynamics simulations appear as a useful tool to complement collision-induced dissociation experiments of hydrated molecular clusters.
Dynamical simulations of collision between Py$_2^+$ and argon at different center of mass collision energies, between 2.5 and 30.0 eV, were conducted.
Collision process, dissociation path, energy partition and distribution, and the efficiency of energy transfer were deeply explored form these simulations that
have provided valuable reference for the CID study of larger PAH cation clusters. The simulated TOFMS of parent and dissociated products were obtained
from the combination of MD simulations and PST to address the short and long timescales dissociation, respectively. The agreement between the simulated
and measured mass spectra suggests that the main processes are captured by this approach. It appears that the TOFMS spectra mostly result from dimers
dissociating on short timescales (during the MD simulation) and the remaining minor contribution results from dimers dissociating at longer timescales
(the second step, during PST calculation). This indicates that Py$_2^+$ primarily engages a direct dissociation path after collision. The dynamical
simulations show that the outcome of the trajectories either toward a dissociation or a redistribution
of the transferred energy strongly depends on the initial collision conditions. Intramolecular fragmentation of the monomers occurs only for
collision energies above 25 eV. At low collision energies, the dissociation cross section increases with collision energies whereas it remains almost
constant for collision energies greater than 10-15~eV. The analysis of the kinetic energy partition as a function of the collision energy shows the
absorbed energy is shared between the dissociative modes and the heating of individual monomers. It shows that above 7.5~eV, increasing the
collision energy mostly results in an increase of the intramolecular energy. Finally, the analysis of energy transfer efficiency within the dimer suggests
that direct dissociation is too fast to allow significant thermalization of the system. On the other hand, when there is no dissociation, thermalization
can occur with a faster equilibration between the intramolecular modes of the two units than with the intermolecular modes.
This study has given rise to two publications.\cite{Zamith2020threshold,Zheng2021}
For the dynamical simulations of collision between Py$_2^+$ and argon at different center of mass collision energies between 2.5 and 30 eV, the collision process, dissociation path, energy partition and distribution, and the efficiency of energy transfer were deeply explored for the Py$_2^+$ system, which can provide valuable reference for the CID study of larger PAH cation clusters.
The simulated TOFMS of parent and dissociated products are obtained from the combination of MD simulations and PST to address the short and long timescales dissociation, respectively. The agreement between the simulated and measured mass spectra suggests that the main processes are captured by this approach. It appears that the TOFMS spectra mostly result from dimers dissociating on short timescales (during the MD simulation) and the remaining minor contribution is from dimers dissociating at longer timescales (the second step, during PST calculation). This indicates that Py$_2^+$ primarily engages a direct dissociation path after collision. The dynamical simulations allow to visualise the dissociation processes. It shows that the evolution of the trajectories either toward a dissociation or a redistribution of the transferred energy strongly depends on the initial collision conditions. Intramolecular fragmentation of the monomers occurred only for collision energies above 25 eV. At low collision energies, the dissociation cross section increases with collision energies whereas it remains almost constant for collision energies greater than 10-15~eV.
The analysis of the kinetic energy partition as a function of the collision energy shows the absorbed energy is shared between the dissociative modes and the heating of individual monomers. It shows that above 7.5~eV, increasing the collision energy mostly results in an increase of the intramolecular energy. Finally, the analysis of energy transfer efficiency within the dimer suggests that direct dissociation is too fast to allow significant thermalization of the system. On the other hand, when there is no dissociation, thermalization can occur with a faster equilibration between the intramolecular modes of the two units than with the intermolecular modes.
\break
%\break
\section{Perspectives}
Based on the work of this thesis, several perspectives can be implemented in the future:
This thesis has addressed various problems, on different molecular clusters, and has involved a range of theoretical methodologies that are not
common way in computational chemistry. Various and very exciting perspectives can be therefore be considered in future studies:
\begin{itemize}
\item[$\bullet$]
The proposed N-H integral parameter and bond parameter in SCC-DFTB can be used to explore the low-energy isomers and binding energies of clusters (NH$_3$)$_m$, (NH$_3$)$_m$H$^+$, (H$_2$O)$_n$(NH$_3$)$_m$, (H$_2$O)$_n$(NH$_3$)$_m$H$^+$ and mixed sulfate ammonia/ammonium water clusters and compare their results with the ones at MP2 level to see if these proposed parameters are proper for the calculation of these clusters.
The newly proposed set of N-H parameters could be used to explore the low-energy structures and properties of a much larger range of systems
of atmospheric interest. Indeed the structure of pure (NH$_3$)$_m$ clusters as well as (NH$_3$)$_m$H$^+$, (H$_2$O)$_n$(NH$_3$)$_m$, and
(H$_2$O)$_n$(NH$_3$)$_m$H$^+$ clusters have been hardly addressed in the literature mainly due to the lake of properly defined force field for
these systems. The transferability of SCC-DFTB would suggests that the potential I developed could also applied to these systems. This is an ongoing
work that I have recently initiated. More interesting and also complicated is the study of water clusters containing a mix of nitrogen and sulphur
compounds, for instance, ammonium and sulfate ion. These species, their conjugated basis and acid in combination with dimethylamine and
water molecules represent the basis for nucleation of atmospheric particles. The chemical complexity induced by their mixing in force field
simulations one the one hand, and the system size needed for proper molecular simulations on the other hand, suggest that SCC-DFTB
has a major role to play in the theoretical description of these species.
\item[$\bullet$] It would be of great interest to pursue dynamical simulations of protonated uracil water clusters by looking at the influence of collision energy, both lower or higher, on the dissociation mechanism as a function of the cluster size. Furthermore, inclusion of nuclear quantum effects in the simulations could also help to increase the accuracy of the model and improve the comparison with the experiments.
