diff --git a/thesis/2_Introduction/introduction.tex b/thesis/2_Introduction/introduction.tex index 0f55a2b..89b822e 100644 --- a/thesis/2_Introduction/introduction.tex +++ b/thesis/2_Introduction/introduction.tex @@ -1306,7 +1306,7 @@ he dynamics from the direction of time. The other property is the conservation %Hamiltonian function total energy over time. Because of the discretization of trajectories, this conservation can not be insured. A stable integration algorithm must -impose this conservation for long enough time steps ($\delta t$) to allow for sufficiently long simulation times. The VV algorithm +impose this conservation for long enough time steps ($\delta t$) to allow for sufficiently long simulation time. The VV algorithm is able to do this due to its sufficient numerical stability. According to the conservation of energy, the natural ensemble corresponding to such dynamics is the microcanonical ensemble ($N, V, E$).\cite{Ray1981, Ray1999} $N$ is the number of particles. $V$ denotes the volume and $E$ is the energy of the system @@ -1328,7 +1328,7 @@ barriers are too high to be crossed. In this case, if $E_b$ refers to the energy the simulation, one can consider that $E_b >> k_BT$ where $k_B$ is the Boltzmann constant. At intermediate temperature, the possibility of crossing the energy barriers during a simulation increases, but this can not guarantee the PES to be explored exhaustively. For high temperatures, one has a high probability to cross the energy barriers whereas the -bottoms of the wells can not be explored comprehensively. Therefore, it is not possible to both cross the energy barriers +bottoms of the wells can not be explored comprehensively. Therefore, it is very difficult to both cross the energy barriers and thoroughly explore the bottom of the wells using a unique MD simulation at a given temperature. Many methods have been proposed to solve this question and are referred to as \textbf{enhanced sampling methods} They are classified into two groups: \textbf{biased methods} and \textbf{non-biased methods}. @@ -1363,12 +1363,8 @@ $N$ replicas ($C_i, i = 1, 2, ..., N$) of the same system are simulated in paral The time evolution of each replica is independent with each other but exchanges of configurations between adjacent replicas $C_i$ and $C_j$, where $T_i < T_j$ and $i = j - 1$ are permitted at regular time intervals. The choice of the extreme temperatures $T_1$ and $T_N$ is very important for the algorithm to be optimal. -The lowest temperature ($T_1$) should be the one at which usual simulations are blocked and the highest -temperature ($T_N$) should be chosen so that all significant energy barriers can be overcome during the -simulation. Moreover, the temperatures between $T_1$ and $T_N$ must be chosen to lead to sufficient overlap -between the density of states of the adjacent replicas. Indeed, if this overlap is too small, the probability of -exchange is very low, which makes the PTMD simulations inefficient and leads to a bad exploration of the PES. -In contrast, if the overlap is too large, a large amount of redundant information will be produced, which will +The lowest temperature ($T_1$) should be the one at which usual simulations are blocked in basins and the highest temperature ($T_N$) should be chosen so that all significant energy barriers can be overcome during the simulation. Moreover, the temperatures between $T_1$ and $T_N$ must be chosen to lead to sufficient overlap between the density of states of the adjacent replicas. Indeed, if this overlap is too small, the probability of exchange is very low, which makes the PTMD simulations inefficient and leads to a bad exploration of the PES. +In contrast, if the overlap is too large, a significant amount of redundant information will be produced, which will cost unnecessary computational resources. Configurations between two neighbouring replicas at different $T$ are exchanged based on the Metropolis–Hastings criterion with probability: \begin{align} @@ -1400,26 +1396,26 @@ all particles can be renormalized as follows: %======= %>>>>>>> 92023a10c3aa8b7dc4ace43987c1d571fb99a738 -\textbf{Global Optimization} refers to the determination of the lowest energy point on a PES, \textit{i.e.} the global minimum. As this latter usually +\textbf{Global optimization} refers to the determination of the lowest energy point on a PES, \textit{i.e.} the global minimum. As this latter usually includes a large number of stationary points, it is not straightforward to find the global minimum. Local optimization methods do not make it possible to cross the energy barriers between local minima. Therefore, a global optimization scheme such as MD or Monte Carlo simulations is needed to perform a more exhaustive exploration of the PES to get to the lowest energy minimum. -There exits a vast amount of methods to perform global optimization and each one has its strength and weaknesses. -For instance, the Basin-Hopping method is a particular useful global optimization technique in high-dimensional landscapes +There exits a vast amount of methods to perform global optimization and each one has its strength and weaknesses. The ergodicity problem appears in all of these global optimization methods. In principle, one can only be sure of having found the real global minimum after an infinite number of iterations. +The Basin-Hopping method is a particular useful global optimization technique in high-dimensional landscapes that iterates by performing a random perturbation of coordinates, making a local optimization, and rejecting or accepting new coordinates based on a minimized function value.\cite{Wales1997, Wales1999} Genetic algorithms are also among the most used methods to find a global minimum.\cite{Hartke1993, Unger1993, Sivanandam2008, Toledo2014} A genetic algorithm is inspired by the process of natural selection. Genetic algorithms are usually applied to generate high-quality solutions -of optimization. The ergodicity problem appears in all of these global optimization methods. In principle, one can only be sure of having -found the real global minimum after an infinite number of iterations. +of optimization. -In order to avoid ergodicity problems, it is interesting to combine global and local optimization methods. A very popular combination -is the simulated annealing method combined with local optimizations. The PES of molecular aggregates display many degrees of freedom -and contains a large number of low-energy isomers. The PTMD algorithm coupled with a great number of local optimizations is a good +In order to avoid ergodicity problems, an interesting tool is to combine global and local optimization methods. A very popular combination +is the simulated annealing method combined with local optimizations. +%The PES of molecular aggregates display many degrees of freedom and contains a large number of low-energy isomers. +The PTMD algorithm coupled with a great number of local optimizations is a good choice to search for low-energy structures in this kind of system. Local optimizations are performed many times from initial conditions structures which are extracted from all PTMD trajectories, whether it be low or high temperature, in order to maximize sampling. \textbf{This -approach, in combination with SCC-DFTB, has been conducted along this thesis to perform global Optimization.} +approach, in combination with SCC-DFTB, has been conducted along this thesis to perform global optimization.} diff --git a/thesis/3/.DS_Store b/thesis/3/.DS_Store index 82e91ee..126a146 100644 Binary files a/thesis/3/.DS_Store and b/thesis/3/.DS_Store differ diff --git a/thesis/3/figures/capacity-curve-new-eps-converted-to.pdf b/thesis/3/figures/capacity-curve-new-eps-converted-to.pdf new file mode 100644 index 0000000..9c093d5 Binary files /dev/null and b/thesis/3/figures/capacity-curve-new-eps-converted-to.pdf differ diff --git a/thesis/3/figures/capacity-curve-new.eps b/thesis/3/figures/capacity-curve-new.eps new file mode 100644 index 0000000..1ac0b6c --- /dev/null +++ b/thesis/3/figures/capacity-curve-new.eps @@ -0,0 +1,19344 @@ +%!PS-Adobe-2.0 EPSF-2.0 +%%Title: capacity-curve-new.eps +%%Creator: gnuplot 5.2 patchlevel 2 +%%CreationDate: Tue Jun 15 15:40:26 2021 +%%DocumentFonts: (atend) +%%BoundingBox: 50 50 900 843 +%%EndComments +%%BeginProlog +/gnudict 256 dict def +gnudict begin +% +% The following true/false flags may be edited by hand if desired. +% The unit line width and grayscale image gamma correction may also be changed. +% +/Color true def +/Blacktext false def +/Solid false def +/Dashlength 1 def +/Landscape false def +/Level1 false def +/Level3 false def +/Rounded false def +/ClipToBoundingBox false def +/SuppressPDFMark false def +/TransparentPatterns false def +/gnulinewidth 15.000 def +/userlinewidth gnulinewidth def +/Gamma 1.0 def +/BackgroundColor {-1.000 -1.000 -1.000} def +% +/vshift -166 def +/dl1 { + 10.0 Dashlength userlinewidth gnulinewidth div mul mul mul + Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if +} def +/dl2 { + 10.0 Dashlength userlinewidth gnulinewidth div mul mul mul + Rounded { currentlinewidth 0.75 mul add } if +} def +/hpt_ 31.5 def +/vpt_ 31.5 def +/hpt hpt_ def +/vpt vpt_ def +/doclip { + ClipToBoundingBox { + newpath 50 50 moveto 900 50 lineto 900 843 lineto 50 843 lineto closepath + clip + } if +} def +% +% Gnuplot Prolog Version 5.1 (Oct 2015) +% +%/SuppressPDFMark true def +% +/M {moveto} bind def +/L {lineto} bind def +/R {rmoveto} bind def +/V {rlineto} bind def +/N {newpath moveto} bind def +/Z {closepath} bind def +/C {setrgbcolor} bind def +/f {rlineto fill} bind def +/g {setgray} bind def +/Gshow {show} def % May be redefined later in the file to support UTF-8 +/vpt2 vpt 2 mul def +/hpt2 hpt 2 mul def +/Lshow {currentpoint stroke M 0 vshift R + Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def +/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R + Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def +/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R + Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def +/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def + /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def +/DL {Color {setrgbcolor Solid {pop []} if 0 setdash} + {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def +/BL {stroke userlinewidth 2 mul setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +/AL {stroke userlinewidth 2 div setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +/UL {dup gnulinewidth mul /userlinewidth exch def + dup 1 lt {pop 1} if 10 mul /udl exch def} def +/PL {stroke userlinewidth setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +3.8 setmiterlimit +% Classic Line colors (version 5.0) +/LCw {1 1 1} def +/LCb {0 0 0} def +/LCa {0 0 0} def +/LC0 {1 0 0} def +/LC1 {0 1 0} def +/LC2 {0 0 1} def +/LC3 {1 0 1} def +/LC4 {0 1 1} def +/LC5 {1 1 0} def +/LC6 {0 0 0} def +/LC7 {1 0.3 0} def +/LC8 {0.5 0.5 0.5} def +% Default dash patterns (version 5.0) +/LTB {BL [] LCb DL} def +/LTw {PL [] 1 setgray} def +/LTb {PL [] LCb DL} def +/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def +/LT0 {PL [] LC0 DL} def +/LT1 {PL [2 dl1 3 dl2] LC1 DL} def +/LT2 {PL [1 dl1 1.5 dl2] LC2 DL} def +/LT3 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC3 DL} def +/LT4 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def +/LT5 {PL [4 dl1 2 dl2] LC5 DL} def +/LT6 {PL [1.5 dl1 1.5 dl2 1.5 dl1 1.5 dl2 1.5 dl1 6 dl2] LC6 DL} def +/LT7 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC7 DL} def +/LT8 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC8 DL} def +/SL {[] 0 setdash} def +/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def +/Dia {stroke [] 0 setdash 2 copy vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke + Pnt} def +/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V + currentpoint stroke M + hpt neg vpt neg R hpt2 0 V stroke + } def +/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke + Pnt} def +/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M + hpt2 vpt2 neg V currentpoint stroke M + hpt2 neg 0 R hpt2 vpt2 V stroke} def +/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke + Pnt} def +/Star {2 copy Pls Crs} def +/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath fill} def +/TriUF {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath fill} def +/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke + Pnt} def +/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath fill} def +/DiaF {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath fill} def +/Pent {stroke [] 0 setdash 2 copy gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore Pnt} def +/PentF {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath fill grestore} def +/Circle {stroke [] 0 setdash 2 copy + hpt 0 360 arc stroke Pnt} def +/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def +/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def +/C1 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + vpt 0 360 arc closepath} bind def +/C2 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C3 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C4 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C5 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc + 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc} bind def +/C6 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C7 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C8 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C9 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 450 arc closepath fill + vpt 0 360 arc closepath} bind def +/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill + 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C11 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C12 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C13 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C14 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 360 arc closepath fill + vpt 0 360 arc} bind def +/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto + neg 0 rlineto closepath} bind def +/Square {dup Rec} bind def +/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def +/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def +/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def +/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def +/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def +/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def +/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill + exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def +/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def +/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill + 2 copy vpt Square fill Bsquare} bind def +/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def +/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def +/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill + Bsquare} bind def +/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill + Bsquare} bind def +/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def +/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy vpt Square fill Bsquare} bind def +/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def +/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def +/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def +/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def +/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def +/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def +/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def +/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def +/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def +/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def +/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def +/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def +/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def +/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def +/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def +/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def +/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def +/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def +/DiaE {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke} def +/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke} def +/TriUE {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke} def +/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke} def +/PentE {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore} def +/CircE {stroke [] 0 setdash + hpt 0 360 arc stroke} def +/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def +/DiaW {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V Opaque stroke} def +/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V Opaque stroke} def +/TriUW {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V Opaque stroke} def +/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V Opaque stroke} def +/PentW {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + Opaque stroke grestore} def +/CircW {stroke [] 0 setdash + hpt 0 360 arc Opaque stroke} def +/BoxFill {gsave Rec 1 setgray fill grestore} def +/Density { + /Fillden exch def + currentrgbcolor + /ColB exch def /ColG exch def /ColR exch def + /ColR ColR Fillden mul Fillden sub 1 add def + /ColG ColG Fillden mul Fillden sub 1 add def + /ColB ColB Fillden mul Fillden sub 1 add def + ColR ColG ColB setrgbcolor} def +/BoxColFill {gsave Rec PolyFill} def +/PolyFill {gsave Density fill grestore grestore} def +/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def +% +% PostScript Level 1 Pattern Fill routine for rectangles +% Usage: x y w h s a XX PatternFill +% x,y = lower left corner of box to be filled +% w,h = width and height of box +% a = angle in degrees between lines and x-axis +% XX = 0/1 for no/yes cross-hatch +% +/PatternFill {gsave /PFa [ 9 2 roll ] def + PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate + PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec + TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse + clip + currentlinewidth 0.5 mul setlinewidth + /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def + 0 0 M PFa 5 get rotate PFs -2 div dup translate + 0 1 PFs PFa 4 get div 1 add floor cvi + {PFa 4 get mul 0 M 0 PFs V} for + 0 PFa 6 get ne { + 0 1 PFs PFa 4 get div 1 add floor cvi + {PFa 4 get mul 0 2 1 roll M PFs 0 V} for + } if + stroke grestore} def +% +/languagelevel where + {pop languagelevel} {1} ifelse +dup 2 lt + {/InterpretLevel1 true def + /InterpretLevel3 false def} + {/InterpretLevel1 Level1 def + 2 gt + {/InterpretLevel3 Level3 def} + {/InterpretLevel3 false def} + ifelse } + ifelse +% +% PostScript level 2 pattern fill definitions +% +/Level2PatternFill { +/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} + bind def +/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} +>> matrix makepattern +/Pat1 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke + 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} +>> matrix makepattern +/Pat2 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L + 8 8 L 8 0 L 0 0 L fill} +>> matrix makepattern +/Pat3 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L + 0 12 M 12 0 L stroke} +>> matrix makepattern +/Pat4 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L + 0 -4 M 12 8 L stroke} +>> matrix makepattern +/Pat5 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L + 0 12 M 8 -4 L 4 12 M 10 0 L stroke} +>> matrix makepattern +/Pat6 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L + 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} +>> matrix makepattern +/Pat7 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L + 12 0 M -4 8 L 12 4 M 0 10 L stroke} +>> matrix makepattern +/Pat8 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L + -4 0 M 12 8 L -4 4 M 8 10 L stroke} +>> matrix makepattern +/Pat9 exch def +/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def +/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def +/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def +/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def +/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def +/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def +/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def +} def +% +% +%End of PostScript Level 2 code +% +/PatternBgnd { + TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse +} def +% +% Substitute for Level 2 pattern fill codes with +% grayscale if Level 2 support is not selected. +% +/Level1PatternFill { +/Pattern1 {0.250 Density} bind def +/Pattern2 {0.500 Density} bind def +/Pattern3 {0.750 Density} bind def +/Pattern4 {0.125 Density} bind def +/Pattern5 {0.375 Density} bind def +/Pattern6 {0.625 Density} bind def +/Pattern7 {0.875 Density} bind def +} def +% +% Now test for support of Level 2 code +% +Level1 {Level1PatternFill} {Level2PatternFill} ifelse +% +/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont +dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall +currentdict end definefont pop +% +/Metrics {ExtendTextBox Gswidth} def +/Lwidth {currentpoint stroke M 0 vshift R