\item[$\bullet$] It would also be of great interest to pursue dynamical simulations of protonated uracil water clusters. Indeed, the work I have
presented in this thesis still suffers from some lacks. First, it would be of high interest to look at the influence of collision energy, both lower or
higher, on the dissociation mechanism as a function of the cluster size. By implementing a similar methodology as for the study of Py$_2^+$,
it would be possible to extract important new information about energy partition and dissociation mechanism. Those can be of interest to other
aqueous aggregates. In other important point is the inclusion of nuclear quantum effects in the simulations. Indeed, as the experiments are
performed at very low temperatures, the quantum nature of the proton can play an important role that has been neglected in the present thesis.
\item[$\bullet$] The dynamical simulations for collision-induced dissociation of pyrene dimer cation have been verified successfully. It is possible to do the dynamical simulations for collision-induced dissociation of PAHs water clusters to compare with the experimental results and to explain and complete the experiments.
\item[$\bullet$] The dynamical simulations for collision-induced dissociation of pyrene dimer cation can be extended to PAHs water clusters
to complement recent experiments on these systems.
\item[$\bullet$] All the simulations of water clusters in this thesis were performed in the electronic ground state, it would be interesting to investigate solvation effect on organic/inorganic molecule in both electronic ground and excited states using TD-DFTB method. It would be wonderful to calculate both absorption spectra from electronic ground state and emission spectra from electronic excited state of organic/inorganic molecule containing water clusters.
\item[$\bullet$] Finally, all the simulations of water clusters performed within this thesis were performed in the electronic ground state. To model
what can occur in the atmosphere or interstellar medium, it would be of interest to investigate solvation effects on organic/inorganic molecules
brought in an electronic excited state. To do so, the TD-DFTB method need to be implemented and tested as such simulation would involve a number
of additional theoretical complexities. This would allow to calculate both absorption spectra from electronic ground state and emission spectra from
electronic excited state of organic/inorganic molecule containing water clusters.
\end{itemize}
%The work of this thesis is focused on two aspects. First, to obtain the low-lying energy isomers of ammonium/ammonia water clusters and protonated uracil water clusters through exploring the potential energy surfaces using the combination of global and local optimizations. Then the structural, solvation, thermodynamics properties of the low-lying energy isomers were characterized. Second, the molecular dynamics simulations of collision-induced dissociation of protonated uracil water clusters and pyrene dimer cation were carried out to explore the collision trajectories, dissociation mechanism, energy partition, mass spectra, cross-section and do on.
% change according to folder and file names
\ifpdf

View File

@ -1,7 +1,7 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\@setckpt{6_backmatter/declaration}{
\setcounter{page}{178}
\setcounter{page}{180}
\setcounter{equation}{0}
\setcounter{enumi}{5}
\setcounter{enumii}{0}
@ -18,7 +18,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -18,7 +18,6 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -31,7 +31,7 @@
\FN@pp@footnotehinttrue
\@input{0_frontmatter/glossary.aux}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\nonumberline Glossary}{xi}{chapter*.2}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{Glossary}{xi}{chapter*.2}}
\FN@pp@footnotehinttrue
\@input{1_GeneIntro/GeneIntro.aux}
\FN@pp@footnotehinttrue
@ -80,8 +80,8 @@
\bibcite{Kulmala2000}{{33}{}{{}}{{}}}
\bibcite{Wang2008}{{34}{}{{}}{{}}}
\bibcite{Depalma2014}{{35}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{References}{163}{chapter*.82}}
\bibcite{Katakuse1985}{{36}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{References}{161}{chapter*.82}\protected@file@percent }
\bibcite{Posthumus2009}{{37}{}{{}}{{}}}
\bibcite{Castleman2009}{{38}{}{{}}{{}}}
\bibcite{Henglein1989}{{39}{}{{}}{{}}}

View File

@ -1,4 +1,4 @@
This is BibTeX, Version 0.99d (TeX Live 2019)
This is BibTeX, Version 0.99d (TeX Live 2018)
Capacity: max_strings=100000, hash_size=100000, hash_prime=85009
The top-level auxiliary file: thesis.aux
A level-1 auxiliary file: 0_frontmatter/abstract.aux

View File

@ -742,3 +742,7 @@
\backcite {Dontot2020}{{149}{4.4.4.2}{figure.caption.78}}
\backcite {Gatchell2016knockout}{{155}{4.4.5}{subsection.4.4.5}}
\backcite {Chen2014}{{155}{4.4.5}{subsection.4.4.5}}
\backcite {Braud2019}{{158}{5.1}{section.5.1}}
\backcite {Simon2019}{{158}{5.1}{section.5.1}}
\backcite {Zamith2020threshold}{{160}{5.1}{section.5.1}}
\backcite {Zheng2021}{{160}{5.1}{section.5.1}}

View File

@ -1,16 +1,17 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019) (preloaded format=pdflatex 2019.10.4) 15 JUN 2021 19:34
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex 2018.9.24) 15 JUN 2021 19:41
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**thesis.tex
(./thesis.tex
LaTeX2e <2018-12-01>
LaTeX2e <2018-04-01> patch level 2
Babel <3.18> and hyphenation patterns for 84 language(s) loaded.
(./Latex/Classes/PhDthesisPSnPDF.cls
Document Class: Latex/Classes/PhDthesisPSnPDF 2007/09/06 v2 PhD thesis class
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/book.cls
Document Class: book 2018/09/03 v1.4i Standard LaTeX document class
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/bk11.clo
File: bk11.clo 2018/09/03 v1.4i Standard LaTeX file (size option)
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/book.cls
Document Class: book 2014/09/29 v1.4h Standard LaTeX document class
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/bk11.clo
File: bk11.clo 2014/09/29 v1.4h Standard LaTeX file (size option)
)
\c@part=\count80
\c@chapter=\count81
@ -25,10 +26,10 @@ File: bk11.clo 2018/09/03 v1.4i Standard LaTeX file (size option)
\belowcaptionskip=\skip42
\bibindent=\dimen102
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amssymb.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2013/01/14 v3.01 AMS font symbols
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amsfonts.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
\@emptytoks=\toks14
\symAMSa=\mathgroup4
@ -36,28 +37,28 @@ Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphics.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2017/06/25 v1.2c Standard LaTeX Graphics (DPC,SPQR)
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/trig.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 99.
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-def/pdftex.def
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-def/pdftex.def
File: pdftex.def 2018/01/08 v1.0l Graphics/color driver for pdftex
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2018/10/06 v3.3-154 Customizing captions (AR)
(/usr/local/texlive/2018/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2016/02/21 v3.3-144 Customizing captions (AR)
(/usr/local/texlive/2019/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2018/09/12 v1.8c caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 64.
(/usr/local/texlive/2018/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2016/05/22 v1.7-166 caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 67.
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/keyval.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\KV@toks@=\toks15
)
@ -69,11 +70,10 @@ Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\caption@parindent=\dimen108
\caption@hangindent=\dimen109
)
\c@caption@flags=\count89
\c@ContinuedFloat=\count90
\c@ContinuedFloat=\count89
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
Package: fancyhdr 2019/01/31 v3.10 Extensive control of page headers and footer
(/usr/local/texlive/2018/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
Package: fancyhdr 2017/06/30 v3.9a Extensive control of page headers and footer
s
\f@nch@headwidth=\skip43
\f@nch@O@elh=\skip44
@ -85,49 +85,49 @@ s
\f@nch@O@olf=\skip50
\f@nch@O@orf=\skip51
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/eucal.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/eucal.sty
Package: eucal 2009/06/22 v3.00 Euler Script fonts
LaTeX Font Info: Overwriting math alphabet `\EuScript' in version `bold'
(Font) U/eus/m/n --> U/eus/b/n on input line 33.
)
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.sty
Package: babel 2019/05/04 3.31 The Babel package
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/babel.sty
Package: babel 2018/02/14 3.18 The Babel package
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/switch.def
File: switch.def 2019/05/04 3.31 Babel switching mechanism
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/switch.def
File: switch.def 2018/02/14 3.18 Babel switching mechanism
)
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel-english/english.ldf
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel-english/english.ldf
Language: english 2017/06/06 v3.3r English support from the babel system
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2019/05/04 3.31 Babel common definitions
\babel@savecnt=\count91
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2018/02/14 3.18 Babel common definitions
\babel@savecnt=\count90
\U@D=\dimen110
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/txtbabel.def)
\bbl@dirlevel=\count92
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/txtbabel.def)
\bbl@dirlevel=\count91
)
\l@canadian = a dialect from \language\l@american
\l@australian = a dialect from \language\l@british
\l@newzealand = a dialect from \language\l@british
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/color.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/color.sty
Package: color 2016/07/10 v1.1e Standard LaTeX Color (DPC)
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package color Info: Driver file: pdftex.def on input line 147.
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/dvipsnam.def
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/dvipsnam.def
File: dvipsnam.def 2016/06/17 v3.0m Driver-dependent file (DPC,SPQR)
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/footmisc/footmisc.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/footmisc/footmisc.sty
Package: footmisc 2011/06/06 v5.5b a miscellany of footnote facilities
\FN@temptoken=\toks16
\footnotemargin=\dimen111
\c@pp@next@reset=\count93
\c@@fnserial=\count94
\c@pp@next@reset=\count92
\c@@fnserial=\count93
Package footmisc Info: Declaring symbol style bringhurst on input line 855.
Package footmisc Info: Declaring symbol style chicago on input line 863.
Package footmisc Info: Declaring symbol style wiley on input line 872.
@ -137,39 +137,40 @@ Package footmisc Info: Declaring symbol style lamport* on input line 903.
Package footmisc Info: Declaring symbol style lamport*-robust on input line 924
.
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/natbib/natbib.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/natbib/natbib.sty
Package: natbib 2010/09/13 8.31b (PWD, AO)
\bibhang=\skip52
\bibsep=\skip53
LaTeX Info: Redefining \cite on input line 694.
\c@NAT@ctr=\count95
\c@NAT@ctr=\count94
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ifthen.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ifthen.sty
Package: ifthen 2014/09/29 v1.1c Standard LaTeX ifthen package (DPC)
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2018/12/27 v1.8v multicolumn formatting (FMi)
\c@tracingmulticols=\count96
\mult@box=\box27
(/usr/local/texlive/2018/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2018/04/01 v1.8r multicolumn formatting (FMi)
\c@tracingmulticols=\count95
\mult@box=\box26
\multicol@leftmargin=\dimen112
\c@unbalance=\count97
\c@collectmore=\count98
\doublecol@number=\count99
\multicoltolerance=\count100
\multicolpretolerance=\count101
\c@unbalance=\count96
\c@collectmore=\count97
\doublecol@number=\count98
\multicoltolerance=\count99
\multicolpretolerance=\count100
\full@width=\dimen113
\page@free=\dimen114
\premulticols=\dimen115
\postmulticols=\dimen116
\multicolsep=\skip54
\multicolbaselineskip=\skip55
\partial@page=\box28
\last@line=\box29
\partial@page=\box27
\last@line=\box28
\maxbalancingoverflow=\dimen117
\mult@rightbox=\box30
\mult@grightbox=\box31
\mult@gfirstbox=\box32
\mult@firstbox=\box33
\mult@rightbox=\box29
\mult@grightbox=\box30
\mult@gfirstbox=\box31
\mult@firstbox=\box32
\@tempa=\box33
\@tempa=\box34
\@tempa=\box35
\@tempa=\box36
@ -186,72 +187,44 @@ Package: multicol 2018/12/27 v1.8v multicolumn formatting (FMi)
\@tempa=\box47
\@tempa=\box48
\@tempa=\box49
\@tempa=\box50
\c@columnbadness=\count102
\c@finalcolumnbadness=\count103
\c@columnbadness=\count101
\c@finalcolumnbadness=\count102
\last@try=\dimen118
\multicolovershoot=\dimen119
\multicolundershoot=\dimen120
\mult@nat@firstbox=\box51
\colbreak@box=\box52
\mc@col@check@num=\count104
\mult@nat@firstbox=\box50
\colbreak@box=\box51
\mc@col@check@num=\count103
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/tocbibind/tocbibind.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/tocbibind/tocbibind.sty
Package: tocbibind 2010/10/13 v1.5k extra ToC listings
Package tocbibind Info: The document has chapter divisions on input line 50.