Metrics} def +/Rwidth {currentpoint stroke M dup stringwidth pop neg vshift R Metrics} def +/Cwidth {currentpoint stroke M dup stringwidth pop -2 div vshift R Metrics} def +/GLwidth {currentpoint stroke M 0 vshift R {ExtendTextBox} forall} def +/GRwidth {currentpoint stroke M dup Gwidth vshift R {ExtendTextBox} forall} def +/GCwidth {currentpoint stroke M dup Gwidth 2 div vshift R {ExtendTextBox} forall} def +/GLwidth2 {0 Gwidth AddGlyphWidth} def +/GRwidth2 {Gwidth -1 mul 0 AddGlyphWidth} def +/GCwidth2 {Gwidth 2 div dup -1 mul AddGlyphWidth} def +/AddGlyphWidth { dup TBx2 gt {userdict /TBx2 3 -1 roll put} {pop} ifelse + dup TBx1 lt {userdict /TBx1 3 -1 roll put} {pop} ifelse } def +/MFshow { + { dup 5 get 3 ge + { 5 get 3 eq {gsave} {grestore} ifelse } + {dup dup 0 get findfont exch 1 get scalefont setfont + [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 + get exch 4 get {textshow} {Metrics pop 0 R} ifelse }if dup 5 get 0 eq + {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 + get 1 eq {dup 2 get exch dup 3 get exch 6 get Gswidth pop -2 div + dup 0 R} {dup 6 get Gswidth pop -2 div 0 R 6 get + textshow 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop + pop aload pop M} ifelse }ifelse }ifelse } + ifelse } + forall} def +/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def +/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse } + {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont + 6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def +/MLshow { currentpoint stroke M + 0 exch R + Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def +/MRshow { currentpoint stroke M + exch dup MFwidth neg 3 -1 roll R + Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def +/MCshow { currentpoint stroke M + exch dup MFwidth -2 div 3 -1 roll R + Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def +/XYsave { [( ) 1 2 true false 3 ()] } bind def +/XYrestore { [( ) 1 2 true false 4 ()] } bind def +Level1 SuppressPDFMark or +{} { +/SDict 10 dict def +systemdict /pdfmark known not { + userdict /pdfmark systemdict /cleartomark get put +} if +SDict begin [ + /Title (capacity-curve-new.eps) + /Subject (gnuplot plot) + /Creator (gnuplot 5.2 patchlevel 2) +% /Producer (gnuplot) +% /Keywords () + /CreationDate (Tue Jun 15 15:40:26 2021) + /DOCINFO pdfmark +end +} ifelse +% +% Support for boxed text - Ethan A Merritt Sep 2016 +% +/InitTextBox { userdict /TBy2 3 -1 roll put userdict /TBx2 3 -1 roll put + userdict /TBy1 3 -1 roll put userdict /TBx1 3 -1 roll put + /Boxing true def } def +/ExtendTextBox { dup type /stringtype eq + { Boxing { gsave dup false charpath pathbbox + dup TBy2 gt {userdict /TBy2 3 -1 roll put} {pop} ifelse + dup TBx2 gt {userdict /TBx2 3 -1 roll put} {pop} ifelse + dup TBy1 lt {userdict /TBy1 3 -1 roll put} {pop} ifelse + dup TBx1 lt {userdict /TBx1 3 -1 roll put} {pop} ifelse + grestore } if } + {} ifelse} def +/PopTextBox { newpath TBx1 TBxmargin sub TBy1 TBymargin sub M + TBx1 TBxmargin sub TBy2 TBymargin add L + TBx2 TBxmargin add TBy2 TBymargin add L + TBx2 TBxmargin add TBy1 TBymargin sub L closepath } def +/DrawTextBox { PopTextBox stroke /Boxing false def} def +/FillTextBox { gsave PopTextBox fill grestore /Boxing false def} def +0 0 0 0 InitTextBox +/TBxmargin 20 def +/TBymargin 20 def +/Boxing false def +/textshow { ExtendTextBox Gshow } def +% +end +%%EndProlog +%%Page: 1 1 +gnudict begin +gsave +doclip +50 50 translate +0.050 0.050 scale +0 setgray +newpath +(Helvetica) findfont 500 scalefont setfont +BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {BackgroundColor C 1.000 0 0 17006.00 15874.00 BoxColFill} if +1.000 UL +LTb +LCb setrgbcolor +2370 2363 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 2363 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 9)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 4180 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 4180 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 10)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 5996 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 5996 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 11)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 7812 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 7812 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 12)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 9629 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 9629 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 13)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 11445 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 11445 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 14)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 13262 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 13262 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 15)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 15078 M +252 0 V +13993 0 R +-252 0 V +stroke +2070 15078 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 16)] +] -233.3 MRshow +1.000 UL +LTb +LCb setrgbcolor +2370 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +2370 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 60)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +4079 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +4079 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 90)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +5789 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +5789 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 120)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +7498 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +7498 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 150)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +9208 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +9208 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 180)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +10917 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +10917 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 210)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +12626 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +12626 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 240)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +14336 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +14336 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 270)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +16045 2000 M +0 252 V +0 13371 R +0 -252 V +stroke +16045 1500 M +[ [(Helvetica) 700.0 0.0 true true 0 ( 300)] +] -233.3 MCshow +1.000 UL +LTb +LCb setrgbcolor +1.000 UL +LTB +LCb setrgbcolor +2370 15623 N +0 -13623 V +14245 0 V +0 13623 V +-14245 0 V +Z stroke +1.000 UP +1.000 UL +LTb +LCb setrgbcolor +LCb setrgbcolor +610 8811 M +currentpoint gsave translate -270 rotate 0 0 moveto +[ [(Helvetica) 730.0 0.0 true true 0 (Heat Capacity \(k)] +[(Helvetica) 584.0 -219.0 true true 0 (B)] +[(Helvetica) 730.0 0.0 true true 0 (/molecule\))] +] -170.3 MCshow +grestore +LTb +LCb setrgbcolor +9492 500 M +[ [(Helvetica) 730.0 0.0 true true 0 (Temperature \(K\))] +] -243.3 MCshow +LTb +% Begin plot #1 +3.000 UL +LTb +1.00 0.00 0.00 C LCb setrgbcolor +13642 3855 M +[ [(Helvetica) 650.0 0.0 true true 0 (\(H)] +[(Helvetica) 520.0 -195.0 true true 0 (2)] +[(Helvetica) 650.0 0.0 true true 0 (O\))] +[(Helvetica) 520.0 -195.0 true true 0 (20)] +[(Helvetica) 650.0 0.0 true true 0 (NH)] +[(Helvetica) 520.0 -195.0 true true 0 (4)] +[(Helvetica) 520.0 325.0 true true 0 (+)] +] -216.7 MRshow +3.000 UL +LTb +1.00 0.00 0.00 C 14032 3855 M +1623 0 V +2370 2674 M +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +stroke 2581 2591 M +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +stroke 2804 2539 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +stroke 3041 2511 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 3283 2497 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 3530 2488 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 3776 2483 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 4023 2485 M +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 4266 2496 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 4504 2514 M +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +stroke 4745 2539 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 4983 2566 M +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 5222 2595 M +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +stroke 5460 2625 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +stroke 5696 2656 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 5931 2689 M +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 6169 2728 M +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +stroke 6402 2774 M +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +stroke 6631 2828 M +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +stroke 6850 2894 M +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +stroke 7064 2976 M +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +stroke 7266 3076 M +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +stroke 7458 3199 M +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +stroke 7652 3359 M +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +stroke 7822 3538 M +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +stroke 7979 3747 M +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +stroke 8126 3987 M +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +stroke 8268 4269 M +1 2 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +stroke 8410 4613 M +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +stroke 8552 5030 M +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +stroke 8694 5531 M +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +stroke 8836 6129 M +0 3 V +1 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +stroke 8978 6832 M +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 3 V +1 4 V +stroke 9120 7643 M +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +stroke 9261 8556 M +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +stroke 9403 9551 M +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +stroke 9545 10596 M +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +stroke 9687 11640 M +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 5 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 5 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 5 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 3 V +stroke 9829 12622 M +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 4 V +1 3 V +0 4 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 4 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 4 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +0 3 V +1 4 V +1 3 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 4 V +1 3 V +0 3 V +1 3 V +stroke 9971 13478 M +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 4 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 3 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 3 V +0 2 V +1 3 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 3 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 3 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +0 3 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +stroke 10113 14149 M +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +1 2 V +0 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 3 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 3 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 2 V +0 1 V +1 2 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 2 V +1 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 2 V +1 1 V +stroke 10255 14596 M +0 1 V +1 2 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +0 1 V +1 1 V +1 1 V +0 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 2 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 2 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 2 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 1 V +1 1 V +1 1 V +1 1 V +1 1 V +0 1 V +1 0 V +1 1 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 1 V +1 0 V +1 1 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +stroke 10412 14813 M +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +stroke 10605 14714 M +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +stroke 10746 14438 M +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +stroke 10888 14047 M +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +stroke 11030 13592 M +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +stroke 11172 13118 M +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +stroke 11314 12660 M +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +stroke 11456 12238 M +0 -2 V +1 -1 V +1 -2 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -2 V +1 -1 V +stroke 11598 11866 M +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +stroke 11740 11550 M +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -2 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -2 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +stroke 11883 11287 M +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +stroke 12036 11065 M +1 -1 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +stroke 12211 10877 M +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 -1 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +stroke 12399 10743 M +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +stroke 12609 10661 M +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 12844 10633 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +stroke 13076 10657 M +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +stroke 13297 10712 M +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +stroke 13509 10788 M +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +stroke 13720 10879 M +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +stroke 13928 10979 M +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +stroke 14145 11090 M +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +stroke 14347 11196 M +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +stroke 14554 11305 M +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +stroke 14764 11414 M +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +stroke 14984 11523 M +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +stroke 15191 11619 M +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +stroke 15401 11706 M +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +stroke 15616 11784 M +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +stroke 15841 11850 M +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +stroke 16072 11899 M +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +stroke 16309 11928 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +stroke 16554 11932 M +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +0 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 -1 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +1 0 V +% End plot #1 +stroke +2.000 UL +LTb +LCb setrgbcolor +1.000 UL +LTB +LCb setrgbcolor +2370 15623 N +0 -13623 V +14245 0 V +0 13623 V +-14245 0 V +Z stroke +1.000 UP +1.000 UL +LTb +LCb setrgbcolor +stroke +grestore +end +showpage +%%Trailer +%%DocumentFonts: Helvetica diff --git a/thesis/3/structure_stability.aux b/thesis/3/structure_stability.aux index 307e62a..894774a 100644 --- a/thesis/3/structure_stability.aux +++ b/thesis/3/structure_stability.aux @@ -7,10 +7,10 @@ \citation{Li1998,Thompson2003,Rapacioli2009corr} \citation{Rapacioli2009corr,Elstner2001,Zhechkov2005} \citation{Simon2012,Odutola1980} -\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}} +\@writefile{toc}{\contentsline {chapter}{\numberline {3}Investigation of Structural and Energetic Properties}{49}{chapter.3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\newlabel{chap:structure}{{3}{49}{Exploration of Structural and Energetic Properties}{chapter.3}{}} +\newlabel{chap:structure}{{3}{49}{Investigation of Structural and Energetic Properties}{chapter.3}{}} \citation{Sugita1999,Sugita2000,Earl2005} \citation{Elstner1998} \citation{Nose1984M,Hoover1985} @@ -110,15 +110,15 @@ \@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Hulthe1997}{{53}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}}} -\@writefile{brf}{\backcite{Chang1998}{{53}{3.2.1}{subsection.3.2.1}}} -\@writefile{brf}{\backcite{Jiang1999}{{53}{3.2.1}{subsection.3.2.1}}} -\@writefile{brf}{\backcite{Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}}} \citation{Choi2010,Choi2013,Korchagina2017,Simon2019} \citation{Simon2012,Simon2013water} \citation{Korchagina2016} \citation{Simon2017formation} \citation{Winget2003} \citation{Gaus2013para} +\@writefile{brf}{\backcite{Chang1998}{{54}{3.2.1}{subsection.3.2.1}}} +\@writefile{brf}{\backcite{Jiang1999}{{54}{3.2.1}{subsection.3.2.1}}} +\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Galashev2013}{{54}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}} @@ -140,28 +140,30 @@ \@writefile{brf}{\backcite{Simon2013water}{{54}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Korchagina2016}{{54}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Simon2017formation}{{54}{3.2.1}{subsection.3.2.1}}} -\@writefile{brf}{\backcite{Winget2003}{{54}{3.2.1}{subsection.3.2.1}}} \citation{Thompson2003,Rapacioli2009} \citation{Simon2019} +\@writefile{brf}{\backcite{Winget2003}{{55}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Gaus2013para}{{55}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Thompson2003}{{55}{3.2.1}{subsection.3.2.1}}} \@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}} -\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (1.28/0.14) (dotted red) and SCC-DFTB (1.16/0.12) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}} +\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (1.28/0.14) (dotted red) and SCC-DFTB (1.16/0.12) (dashed red) levels of theory.\relax }{figure.caption.10}{}} \citation{Winget2003,Gaus2013para} -\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}} -\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (1.28/0.14) (dotted red) and SCC-DFTB (1.16/0.12) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}} +\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (1.28/0.14) (dotted red) and SCC-DFTB (1.16/0.12) (dashed red) levels of theory.\relax }{figure.caption.11}{}} \citation{Wang1998,Jiang1999} \citation{Wang1998,Jiang1999} \citation{Douady2008} \@writefile{brf}{\backcite{Gaus2013para}{{58}{3.2.2.1}{figure.caption.11}}} \@writefile{brf}{\backcite{Winget2003}{{58}{3.2.2.1}{figure.caption.11}}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}} -\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 1.28/0.14 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}} +\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 1.28/0.14 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}} +\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{59}{table.caption.16}} +\newlabel{reBindE-small}{{3.1}{59}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}} \@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}} \@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}} \@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}} @@ -169,22 +171,20 @@ \@writefile{brf}{\backcite{Douady2008}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}} \@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.13}} \newlabel{fig:nh3-nh4-1w}{{3.5}{59}{Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.13}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.14}} -\newlabel{fig:nh3-nh4-2-3w}{{3.6}{59}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}} -\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Douady2009,Morrell2010} +\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.14}} +\newlabel{fig:nh3-nh4-2-3w}{{3.6}{60}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.15}} \newlabel{fig:nh3-nh4-3w}{{3.7}{60}{Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.15}{}} -\@writefile{brf}{\backcite{Douady2009}{{60}{3.2.2.2}{table.caption.16}}} -\@writefile{brf}{\backcite{Wang1998}{{60}{3.2.2.2}{table.caption.16}}} -\@writefile{brf}{\backcite{Jiang1999}{{60}{3.2.2.2}{table.caption.16}}} -\@writefile{brf}{\backcite{Douady2008}{{60}{3.2.2.2}{table.caption.16}}} -\@writefile{brf}{\backcite{Morrell2010}{{60}{3.2.2.2}{table.caption.16}}} -\@writefile{brf}{\backcite{Lee2004}{{60}{3.2.2.2}{table.caption.16}}} +\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Douady2009,Morrell2010} \citation{Wang1998,Jiang1999,Douady2008,Lee2004,Pickard2005} \citation{Chang1998,Wang1998} \citation{Jiang1999} -\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}} -\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}} +\@writefile{brf}{\backcite{Douady2009}{{61}{3.2.2.2}{table.caption.16}}} +\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{table.caption.16}}} +\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{table.caption.16}}} +\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.2}{table.caption.16}}} +\@writefile{brf}{\backcite{Morrell2010}{{61}{3.2.2.2}{table.caption.16}}} +\@writefile{brf}{\backcite{Lee2004}{{61}{3.2.2.2}{table.caption.16}}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}} \@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}} \@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}} @@ -242,36 +242,59 @@ \newlabel{fig:nh3-4-7w}{{3.10}{69}{The five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.20}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{72}{figure.caption.21}} \newlabel{fig:nh3-8-10w}{{3.11}{72}{The five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.21}{}} -\citation{Kazimirski2003,Douady2009,Bandow2006} +\citation{Douady2008,Douady2009} +\citation{Kazimirski2003,Bandow2006} +\citation{Kozack1992polar,Kozack1992empiri} \citation{Douady2009} +\citation{Labastie1990} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{73}{subsubsection.3.2.2.5}} \@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} +\@writefile{brf}{\backcite{Douady2008}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} \@writefile{brf}{\backcite{Kazimirski2003}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} \@writefile{brf}{\backcite{Bandow2006}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} -\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{74}{figure.caption.22}} -\newlabel{fig:nh3-nh4-20w}{{3.12}{74}{The five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }{figure.caption.22}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}} +\@writefile{brf}{\backcite{Kozack1992polar}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} +\@writefile{brf}{\backcite{Kozack1992empiri}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}} +\citation{Douady2009,Korchagina2017} +\citation{Korchagina2017} +\citation{Korchagina2017} +\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces Lowest-energy isomer of (H$_2$O)$_{20}${NH$_4$}$^{+}$.\relax }}{74}{figure.caption.22}} +\newlabel{fig:nh3-nh4-20w}{{3.12}{74}{Lowest-energy isomer of (H$_2$O)$_{20}${NH$_4$}$^{+}$.\relax }{figure.caption.22}{}} +\@writefile{brf}{\backcite{Douady2009}{{74}{3.2.2.5}{figure.caption.22}}} +\@writefile{brf}{\backcite{Labastie1990}{{74}{3.2.2.5}{figure.caption.22}}} +\newlabel{heatCapacity}{{3.1}{74}{Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{equation.3.2.1}{}} +\@writefile{brf}{\backcite{Korchagina2017}{{75}{3.2.2.5}{equation.3.2.1}}} +\@writefile{brf}{\backcite{Douady2009}{{75}{3.2.2.5}{equation.3.2.1}}} +\@writefile{brf}{\backcite{Korchagina2017}{{75}{3.2.2.5}{equation.3.2.1}}} +\@writefile{brf}{\backcite{Korchagina2017}{{75}{3.2.2.5}{equation.3.2.1}}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Canonical heat capacity as a function of the temperature of (H$_2$O)$_{20}${NH$_4$}$^{+}$.\relax }}{75}{figure.caption.23}} +\newlabel{fheat_c}{{3.13}{75}{Canonical heat capacity as a function of the temperature of (H$_2$O)$_{20}${NH$_4$}$^{+}$.\relax }{figure.caption.23}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{75}{subsection.3.2.3}} \citation{Maclot2011,Domaracka2012,Markush2016,Castrovilli2017} +\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{76}{section.3.3}} +\newlabel{structureUH}{{3.3}{76}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{76}{subsection.3.3.1}} \citation{Wincel2009} \citation{Boudaiffa2000} \citation{Smyth2011,Siefermann2011,Alizadeh2013} \citation{Rasmussen2010} -\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}} -\newlabel{structureUH}{{3.3}{75}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}} -\@writefile{brf}{\backcite{Castrovilli2017}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Maclot2011}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Domaracka2012}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Markush2016}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Wincel2009}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Boudaiffa2000}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Smyth2011}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Siefermann2011}{{75}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Alizadeh2013}{{75}{3.3.1}{subsection.3.3.1}}} \citation{Coates2018} \citation{Nelson1994,Sadr2014,Molina2016} \citation{Bakker2008} +\@writefile{brf}{\backcite{Castrovilli2017}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Maclot2011}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Domaracka2012}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Markush2016}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Wincel2009}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Boudaiffa2000}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Smyth2011}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Siefermann2011}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Alizadeh2013}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Rasmussen2010}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Coates2018}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Nelson1994}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Sadr2014}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Molina2016}{{77}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Bakker2008}{{77}{3.3.1}{subsection.3.3.1}}} \citation{Shishkin2000,Gadre2000,Van2001diffu,Gaigeot2001,Danilov2006,Bacchus2015} \citation{Gadre2000,Van2001diffu,Gaigeot2001,Danilov2006,Bacchus2015} \citation{Gaigeot2001} @@ -282,45 +305,40 @@ \citation{Gadre2000} \citation{Danilov2006,Bacchus2015} \citation{Braud2019} -\@writefile{brf}{\backcite{Rasmussen2010}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Coates2018}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Nelson1994}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Sadr2014}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Molina2016}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Bakker2008}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}} -\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{brf}{\backcite{Braud2019}{{78}{3.3.1}{subsection.3.3.1}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{78}{subsection.3.3.2}} \citation{Dalleska1993} \citation{Zamith2012} -\@writefile{brf}{\backcite{Braud2019}{{77}{3.3.1}{subsection.3.3.1}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}} -\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}} -\newlabel{exp_ur}{{3.3.2.1}{77}{Experimental Results}{subsubsection.3.3.2.1}{}} \citation{Myers2007} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}} +\newlabel{exp_ur}{{3.3.2.1}{79}{Experimental Results}{subsubsection.3.3.2.1}{}} +\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{figure.caption.24}}} +\@writefile{brf}{\backcite{Zamith2012}{{79}{3.3.2.1}{figure.caption.24}}} +\newlabel{cross-section-geo}{{3.4}{79}{Experimental Results}{equation.3.3.4}{}} \citation{Zamith2012} -\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{78}{figure.caption.23}} -\newlabel{mass7w}{{3.13}{78}{Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}} -\@writefile{brf}{\backcite{Dalleska1993}{{78}{3.3.2.1}{figure.caption.23}}} -\@writefile{brf}{\backcite{Zamith2012}{{78}{3.3.2.1}{figure.caption.23}}} -\newlabel{cross-section-geo}{{3.3}{78}{Experimental Results}{equation.3.3.3}{}} -\@writefile{brf}{\backcite{Myers2007}{{78}{3.3.2.1}{equation.3.3.3}}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{80}{figure.caption.24}} +\newlabel{mass7w}{{3.14}{80}{Time-of-flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.24}{}} +\@writefile{brf}{\backcite{Myers2007}{{80}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Zamith2012}{{80}{3.3.2.1}{equation.3.3.4}}} \citation{Dalleska1993} \citation{Dalleska1993,Hansen2009} \citation{Wincel2009} @@ -331,19 +349,20 @@ \citation{Zamith2012} \citation{Dalleska1993} \citation{Zamith2012} -\@writefile{brf}{\backcite{Zamith2012}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Bakker2008}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{80}{figure.caption.24}} -\@writefile{brf}{\backcite{Dalleska1993}{{80}{3.14}{figure.caption.24}}} -\@writefile{brf}{\backcite{Zamith2012}{{80}{3.14}{figure.caption.24}}} -\newlabel{fragcrosssec}{{3.14}{80}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}} +\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Hansen2009}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Wincel2009}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Bakker2008}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Hansen2009}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{brf}{\backcite{Wincel2009}{{81}{3.3.2.1}{equation.3.3.4}}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{81}{figure.caption.25}} +\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.15}{figure.caption.25}}} +\@writefile{brf}{\backcite{Zamith2012}{{81}{3.15}{figure.caption.25}}} +\newlabel{fragcrosssec}{{3.15}{81}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from N. Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from S. Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.25}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{82}{figure.caption.26}} +\newlabel{Uloss}{{3.16}{82}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.26}{}} \citation{Kurinovich2002} \citation{Magnera1991} \citation{Cheng1998} @@ -355,62 +374,60 @@ \citation{Cheng1998} \citation{Kurinovich2002} \citation{Bakker2008} -\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{81}{figure.caption.25}} -\newlabel{Uloss}{{3.15}{81}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}} -\@writefile{brf}{\backcite{Kurinovich2002}{{81}{3.3.2.1}{figure.caption.25}}} -\@writefile{brf}{\backcite{Magnera1991}{{81}{3.3.2.1}{figure.caption.25}}} -\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}} -\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}} -\@writefile{brf}{\backcite{Bakker2008}{{81}{3.3.2.1}{figure.caption.26}}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{82}{figure.caption.26}} -\@writefile{brf}{\backcite{Magnera1991}{{82}{3.16}{figure.caption.26}}} -\@writefile{brf}{\backcite{Cheng1998}{{82}{3.16}{figure.caption.26}}} -\@writefile{brf}{\backcite{Kurinovich2002}{{82}{3.16}{figure.caption.26}}} -\newlabel{protonAffinity}{{3.16}{82}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.26}{}} -\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{83}{table.caption.28}} -\newlabel{tab:DNH}{{3.3}{83}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.28}{}} -\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}} -\newlabel{calcul_ur}{{3.3.2.2}{83}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{83}{figure.caption.27}} -\newlabel{uracil_i}{{3.17}{83}{Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }{figure.caption.27}{}} +\@writefile{brf}{\backcite{Kurinovich2002}{{83}{3.3.2.1}{figure.caption.26}}} +\@writefile{brf}{\backcite{Magnera1991}{{83}{3.3.2.1}{figure.caption.26}}} +\@writefile{brf}{\backcite{Cheng1998}{{83}{3.3.2.1}{figure.caption.26}}} +\@writefile{brf}{\backcite{Cheng1998}{{83}{3.3.2.1}{figure.caption.26}}} +\@writefile{brf}{\backcite{Bakker2008}{{83}{3.3.2.1}{figure.caption.27}}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{84}{figure.caption.27}} +\@writefile{brf}{\backcite{Magnera1991}{{84}{3.17}{figure.caption.27}}} +\@writefile{brf}{\backcite{Cheng1998}{{84}{3.17}{figure.caption.27}}} +\@writefile{brf}{\backcite{Kurinovich2002}{{84}{3.17}{figure.caption.27}}} +\newlabel{protonAffinity}{{3.17}{84}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of T. Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.27}{}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{84}{subsubsection.3.3.2.2}} +\newlabel{calcul_ur}{{3.3.2.2}{84}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}} \citation{Wolken2000} \citation{Pedersen2014} \citation{Pedersen2014} \citation{Bakker2008} -\@writefile{brf}{\backcite{Wolken2000}{{84}{3.3.2.2}{table.caption.28}}} -\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.28}}} -\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.28}}} -\@writefile{brf}{\backcite{Bakker2008}{{84}{3.3.2.2}{table.caption.28}}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{85}{figure.caption.29}} -\newlabel{1a-f}{{3.18}{85}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.29}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{86}{figure.caption.30}} -\newlabel{1a-f-b3lyp}{{3.19}{86}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{85}{figure.caption.28}} +\newlabel{uracil_i}{{3.18}{85}{Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }{figure.caption.28}{}} +\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{85}{table.caption.29}} +\newlabel{tab:DNH}{{3.3}{85}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.29}{}} +\@writefile{brf}{\backcite{Wolken2000}{{85}{3.3.2.2}{table.caption.29}}} +\@writefile{brf}{\backcite{Pedersen2014}{{85}{3.3.2.2}{table.caption.29}}} +\@writefile{brf}{\backcite{Pedersen2014}{{86}{3.3.2.2}{table.caption.29}}} +\@writefile{brf}{\backcite{Bakker2008}{{86}{3.3.2.2}{table.caption.29}}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.30}} +\newlabel{1a-f}{{3.19}{87}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}} \citation{Zundel1968} -\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.31}} -\newlabel{2a-f}{{3.20}{87}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.32}} -\newlabel{3a-f}{{3.21}{88}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}} -\@writefile{brf}{\backcite{Zundel1968}{{88}{3.3.2.2}{figure.caption.34}}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.33}} -\newlabel{4a-f}{{3.22}{89}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.34}} -\newlabel{5a-f}{{3.23}{90}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.35}} -\newlabel{6a-f}{{3.24}{91}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.31}} +\newlabel{1a-f-b3lyp}{{3.20}{88}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.32}} +\newlabel{2a-f}{{3.21}{89}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}} +\@writefile{brf}{\backcite{Zundel1968}{{89}{3.3.2.2}{figure.caption.35}}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.33}} +\newlabel{3a-f}{{3.22}{90}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.34}} +\newlabel{4a-f}{{3.23}{91}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{92}{figure.caption.35}} +\newlabel{5a-f}{{3.24}{92}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}} \citation{Molina2015,Molina2016} -\@writefile{brf}{\backcite{Molina2015}{{92}{3.3.2.2}{figure.caption.38}}} -\@writefile{brf}{\backcite{Molina2016}{{92}{3.3.2.2}{figure.caption.38}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.36}} +\newlabel{6a-f}{{3.25}{93}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}} +\@writefile{brf}{\backcite{Molina2015}{{93}{3.3.2.2}{figure.caption.39}}} +\@writefile{brf}{\backcite{Molina2016}{{93}{3.3.2.2}{figure.caption.39}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}} \FN@pp@footnotehinttrue -\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.36}} -\newlabel{7a-f}{{3.25}{93}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{94}{figure.caption.37}} -\newlabel{11a-f}{{3.26}{94}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.38}} -\newlabel{12a-f}{{3.27}{95}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.38}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.37}} +\newlabel{7a-f}{{3.26}{95}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{96}{figure.caption.38}} +\newlabel{11a-f}{{3.27}{96}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.38}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.28}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{97}{figure.caption.39}} +\newlabel{12a-f}{{3.28}{97}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.39}{}} \@setckpt{3/structure_stability}{ -\setcounter{page}{96} -\setcounter{equation}{3} +\setcounter{page}{98} +\setcounter{equation}{4} \setcounter{enumi}{5} \setcounter{enumii}{0} \setcounter{enumiii}{0} @@ -424,7 +441,7 @@ \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} -\setcounter{figure}{27} +\setcounter{figure}{28} \setcounter{table}{3} \setcounter{ContinuedFloat}{0} \setcounter{pp@next@reset}{1} diff --git a/thesis/3/structure_stability.tex b/thesis/3/structure_stability.tex index 135000f..00f1230 100644 --- a/thesis/3/structure_stability.tex +++ b/thesis/3/structure_stability.tex @@ -10,14 +10,13 @@ \graphicspath{{3/figures/EPS/}{3/figures/}} \fi -\chapter{Exploration of Structural and Energetic Properties} \label{chap:structure} +\chapter{Investigation of Structural and Energetic Properties} \label{chap:structure} This \textbf{third chapter} of my thesis merges two independent studies dealing with the determination of the low-energy isomers of ammonium/ammonia water clusters, (H$_2$O)$_{n}${NH$_4$}$^+$ and (H$_2$O)$_{n}$NH$_3$, and protonated uracil water clusters, (H$_2$O)$_{n}$UH$^+$. As highlighted in the general introduction of this thesis and in chapter~\ref{chap:comput_method}, performing global optimization of molecular clusters is not straightforward. The two studies presented in this chapter thus share a main common methodology which is the -combination of the \textbf{self-consistent-charge density functional based tight-binding} (SCC-DFTB) method for the efficient calculation of the potential -energy surfaces (PES) and the \textbf{parallel-tempering molecular dynamics} (PTMD) approach for their exploration. All low-energy isomers +combination of the \textbf{self-consistent-charge density functional based tight-binding} (SCC-DFTB) method for the efficient calculation of the PES and the \textbf{PTMD} approach for their exploration. All low-energy isomers reported in this chapter are discussed in terms of structure, relative energy and binding energy which are compared to the literature when available. Calculations at higher level of theory are also performed to refine the results obtained at the SCC-DFTB level or to validate the results it provides. In particular, in this chapter, an improve set of parameters is proposed to describe sp$^3$ nitrogen @@ -60,17 +59,17 @@ To identify low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1- selected from each replicas and further optimized at the SCC-DFTB level, which produced 4848 optimized geometries per cluster. For (H$_2$O)$_{4-10,20}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$} clusters, 500 geometries were periodically selected from each replicas leading to 20000 optimized geometries per cluster. For (H$_2$O)$_{20}${NH$_4$}$^+$, the initial structure used for the global -optimization process was the lowest-energy structure reported by J. Douady \textit{et al.}.\cite{Douady2009} The five lowest-energy +optimization process was the lowest-energy structure reported by J. Douady \textit{et al}.\cite{Douady2009} The five lowest-energy isomers among the 4848 or 20000 optimized geometries were further optimized using the MP2/Def2TZVP method. See below for the details on MP2/Def2TZVP calculations. \textbf{Detailed parameters for PTMD simulations of (H$_2$O)$_{1-7,11,12}$UH$^+$ clusters} are as follows. -40 replicas with temperatures rnaging linearly from 50 to 350 K were used. Each trajectory was 4 ns long, and the integration time step was 0.5 fs. +40 replicas with temperatures ranging linearly from 50 to 350 K were used. Each trajectory was 4 ns long, and the integration time step was 0.5 fs. A reasonable time interval for the PT exchanges was 2.5 ps. A Nos{\'e}-Hoover chain of five thermostats with frequencies of 800 cm$^{-1}$ was applied to achieve an exploration in the canonical ensemble.\cite{Nose1984M, Hoover1985} To avoid any spurious influence of the initial geometry on the PES exploration, three distinct PTMD simulations were carried out with distinct initial proton location: on the uracil in two cases and on a water molecule in the other one. In the former cases, I used two isomers u178 and u138 of UH$^+$ shown in Figure~\ref{uracil_s} as -the initial geometries.\cite{Wolken2000, Pedersen2014} 600 geometries per temperature were linearly selected along each PTMD simulation +the initial geometries.\cite{Wolken2000, Pedersen2014} 600 geometries per temperature were periodically selected along each PTMD simulation for subsequent geometry optimization leading to 72000 structures optimized at SCC-DFTB level. These structures were sorted in ascending energy order and checked for redundancy. 9, 23, 46, 31, 38, 45, 63, 20, and 29 structures were then selected for (H$_2$O)UH$^+$, (H$_2$O)$_{2}$UH$^+$, (H$_2$O)$_{3}$UH$^+$, (H$_2$O)$_{4}$UH$^+$, (H$_2$O)$_{5}$UH$^+$, (H$_2$O)$_{6}$UH$^+$, @@ -87,21 +86,19 @@ level. See below for the details on MP2/Def2TZVP calculations. \subsection{MP2 Geometry Optimizations, Relative and Binding Energies} -Some low-energy isomers obtained at the SCC-DFTB level were further optimized at the MP2 level of theory in combinationwith an all electron Def2TZVP basis-set.\cite{Weigend2005, Weigend2006} All calculations used a a tight criteria for geometry +Some low-energy isomers obtained at the SCC-DFTB level were further optimized at the MP2 level of theory in combinationwith an all electron Def2TZVP basis-set.\cite{Weigend2005, Weigend2006} All calculations used a tight criteria for geometry convergence and an ultrafine grid for the numerical integration. All MP2 calculations were performed with the Gaussian 09 package.\cite{GaussianCode} \textbf{Detailed parameters for (H$_2$O)$_{1-10,20}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}$NH$_3$ clusters.