Package tocbibind Note: Using chapter style headings, unless overridden.
) (/usr/local/texlive/2019/texmf-dist/tex/latex/nomencl/nomencl.sty
Package: nomencl 2019/05/05 v5.2 Nomenclature package
(/usr/local/texlive/2019/texmf-dist/tex/latex/xkeyval/xkeyval.sty
Package: xkeyval 2014/12/03 v2.7a package option processing (HA)
(/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkeyval.tex
(/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkvutils.tex
\XKV@toks=\toks17
\XKV@tempa@toks=\toks18
)
\XKV@depth=\count105
File: xkeyval.tex 2014/12/03 v2.7a key=value parser (HA)
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/tocbasic.sty
Package: tocbasic 2019/02/01 v3.26b KOMA-Script package (handling toc-files)
(/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrbase.sty
Package: scrbase 2019/02/01 v3.26b KOMA-Script package (KOMA-Script-independent
basics and keyval usage)
(/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrlfile.sty
Package: scrlfile 2019/02/01 v3.26b KOMA-Script package (loading files)
))
\scr@dte@tocline@numberwidth=\skip56
\scr@dte@tocline@numbox=\box53
)
Package tocbasic Info: setting babel extension for `nlo' on input line 155.
Package tocbasic Info: setting babel extension for `nls' on input line 156.
) (/usr/local/texlive/2018/texmf-dist/tex/latex/nomencl/nomencl.sty
Package: nomencl 2005/09/22 v4.2 Nomenclature package (LN)
\nomlabelwidth=\dimen121
\nom@tempdim=\dimen122
\nomitemsep=\skip57
\nomitemsep=\skip56
)
\@nomenclaturefile=\write3
\openout3 = `thesis.nlo'.
Package nomencl Info: Writing nomenclature file thesis.nlo on input line 64.
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2018/09/07 v3.3 Provides the ifpdf switch
Writing nomenclature file thesis.nlo
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2017/03/15 v3.2 Provides the ifpdf switch
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2018/11/30 v6.88e Hypertext links for LaTeX
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2018/02/06 v6.86b Hypertext links for LaTeX
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
Package: hobsub-hyperref 2016/05/16 v1.14 Bundle oberdiek, subset hyperref (HO)
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
Package: hobsub-generic 2016/05/16 v1.14 Bundle oberdiek, subset generic (HO)
Package: hobsub 2016/05/16 v1.14 Construct package bundles (HO)
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
@ -263,9 +236,13 @@ Package ifvtex Info: VTeX not detected.
Package: intcalc 2016/05/16 v1.2 Expandable calculations with integers (HO)
Package hobsub Info: Skipping package `ifpdf' (already loaded).
Package: etexcmds 2016/05/16 v1.6 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
(etexcmds) that some package has redefined \expanded.
(etexcmds) In the latter case, load this package earlier.
Package: kvsetkeys 2016/05/16 v1.17 Key value parser (HO)
Package: kvdefinekeys 2016/05/16 v1.4 Define keys (HO)
Package: pdftexcmds 2018/09/10 v0.29 Utility functions of pdfTeX for LuaTeX (HO
Package: pdftexcmds 2018/01/30 v0.27 Utility functions of pdfTeX for LuaTeX (HO
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
@ -287,31 +264,31 @@ Package: atbegshi 2016/06/09 v1.18 At begin shipout hook (HO)
Package: refcount 2016/05/16 v3.5 Data extraction from label references (HO)
Package: hycolor 2016/05/16 v1.8 Color options for hyperref/bookmark (HO)
)
(/usr/local/texlive/2019/texmf-dist/tex/generic/ifxetex/ifxetex.sty
(/usr/local/texlive/2018/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/auxhook.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/auxhook.sty
Package: auxhook 2016/05/16 v1.4 Hooks for auxiliary files (HO)
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/kvoptions.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2016/05/16 v3.12 Key value format for package options (HO)
)
\@linkdim=\dimen123
\Hy@linkcounter=\count106
\Hy@pagecounter=\count107
\Hy@linkcounter=\count104
\Hy@pagecounter=\count105
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2018/11/30 v6.88e Hyperref: PDFDocEncoding definition (HO)
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2018/02/06 v6.86b Hyperref: PDFDocEncoding definition (HO)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
)
\Hy@SavedSpaceFactor=\count108
\Hy@SavedSpaceFactor=\count106
(/usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/hyperref.cfg
(/usr/local/texlive/2018/texmf-dist/tex/latex/latexconfig/hyperref.cfg
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
)
Package hyperref Info: Option `plainpages' set `false' on input line 4393.
Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4393.
Package hyperref Info: Option `plainpages' set `false' on input line 4383.
Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4383.
Package hyperref Warning: Values of option `pdfpagelayout':
@ -322,170 +299,170 @@ Package hyperref Warning: Values of option `pdfpagelayout':
(hyperref) * `TwoPageLeft' (PDF 1.5)
(hyperref) * `TwoPageRight' (PDF 1.5)
(hyperref) * An empty value disables the option.
(hyperref) Unknown value `useoutlines' on input line 4393.
(hyperref) Unknown value `useoutlines' on input line 4383.
Package hyperref Info: Option `bookmarks' set `true' on input line 4393.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 4393.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 4393
Package hyperref Info: Option `bookmarks' set `true' on input line 4383.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 4383.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 4383
.
Package hyperref Info: Option `breaklinks' set `true' on input line 4393.
Package hyperref Info: Option `linktocpage' set `true' on input line 4393.
Package hyperref Info: Option `colorlinks' set `false' on input line 4393.
Package hyperref Info: Option `hyperindex' set `true' on input line 4393.