} Following SCC-DFTB optimizations, the five lowest-energy isomers of (H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}${NH$_3$} clusters were further optimized at the MP2/Def2TZVP level of theory. -In section~\ref{sec:ammoniumwater}, relatives energies with respect to the lowest-energy isomer of each -cluster are reported. Impact of zero-point vibrational energy (ZPVE) corrections on relative +In section~\ref{sec:ammoniumwater}, relative energy with respect to the lowest-energy isomer of each +cluster will be shown. Impact of zero-point vibrational energy (ZPVE) corrections on relative energies were evaluated at MP2/Def2TZVP level. To evaluate the strength of water-ammonium and water-ammonia -interactions and to assess the accuracy of the SCC-DFTB method, binding energies are also reported. +interactions and to assess the accuracy of the SCC-DFTB method, binding energies are also calculated. Two distinct approaches were used to calculate binding energies. The first one considers only the binding -energy between the water cluster as a whole and the impurity, {NH$_4$}$^+$ or NH$_3$, while the second one -considers the binding energy between all the molecules of the cluster. In both cases, the geometry of the molecules -is the one found in the optimized cluster. Using these two methods, relative binding energies (E$_{bind.}$(SCC-DFTB)-E$_{bind.}$(MP2/Def2TZVP)) +energy between the water cluster as a whole and the impurity, {NH$_4$}$^+$ or NH$_3$ that the corresponding binding energy is denoted as $E_{bind.}^{whole}$, while the second one considers the binding energy between all the molecules of the cluster corresponding to $E_{bind.}^{sep.}$. In both cases, the geometry of the molecules is the one found in the optimized cluster. Using these two methods, relative binding energies (E$_{bind.}$(SCC-DFTB)-E$_{bind.}$(MP2/Def2TZVP)) $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ were obtained. For all binding energies of (H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}${NH$_3$} clusters calculated at MP2/Def2TZVP level, basis set superposition errors (BSSE) correction was considered by using the counterpoise method of Boys and @@ -115,17 +112,12 @@ of clusters (H$_2$O)$_{2-7, 11, 12}$UH$^+$ are discussed in section~\ref{structu \subsection{Structure Classification} -For clusters (H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}${NH$_3$}, -\textquotedblleft n-x\textquotedblright and \textquotedblleft n$^\prime$-x\textquotedblright labels are used to distinguish between the -(H$_2$O)$_{n}${NH$_4$}$^+$ and (H$_2$O)$_{n}${NH$_3$} reported isomers, respectively, obtained at the SCC-DFTB level. For comparison, -\textquotedblleft n-x\textquotedblright and \textquotedblleft n$^\prime$-x\textquotedblright isomers are also optimized at the MP2/Def2TZVP + +To classify clusters (H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}${NH$_3$}, \textquotedblleft n-x\textquotedblright and \textquotedblleft n$^\prime$-x\textquotedblright ~labels are used to distinguish between the reported (H$_2$O)$_{n}${NH$_4$}$^+$ and (H$_2$O)$_{n}${NH$_3$} isomers, respectively, obtained at the SCC-DFTB level. In these notations, n and n$^\prime$ denote the number of water molecules in the ammonium and ammonia water clusters, respectively. x is an alphabetic character going from a to e that differentiates between the five low-energy isomers reported for each cluster in ascending energy order, \textit{i.e.} a designates the lowest-energy isomer. +For comparison, \textquotedblleft n-x\textquotedblright and \textquotedblleft n$^\prime$-x\textquotedblright isomers are also optimized at the MP2/Def2TZVP level. In that case, the resulting structures are referred to as \textquotedblleft n-x$^*$\textquotedblright and \textquotedblleft n$^\prime$-x$^*$\textquotedblright~ to distinguish them more easily although they display the same general topology as \textquotedblleft n-x\textquotedblright and \textquotedblleft n$^\prime$-x\textquotedblright isomers. -In these notations, n and n$^\prime$ denote the number of water molecules in the ammonium and ammonia water clusters, respectively. -x is an alphabetic character going from a to e that differentiates between the five low-energy isomers reported for each cluster in ascending -energy order, \textit{i.e.} a designates the lowest-energy isomer. - %\section{\label{sec:ammoniumwater}The structure and energetics properties study of ammonium or ammonia including water clusters} \section{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters} \label{sec:ammoniumwater} @@ -145,8 +137,7 @@ also found that even a small amount of atmospherically relevant ammonia can incr The significance of ammonium and ammonia water clusters have thus motivated a large amount of experimental and theoretical studies during the past decades.\cite{Perkins1984, Herbine1985, Stockman1992, Hulthe1997, Wang1998, Chang1998, Jiang1999, Hvelplund2010, Douady2009, Douady2008, Morrell2010, Bacelo2002, Galashev2013} As a few examples, in 1984, (H$_2$O)$_{2}${NH$_4$}$^+$ was identified using mass spectrometry by M. D. Perkin \textit{et al.}\cite{Perkins1984} In 1997, Stenhagen -and co-workers studied the {(H$_2$O)$_{20}$H$_3$O}$^+$ and (H$_2$O)$_{20}${NH$_4$}$^+$ clusters and found that both species display a similar -structure.\cite{Hulthe1997} P. Hvelplund \textit{et al.} later reported a combined experimental and theoretical study devoted to protonated mixed ammonia/water +and co-workers studied the {(H$_2$O)$_{20}$H$_3$O}$^+$ and (H$_2$O)$_{20}${NH$_4$}$^+$ clusters and found that both species display similar structures.\cite{Hulthe1997} P. Hvelplund \textit{et al.} later reported a combined experimental and theoretical study devoted to protonated mixed ammonia/water which highlighted the idea that small protonated mixed clusters of water and ammonia contain a central {NH$_4$}$^+$ core.\cite{Hvelplund2010} %The (H$_2$O)NH$_3$ complex has been experimentally investigated via radio frequency and microwave spectra by Herbine \textit{et al.}, and via microwave and tunable far-infrared spectroscopy by Stockman and co-workers.\cite{Herbine1985, Stockman1992} Theoretical calculations devoted to ammonium and ammonia water clusters have also been extensively conducted.\cite{Lee1996, Chang1998, @@ -180,7 +171,7 @@ clusters is then performed which allows to report a number of low-energy isomers are further optimized at the MP2/Def2TZVP level of theory to confirm they are low-energy structures of the PES and to rationalize the difference in relative energy between both methods. A detailed description of the reported low-energy isomers is then provided as well as comparisons with the literature. The heat capacity curve of (H$_2$O)$_{20}${NH$_4$}$^+$ is also obtained at the SCC-DFTB level and compared to previously published -simulations. Some conclusions are finally presented. A very small part of this work has been published in 2019 in a review in\textit{Molecular Simulation}.\cite{Simon2019} +simulations. Some conclusions are finally presented. A very small part of this work has been published in 2019 in a review in \textit{Molecular Simulation}.\cite{Simon2019} A full paper devoted to this work is in preparation. \subsection{Results and Discussion} @@ -190,9 +181,9 @@ A full paper devoted to this work is in preparation. In order to define the best SCC-DFTB parameter to model ammonia and ammonium water clusters, I have tested various sets of corrections. Each correction involves two modifications of the potential, the first one is the CM3 charge parameter D$_{NH}$ and the second one is the multiplying factor, noted $xNH$, applied to the NH integrals in the Slater-Koster tables. So a given set is noted D$_{NH}$/$xNH$. Two sets of -corrections have provided satisfactory results, 0.12/1.16 and 0.14/1.28. Figure~\ref{fig:E_nh4} and ~\ref{fig:E_nh3} present dissociation -curves obtained at the MP2/Def2TZVP, MP2/Def2TZVP with BSSE correction, original SCC-DFTB, SCC-DFTB 0.14/1.28 and SCC-DFTB -0.12/1.16 levels of theory. These curves are obtained using the same set of geometries regardless of the method applied to calculate +corrections have provided satisfactory results, 1.16/0.12 and 1.28/0.14. Figure~\ref{fig:E_nh4} and ~\ref{fig:E_nh3} present dissociation +curves obtained at the MP2/Def2TZVP, MP2/Def2TZVP with BSSE correction, original SCC-DFTB, SCC-DFTB 1.28/0.14 and SCC-DFTB +1.16/0.12 levels of theory. These curves are obtained using the same set of geometries regardless of the method applied to calculate the binding energies. They are obtained from the MP2/Def2TZVP optimized structures in which the distance between the water and the ammonium/ammonia was shifted along the N--O vector, all other geometrical parameters being kept fixed. @@ -200,7 +191,7 @@ ammonium/ammonia was shifted along the N--O vector, all other geometrical parame \includegraphics[width=0.6\linewidth]{E-distance-nh4-w.png} \centering \caption{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), - original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.} + original SCC-DFTB (plain red), SCC-DFTB (1.28/0.14) (dotted red) and SCC-DFTB (1.16/0.12) (dashed red) levels of theory.} \label{fig:E_nh4} \end{figure} @@ -208,22 +199,22 @@ ammonium/ammonia was shifted along the N--O vector, all other geometrical parame \includegraphics[width=0.6\linewidth]{E-distance-nh3-w.png} \centering \caption{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), - original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.} + original SCC-DFTB (plain red), SCC-DFTB (1.28/0.14) (dotted red) and SCC-DFTB (1.16/0.12) (dashed red) levels of theory.