Package hyperref Info: Option `hyperfigures' set `true' on input line 4393.
Package hyperref Info: Hyper figures ON on input line 4517.
Package hyperref Info: Link nesting OFF on input line 4524.
Package hyperref Info: Hyper index ON on input line 4527.
Package hyperref Info: Plain pages OFF on input line 4534.
Package hyperref Info: Backreferencing ON on input line 4537.
Package hyperref Info: Option `breaklinks' set `true' on input line 4383.
Package hyperref Info: Option `linktocpage' set `true' on input line 4383.
Package hyperref Info: Option `colorlinks' set `false' on input line 4383.
Package hyperref Info: Option `hyperindex' set `true' on input line 4383.
Package hyperref Info: Option `hyperfigures' set `true' on input line 4383.
Package hyperref Info: Hyper figures ON on input line 4507.
Package hyperref Info: Link nesting OFF on input line 4514.
Package hyperref Info: Hyper index ON on input line 4517.
Package hyperref Info: Plain pages OFF on input line 4524.
Package hyperref Info: Backreferencing ON on input line 4527.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4772.
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/backref.sty
Package hyperref Info: Bookmarks ON on input line 4762.
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/backref.sty
Package: backref 2016/05/21 v1.39 Bibliographical back referencing
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
Package: rerunfilecheck 2016/05/16 v1.8 Rerun checks for auxiliary files (HO)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
82.
))
\c@Hy@tempcnt=\count109
\c@Hy@tempcnt=\count107
(/usr/local/texlive/2019/texmf-dist/tex/latex/url/url.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/url/url.sty
\Urlmuskip=\muskip10
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 5125.
LaTeX Info: Redefining \url on input line 5115.
\XeTeXLinkMargin=\dimen124
\Fld@menulength=\count110
\Fld@menulength=\count108
\Field@Width=\dimen125
\Fld@charsize=\dimen126
Package hyperref Info: Hyper figures ON on input line 6378.
Package hyperref Info: Link nesting OFF on input line 6385.
Package hyperref Info: Hyper index ON on input line 6388.
Package hyperref Info: backreferencing ON on input line 6393.
Package hyperref Info: Link coloring OFF on input line 6400.
Package hyperref Info: Link coloring with OCG OFF on input line 6405.
Package hyperref Info: PDF/A mode OFF on input line 6410.
LaTeX Info: Redefining \ref on input line 6450.
LaTeX Info: Redefining \pageref on input line 6454.
\Hy@abspage=\count111
\c@Item=\count112
\c@Hfootnote=\count113
Package hyperref Info: Hyper figures ON on input line 6367.
Package hyperref Info: Link nesting OFF on input line 6374.
Package hyperref Info: Hyper index ON on input line 6377.
Package hyperref Info: backreferencing ON on input line 6382.
Package hyperref Info: Link coloring OFF on input line 6389.
Package hyperref Info: Link coloring with OCG OFF on input line 6394.
Package hyperref Info: PDF/A mode OFF on input line 6399.
LaTeX Info: Redefining \ref on input line 6439.
LaTeX Info: Redefining \pageref on input line 6443.
\Hy@abspage=\count109
\c@Item=\count110
\c@Hfootnote=\count111
)
Package hyperref Info: Driver: hpdftex.
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2018/11/30 v6.88e Hyperref driver for pdfTeX
\Fld@listcount=\count114
\c@bookmark@seq@number=\count115
\Hy@SectionHShift=\skip58
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2018/02/06 v6.86b Hyperref driver for pdfTeX
\Fld@listcount=\count112
\c@bookmark@seq@number=\count113
\Hy@SectionHShift=\skip57
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphicx.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 2017/06/01 v1.1a Enhanced LaTeX Graphics (DPC,SPQR)
\Gin@req@height=\dimen127
\Gin@req@width=\dimen128
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2018/12/01 v2.17b AMS math features
\@mathmargin=\skip59
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2017/09/02 v2.17a AMS math features
\@mathmargin=\skip58
For additional information on amsmath, use the `?' option.
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amstext.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amstext.sty
Package: amstext 2000/06/29 v2.01 AMS text
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsgen.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0 generic functions
\@emptytoks=\toks19
\@emptytoks=\toks17
\ex@=\dimen129
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsbsy.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
\pmbraise@=\dimen130
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsopn.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 2016/03/08 v2.02 operator names
)
\inf@bad=\count116
LaTeX Info: Redefining \frac on input line 223.
\uproot@=\count117
\leftroot@=\count118
LaTeX Info: Redefining \overline on input line 385.
\classnum@=\count119
\DOTSCASE@=\count120
LaTeX Info: Redefining \ldots on input line 482.
LaTeX Info: Redefining \dots on input line 485.
LaTeX Info: Redefining \cdots on input line 606.
\Mathstrutbox@=\box54
\strutbox@=\box55
\inf@bad=\count114
LaTeX Info: Redefining \frac on input line 213.
\uproot@=\count115
\leftroot@=\count116
LaTeX Info: Redefining \overline on input line 375.
\classnum@=\count117
\DOTSCASE@=\count118
LaTeX Info: Redefining \ldots on input line 472.
LaTeX Info: Redefining \dots on input line 475.
LaTeX Info: Redefining \cdots on input line 596.
\Mathstrutbox@=\box52
\strutbox@=\box53
\big@size=\dimen131
LaTeX Font Info: Redeclaring font encoding OML on input line 729.
LaTeX Font Info: Redeclaring font encoding OMS on input line 730.
\macc@depth=\count121
\c@MaxMatrixCols=\count122
LaTeX Font Info: Redeclaring font encoding OML on input line 712.
LaTeX Font Info: Redeclaring font encoding OMS on input line 713.
\macc@depth=\count119
\c@MaxMatrixCols=\count120
\dotsspace@=\muskip11
\c@parentequation=\count123
\dspbrk@lvl=\count124
\tag@help=\toks20
\row@=\count125
\column@=\count126
\maxfields@=\count127
\andhelp@=\toks21
\c@parentequation=\count121
\dspbrk@lvl=\count122
\tag@help=\toks18
\row@=\count123
\column@=\count124
\maxfields@=\count125
\andhelp@=\toks19
\eqnshift@=\dimen132
\alignsep@=\dimen133
\tagshift@=\dimen134
\tagwidth@=\dimen135
\totwidth@=\dimen136
\lineht@=\dimen137
\@envbody=\toks22
\multlinegap=\skip60
\multlinetaggap=\skip61
\mathdisplay@stack=\toks23
LaTeX Info: Redefining \[ on input line 2844.
LaTeX Info: Redefining \] on input line 2845.
\@envbody=\toks20
\multlinegap=\skip59
\multlinetaggap=\skip60
\mathdisplay@stack=\toks21
LaTeX Info: Redefining \[ on input line 2817.
LaTeX Info: Redefining \] on input line 2818.
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/multirow/multirow.sty
Package: multirow 2019/01/01 v2.4 Span multiple rows of a table
\multirow@colwidth=\skip62
\multirow@cntb=\count128
\multirow@dima=\skip63
(/usr/local/texlive/2018/texmf-dist/tex/latex/multirow/multirow.sty
Package: multirow 2016/11/25 v2.2 Span multiple rows of a table
\multirow@colwidth=\skip61
\multirow@cntb=\count126
\multirow@dima=\skip62
\bigstrutjot=\dimen138
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/tools/array.sty
Package: array 2018/12/30 v2.4k Tabular extension package (FMi)
(/usr/local/texlive/2018/texmf-dist/tex/latex/tools/array.sty
Package: array 2018/04/07 v2.4g Tabular extension package (FMi)
\col@sep=\dimen139
\ar@mcellbox=\box56
\ar@mcellbox=\box54
\extrarowheight=\dimen140
\NC@list=\toks24
\extratabsurround=\skip64
\backup@length=\skip65
\ar@cellbox=\box57
\NC@list=\toks22
\extratabsurround=\skip63
\backup@length=\skip64
\ar@cellbox=\box55
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/tools/tabularx.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/tools/tabularx.sty
Package: tabularx 2016/02/03 v2.11b `tabularx' package (DPC)
\TX@col@width=\dimen141
\TX@old@table=\dimen142
\TX@old@col=\dimen143
\TX@target=\dimen144
\TX@delta=\dimen145
\TX@cols=\count129
\TX@ftn=\toks25
\TX@cols=\count127
\TX@ftn=\toks23
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/xcolor/xcolor.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package xcolor Info: Package option `usenames' ignored on input line 216.
Package xcolor Info: Driver file: pdftex.def on input line 225.
(/usr/local/texlive/2019/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2018/12/12 v1.0d Color table columns (DPC)
\everycr=\toks26
\minrowclearance=\skip66
(/usr/local/texlive/2018/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2012/02/13 v1.0a Color table columns (DPC)
\everycr=\toks24
\minrowclearance=\skip65
)
LaTeX Info: Redefining \color on input line 709.
\rownum=\count130
\rownum=\count128
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
Package xcolor Info: Model `RGB' extended on input line 1364.
@ -496,22 +473,22 @@ Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/dvipsnam.def
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/dvipsnam.def
File: dvipsnam.def 2016/06/17 v3.0m Driver-dependent file (DPC,SPQR)
))
(/usr/local/texlive/2019/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box58
\UL@hyphenbox=\box59
\UL@skip=\skip67
\UL@hook=\toks27
(/usr/local/texlive/2018/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box56
\UL@hyphenbox=\box57
\UL@skip=\skip66
\UL@hook=\toks25
\UL@height=\dimen146
\UL@pe=\count131
\UL@pe=\count129
\UL@pixel=\dimen147
\ULC@box=\box60
\ULC@box=\box58
Package: ulem 2012/05/18
\ULdepth=\dimen148
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/mathptmx.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/mathptmx.sty
Package: mathptmx 2005/04/12 PSNFSS-v9.2a Times w/ Math, improved (SPQR, WaS)
LaTeX Font Info: Redeclaring symbol font `operators' on input line 28.
LaTeX Font Info: Overwriting symbol font `operators' in version `normal'
@ -547,21 +524,21 @@ LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold'
(Font) OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35.
LaTeX Info: Redefining \hbar on input line 50.
)
(/usr/local/texlive/2019/texmf-dist/tex/latex/moresize/moresize.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/moresize/moresize.sty
Package: moresize 1999/07/26 v1.9 (more font sizes)
)
\@input{Latex/Macros/MacroFile1.aux}
\openout2 = `Latex/Macros/MacroFile1.aux'.
(./Latex/Macros/MacroFile1.tex)
(/usr/local/texlive/2019/texmf-dist/tex/latex/emptypage/emptypage.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/emptypage/emptypage.sty
Package: emptypage 2010/05/30 v1.2 Suppress page numbers and headings on empty
pages
)
defining Unicode char U+2009 (decimal 8201)
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2018/08/11 v2.0j Standard LaTeX package
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2017/04/05 v2.0i Standard LaTeX package
Package textcomp Info: Sub-encoding information:
(textcomp) 5 = only ISO-Adobe without \textcurrency
(textcomp) 4 = 5 + \texteuro
@ -575,13 +552,13 @@ Package textcomp Info: Sub-encoding information:
(textcomp) See the documentation for details.
Package textcomp Info: Setting ? sub-encoding to TS1/1 on input line 79.
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.def
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ts1enc.def
File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file
Now handling font encoding TS1 ...
... processing UTF-8 mapping file for font encoding TS1
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2018/10/05 v1.2f UTF-8 support for inputenc
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2018/04/05 v1.2c UTF-8 support for inputenc
defining Unicode char U+00A2 (decimal 162)
defining Unicode char U+00A3 (decimal 163)
defining Unicode char U+00A4 (decimal 164)
@ -742,33 +719,33 @@ LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 128.
LaTeX Font Info: Try loading font information for TS1+cmr on input line 128.
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1cmr.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ts1cmr.fd
File: ts1cmr.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: ... okay on input line 128.
LaTeX Font Info: Try loading font information for OT1+ptm on input line 128.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/ot1ptm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/ot1ptm.fd
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
)
(/usr/local/texlive/2019/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
(/usr/local/texlive/2018/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count132
\scratchcounter=\count130
\scratchdimen=\dimen149
\scratchbox=\box61
\nofMPsegments=\count133
\nofMParguments=\count134
\everyMPshowfont=\toks28
\MPscratchCnt=\count135
\scratchbox=\box59
\nofMPsegments=\count131
\nofMParguments=\count132
\everyMPshowfont=\toks26
\MPscratchCnt=\count133
\MPscratchDim=\dimen150
\MPnumerator=\count136
\makeMPintoPDFobject=\count137
\everyMPtoPDFconversion=\toks29
) (/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
\MPnumerator=\count134
\makeMPintoPDFobject=\count135
\everyMPtoPDFconversion=\toks27
) (/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/grfext.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2016/05/16 v1.2 Manage graphics extensions (HO)
)
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
@ -777,24 +754,24 @@ Package grfext Info: Graphics extension search list:
(grfext) [.png,.jpg,.jpeg,.pdf,.gif,.eps]
(grfext) \AppendGraphicsExtensions on input line 456.
(/usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
(/usr/local/texlive/2018/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))
Package caption Info: Begin \AtBeginDocument code.
Package caption Info: hyperref package is loaded.
Package caption Info: End \AtBeginDocument code.
\AtBeginShipoutBox=\box62
\AtBeginShipoutBox=\box60
Package backref Info: ** backref set up for natbib ** on input line 128.
Package hyperref Info: Link coloring OFF on input line 128.
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/nameref.sty
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2016/05/21 v2.44 Cross-referencing by name of section
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO)
)
\c@section@level=\count138
\c@section@level=\count136
)
LaTeX Info: Redefining \ref on input line 128.
LaTeX Info: Redefining \pageref on input line 128.
@ -818,12 +795,12 @@ Package pdftex.def Info: 0_frontmatter/figures/upc-logo.png used on input line
\FN@pp@footnotehinttrue
{/usr/local/texlive/2019/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./0_fro
{/usr/local/texlive/2018/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./0_fro
ntmatter/figures/upc-logo.png>]
LaTeX Font Info: Try loading font information for TS1+ptm on input line 163.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/ts1ptm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/ts1ptm.fd
File: ts1ptm.fd 2001/06/04 font definitions for TS1/ptm.
)
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10.95> not available
@ -838,25 +815,25 @@ LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <14.4> not available
LaTeX Font Info: Try loading font information for OT1+ztmcm on input line 10
.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/ot1ztmcm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/ot1ztmcm.fd
File: ot1ztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OT1/ztmcm.
)
LaTeX Font Info: Try loading font information for OML+ztmcm on input line 10
.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omlztmcm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omlztmcm.fd
File: omlztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OML/ztmcm.
)
LaTeX Font Info: Try loading font information for OMS+ztmcm on input line 10
.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omsztmcm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omsztmcm.fd
File: omsztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMS/ztmcm.
)
LaTeX Font Info: Try loading font information for OMX+ztmcm on input line 10
.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omxztmcm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omxztmcm.fd
File: omxztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMX/ztmcm.
)
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
@ -1328,7 +1305,7 @@ LaTeX Warning: `!h' float specifier changed to `!ht'.
LaTeX Font Info: Try loading font information for OML+ptm on input line 549.
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omlptm.fd
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omlptm.fd
File: omlptm.fd
)
LaTeX Font Info: Font shape `OML/ptm/m/n' in size <10.95> not available
@ -1821,23 +1798,23 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
] [158] [159]) [160] (./thesis.bbl (./thesis.brf)
] [158] [159] [160]) [161] (./thesis.bbl (./thesis.brf)
\tf@brf=\write6
\openout6 = `thesis.brf'.
[162
]
Underfull \hbox (badness 10000) in paragraph at lines 173--173
[]\OT1/ptm/m/sc/6 Julien Boulon, Is-abelle Braud, S[]ebastien Zamith,
[]
[161
] [162]
[163] [164]
Underfull \hbox (badness 10000) in paragraph at lines 446--446
[]\OT1/ptm/m/sc/6 Wandared Poka-panich, Hen-rik Berg-ersen, Ioana L
[]
[163]
[165]
LaTeX Font Info: Font shape `TS1/ptm/bx/n' in size <6> not available
(Font) Font shape `TS1/ptm/b/n' tried instead on input line 655.
@ -1845,17 +1822,17 @@ Underfull \hbox (badness 5105) in paragraph at lines 764--764
[]\OT1/ptm/m/sc/6 MS Call[]en, MT De la Cruz, JM L[]opez, R Murillo,
[]
[164]
[166]
Underfull \hbox (badness 6428) in paragraph at lines 827--827
\OT1/ptm/m/sc/6 Tao Chen, Linda Gi-a-co-mozzi, Ro-drigo F Nasci-mento,
[]
[165] [166] [167] [168]
[167] [168] [169] [170]
Underfull \hbox (badness 5607) in paragraph at lines 1668--1668
[]\OT1/ptm/m/sc/6 Pietro Bal-lone, Wanda An-dreoni, Roberto Car, and
[]
[169] [170]
[171] [172]
Underfull \hbox (badness 10000) in paragraph at lines 2010--2010
[]\OT1/ptm/m/sc/6 Claudio Fabi-ano Motta Toledo, L Oliveira, and
[]
@ -1866,12 +1843,12 @@ Underfull \hbox (badness 5417) in paragraph at lines 2020--2020
/n/6 .
[]
[171]
[173]
Underfull \hbox (badness 7116) in paragraph at lines 2221--2221
[]\OT1/ptm/m/sc/6 Yih-Sheng Wang, Hai-Chou Chang, Jyh-Chiang Jiang,
[]
[172]
[174]
Underfull \hbox (badness 10000) in paragraph at lines 2407--2407
[]\OT1/ptm/m/sc/6 Badia Bouda[]^^Pffa, Pierre Cloutier, Darel Hunt-ing,
[]
@ -1881,15 +1858,15 @@ Underfull \hbox (badness 10000) in paragraph at lines 2497--2497
[]\OT1/ptm/m/sc/6 S[]ebastien Zamith, Pierre Labastie, and Jean-Marc
[]
[173] [174]
[175] [176]
Underfull \hbox (badness 6252) in paragraph at lines 2848--2848
[]\OT1/ptm/m/sc/6 Annette Es-chen-bach, Rein-hard Wien-berg, and Bernd
[]
[175]) [176]
[177]) [178]
\openout2 = `6_backmatter/declaration.aux'.
(./6_backmatter/declaration.tex [177
(./6_backmatter/declaration.tex [179
])
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 307.
@ -1905,33 +1882,33 @@ Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 307.
Package rerunfilecheck Info: File `thesis.out' has not changed.
(rerunfilecheck) Checksum: 54B844088F193135A8E4AE44D25629B8;5769.
Package rerunfilecheck Info: File `thesis.brf' has not changed.
(rerunfilecheck) Checksum: 53B975AAE9DE3D14109C32347EC56340;39158.
(rerunfilecheck) Checksum: E8709CD4E67FBBA5E85D00C43F8AA4F5;39356.
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 307.
)
Here is how much of TeX's memory you used:
15708 strings out of 492616
244673 string characters out of 6129481
390884 words of memory out of 5000000
18266 multiletter control sequences out of 15000+600000
14706 strings out of 492649
226010 string characters out of 6129622
339212 words of memory out of 5000000
17245 multiletter control sequences out of 15000+600000
84285 words of font info for 177 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
47i,20n,82p,2185b,2516s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/local/texlive/2019/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/local/t
exlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/local/te
xlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/local/tex
live/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/local/texli
ve/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/local/texliv
e/2019/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb></usr/local/te
xlive/2019/texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/2019/
texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/2019/texmf-dist/
fonts/type1/urw/times/utmb8a.pfb></usr/local/texlive/2019/texmf-dist/fonts/type
1/urw/times/utmbi8a.pfb></usr/local/texlive/2019/texmf-dist/fonts/type1/urw/tim
es/utmr8a.pfb></usr/local/texlive/2019/texmf-dist/fonts/type1/urw/times/utmri8a
43i,20n,51p,2185b,2512s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/local/texlive/2018/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/local/t
exlive/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/local/te
xlive/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/local/tex
live/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/local/texli
ve/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/local/texliv
e/2018/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb></usr/local/te
xlive/2018/texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/2018/
texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/2018/texmf-dist/
fonts/type1/urw/times/utmb8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type
1/urw/times/utmbi8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type1/urw/tim
es/utmr8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type1/urw/times/utmri8a
.pfb>
Output written on thesis.pdf (191 pages, 31308682 bytes).
Output written on thesis.pdf (193 pages, 31312211 bytes).
PDF statistics:
4453 PDF objects out of 5155 (max. 8388607)
3918 compressed objects within 40 object streams
919 named destinations out of 1000 (max. 500000)
4470 PDF objects out of 5155 (max. 8388607)
3933 compressed objects within 40 object streams
921 named destinations out of 1000 (max. 500000)
876 words of extra memory for PDF output out of 10000 (max. 10000000)

Binary file not shown.

Binary file not shown.

View File

@ -1,66 +1,66 @@
\babel@toc {english}{}
\contentsline {chapter}{\nonumberline Glossary}{xi}{chapter*.2}%
\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}%
\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}%
\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}%
\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}%
\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}%
\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}%
\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}%
\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}%
\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{33}{subsection.2.3.4}%
\contentsline {section}{\numberline {2.4}Exploration of PES}{35}{section.2.4}%
\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{36}{subsection.2.4.1}%
\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{39}{subsection.2.4.2}%
\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{44}{subsection.2.4.3}%
\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{46}{subsection.2.4.4}%
\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}%
\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}%
\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}%
\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}%
\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}%
\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{52}{subsection.3.1.4}%
\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}%
\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}%
\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}%
\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}%
\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}%
\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}%
\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}%
\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{73}{subsubsection.3.2.2.5}%
\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}%
\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}%
\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}%
\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}%
\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}%
\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}%
\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}%
\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}%
\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}%
\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}%
\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}%
\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}%
\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}%
\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}%
\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}%
\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}%
\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}%
\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}%
\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}%
\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}%
\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}%
\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}%
\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}%
\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}%
\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}%
\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}%
\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}%
\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}%
\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}%
\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}%
\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}%
\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}%
\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}%
\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}%
\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}%
\contentsline {chapter}{References}{161}{chapter*.82}%
\contentsline {chapter}{Glossary}{xi}{chapter*.2}
\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}
\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}
\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}
\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}
\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}
\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}
\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}
\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}
\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{33}{subsection.2.3.4}
\contentsline {section}{\numberline {2.4}Exploration of PES}{35}{section.2.4}
\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{36}{subsection.2.4.1}
\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{39}{subsection.2.4.2}
\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{44}{subsection.2.4.3}
\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{46}{subsection.2.4.4}
\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}
\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}
\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}
\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}
\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}
\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{52}{subsection.3.1.4}
\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}
\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}
\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}
\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}
\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{73}{subsubsection.3.2.2.5}
\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}
\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}
\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}
\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}
\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}
\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}
\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}
\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}
\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}
\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}
\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}
\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}
\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}
\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}
\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}
\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}
\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}
\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}
\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}
\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}
\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}
\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}
\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}
\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}
\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}
\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}
\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}
\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}
\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}
\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}
\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}
\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}
\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}
\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}
\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}
\contentsline {chapter}{References}{163}{chapter*.82}