} \label{fig:E_nh3} \end{figure} From Figure~\ref{fig:E_nh4}, the five curves display the same trends with a minimum located at almost the same N---O distance. At the curve minimum, -binding energies vary between -25.57 and -21,07~kcal.mol$^{-1}$ at the original SCC-DFTB and SCC-DFTB 0.14/1.28 levels, respectively. The binding -energy obtained at the SCC-DFTB 0.12/1.16 level is the closest to that obtained at MP2/Def2TZVP level with BSSE correction with a binding energy difference of -only 0.47~kcal.mol$^{-1}$. The SCC-DFTB 0.14/1.28 curve is also very close with a difference in binding energy only 0.16~kcal.mol$^{-1}$ higher. It is +binding energies vary between -25.57 and -21,07~kcal.mol$^{-1}$ at the original SCC-DFTB and SCC-DFTB 1.28/0.14 levels, respectively. The binding +energy obtained at the SCC-DFTB 1.16/0.12 level is the closest to that obtained at MP2/Def2TZVP level with BSSE correction with a binding energy difference of +only 0.47~kcal.mol$^{-1}$. The SCC-DFTB 1.28/0.14 curve is also very close with a difference in binding energy only 0.16~kcal.mol$^{-1}$ higher. It is worth mentioning that both sets of corrections lead to improved results as compared to the original SCC-DFTB parameters which leads to a too low binding energy as compared to MP2/Def2TZVP level with BSSE correction. Also the position of the minimum is more shifted at the original SCC-DFTB level (2.64~\AA) than with corrections (2.73~\AA). So from structural and energetic point of views, both sets of corrections are satisfactory. From Figure~\ref{fig:E_nh3}, the five curves display significant differences. This effect is accentuated by smaller binding energy values: they -vary from -3.82 to -7,39~kcal.mol$^{-1}$ at the original SCC-DFTB and MP2/Def2TZVP levels, respectively, at the minimum of the curves. The binding -energy obtained at the SCC-DFTB 0.12/1.16 level is the closest to that obtained at MP2/Def2TZVP level with BSSE correction with a binding energy -difference of only 0.01~kcal.mol$^{-1}$. The SCC-DFTB 0.14/1.28 curve is also rather close with a difference in binding energy only 1.3~kcal.mol$^{-1}$ +vary from -3.82 to -7.39~kcal.mol$^{-1}$ at the original SCC-DFTB and MP2/Def2TZVP levels, respectively, at the minimum of the curves. The binding +energy obtained at the SCC-DFTB 1.16/0.12 level is the closest to that obtained at MP2/Def2TZVP level with BSSE correction with a binding energy +difference of only 0.01~kcal.mol$^{-1}$. The SCC-DFTB 1.28/0.14 curve is also rather close with a difference in binding energy of only 1.3~kcal.mol$^{-1}$ higher. Here also, both sets of corrections lead to improved results as compared to the original SCC-DFTB parameters. The position of the minimum is also well reproduced by the corrected potentials. In contrast to (H$_2$O){NH$_4$}$^+$, the shape of the curves for (H$_2$O){NH$_3$} obtained at the SCC-DFTB level differs significantly from those obtained at MP2 level. Vibrational frequencies calculated at the SCC-DFTB level for this systems @@ -232,7 +223,7 @@ are therefore expected to be inacurate. It is worth mentioning that the large di binding energy. Another very important point when comparing the original SCC-DFTB potential and the corrected potentials, is the structure obtained for the -(H$_2$O){NH$_4$}$^+$ dimer. Figure~\ref{dimers} compares the structure obtained from geometry optimization at the SCC-DFTB 0.14/1.28 +(H$_2$O){NH$_4$}$^+$ dimer. Figure~\ref{dimers} compares the structure obtained from geometry optimization at the SCC-DFTB 1.28/0.14 and original SCC-DFTB levels. The N-H covalent bond involved in the hydrogen bond is longer with the original potential while the N---O distance is smaller by 0.14~\AA. This is reminiscent of the too low proton affinity of {NH$_4$}$^+$ predicted by the original SCC-DFTB potential. This discrepancy has been previously highlighted in other studies,\cite{Winget2003,Gaus2013para} and makes this potential unusable in any @@ -244,34 +235,34 @@ realistic molecular dynamics simulation as it leads to a spurious deprotonation. \begin{figure}[h!] \includegraphics[width=0.3\linewidth]{dimers.png} \centering - \caption{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.} + \caption{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 1.28/0.14 (right) and original SCC-DFTB (left) levels.} \label{dimers} \end{figure} -Figures~\ref{fig:E_nh4} and ~\ref{fig:E_nh3} show that SCC-DFTB 0.12/1.16 better describe both (H$_2$O){NH$_3$} and +Figures~\ref{fig:E_nh4} and ~\ref{fig:E_nh3} show that SCC-DFTB 1.16/0.12 better describe both (H$_2$O){NH$_3$} and (H$_2$O){NH$_4$}$^+$ dissociation curves. Furthermore, as (H$_2$O){NH$_3$} is characterized by a much lower binding energy than (H$_2$O){NH$_4$}$^+$, an error of the order of $\sim$1.0~kcal.mol$^{-1}$ is more likely to play a significant role for ammonia than ammonium containing species. All the following discussion therefore involve the - SCC-DFTB 0.12/1.16 potential. + SCC-DFTB 1.16/0.12 potential. \subsubsection{Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}} -As a first test case for the application of the SCC-DFTB 0.14/1.28 potential is the study of small ammonium and ammonia water clusters: +As a first test case for the application of the SCC-DFTB 1.28/0.14 potential is the study of small ammonium and ammonia water clusters: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}. Due to the limited number of low-energy isomers for these species, we only consider the lowest-energy isomer of (H$_2$O)$_{1-2}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} and the two lowest-energy isomers for (H$_2$O)$_{3}${NH$_4$}$^+$. As displayed in Figure~\ref{fig:nh3-nh4-1w} and\ref{fig:nh3-nh4-2-3w}, the reported low-energy isomers 1-a, 1$^\prime$-a, 2-a, 2$^\prime$-a, 3-a, 3-b, and -3$^\prime$ display a structure very similar to those obtained at the MP2/Def2TZVP level (1-a$^*$, 1$^\prime$-a$^*$, 2-a$^*$, 2$^\prime$-a$^*$, 3-a$^*$, +3$^\prime$ display structures very similar to those obtained at the MP2/Def2TZVP level (1-a$^*$, 1$^\prime$-a$^*$, 2-a$^*$, 2$^\prime$-a$^*$, 3-a$^*$, 3-b$^*$ and 3$^\prime$-a$^*$). Indeed, although differences in bond lengths are observed, they are rather small. In terms of energetics, -From en energetic point of view, it is interesting to first look at the relative energy between the two reported isomers of +From an energetic point of view, it is interesting to first look at the relative energy between the two reported isomers of (H$_2$O)$_{3}${NH$_4$}$^+$. Isomer 3-b is 2.12~kcal·mol\textsuperscript{-1} higher than 3-a at the SCC-DFTB level. At the MP2/Def2TZVP level, 3-b is 0.30~kcal·mol\textsuperscript{-1} lower than 3-a when ZPVE is not considered while it is 1.21 kcal·mol\textsuperscript{-1} higher when it is considered. In comparison, in the experimental results by H. Chang and co-workers, 3-a is more stable than 3-b.\cite{Wang1998, Jiang1999} The authors also complemented their -measurements by theoretical calculations that show that at the B3LYP/6-31+G(d) level, 3-a is higher than 3-b but. In +measurements by theoretical calculations which show that at the B3LYP/6-31+G(d) level, 3-a is higher than 3-b. In contrast, at the MP2/6-31+G(d) level corrected with ZPVE, the energy of 3-a is lower than that of 3-b while it is inverted if ZPVE is taken into account.\cite{Wang1998, Jiang1999} Additionally, F. Spiegelman and co-workers, conducted a global Monte Carlo optimizations with an intermolecular polarizable potential that lead to 3-a as lowest-energy isomer.\cite{Douady2008} @@ -326,8 +317,8 @@ has an accuracy close to other \textit{ab initio} methods which confirms its app As listed in Table~\ref{reBindE-small}, the relative binding energies $\Delta E_{bind.}^{whole}$ or $\Delta E_{bind.}^{sep.}$ of (H$_2$O){NH$_4$}$^+$ and (H$_2$O){NH$_3$} are 1.21 and -1.17 kcal·mol\textsuperscript{-1}, respectively, which again highlights that SCC-DFTB is in agreement with MP2/Def2TZVP. For (H$_2$O){NH$_3$}, the negative value -show that MP2/Def2TZVP binding energy is smaller than the SCC-DFTB value. This is inverse to what is shown in Figure~\ref{fig:E_nh3} -and results from structural reorganization after optimization. All other values of Table~\ref{reBindE-small} are equal of smaller than these +shows that MP2/Def2TZVP binding energy is smaller than the SCC-DFTB value. This is inverse to what is shown in Figure~\ref{fig:E_nh3} +and results from structural reorganization after optimization. All other values of Table~\ref{reBindE-small} are equal or smaller than these values, whether considering $\Delta E_{bind.}^{whole}$ or $\Delta E_{bind.}^{sep.}$, which again demonstrates that the presently proposed SCC-DFTB potential provides results in line with reference MP2/Def2TZVP calculations. @@ -344,7 +335,7 @@ The five lowest-energy isomers of (H$_2$O)$_{4}${NH$_4$}$^+$ are depicted in Fig from the global SCC-DFTB optimization and also the lowest-energy configuration after optimization at MP2/Def2TZVP level with ZPVE corrections. This result is consistent with previous computational studies\cite{Wang1998, Jiang1999, Douady2008, Lee2004, Pickard2005} and the experimental studies by H. Chang and co-workers.\cite{Chang1998, Wang1998} Isomer 4-a displays four hydrogen bonds around the ionic -center which lead to no dangling N-H bonds. Other isomers of comparable stability are displayed in Figure~\ref{fig:nh4-4-6w} +center which lead to no dangling N-H bonds. Other isomers of comparable stability are displayed in Figure~\ref{fig:nh4-4-6w}. The energy ordering of 4-a to 4-e at SCC-DFTB level is consistent with that at MP2/Def2TZVP level with ZPVE correction, although they are slightly higher by$\sim$2.0 kcal.mol$^{-1}$. Isomer 4-c was not reported in H. Chang’s study,\cite{Jiang1999} and the corresponding energy ordering of the five lowest-energy isomers was the same as ours which certainly results from the use of a different basis set. @@ -413,11 +404,11 @@ For cluster (H$_2$O)$_{5}${NH$_4$}$^+$, the five low-energy isomers are illustra When all the water molecules are considered as a whole part, the obtained binding energy has a deviation due to the interaction of water molecules. As listed in Table \ref{reBindE}, for isomers 5-a to 5-e, the relative binding energy $\Delta E_{bind.}^{whole}$ are -1.62, 0.72, 0.69, -1.08 and -2.08 kcal·mol\textsuperscript{-1} and $\Delta E_{bind.}^{sep.}$ are -0.56, 0.48, 0.55, -0.78 and 0.88 kcal·mol\textsuperscript{-1}, respectively. The $\Delta E_{bind.}^{whole}$ is bigger than corresponding $\Delta E_{bind.}^{sep.}$, which indicates it is better to calculate the binding energy with considering the water molecules separately. The $\Delta E_{bind.}^{sep.}$ is less than 1.00 kcal·mol\textsuperscript{-1} for the five low-energy isomers of cluster (H$_2$O)$_{5}${NH$_4$}$^+$, so the SCC-DFTB method is good enough compared to MP2/Def2TZVP with BSSE correction for cluster (H$_2$O)$_{5}${NH$_4$}$^+$. -For cluster (H$_2$O)$_{6}${NH$_4$}$^+$, no N-H bond is exposed in the five low-energy isomers displayed in Figure \ref{fig:nh4-4-6w}. 6-a is the first low-energy isomer at SCC-DFTB level, which is a symmetric double-ring species connected together by eight hydrogen bonds making it a robust structure. 6-a is also the first low-energy isomer obtained using the Monte Carlo optimizations with the intermolecular polarizable potential.\cite{Douady2008} 6-d is the first low-energy isomer at MP2/Def2TZVP level with ZPVE correction but it is only 0.22 kcal·mol\textsuperscript{-1} lower than 6-a. In Shields’s results, 6-d is also the first low-energy isomer at MP2/aug-cc-pVDZ level.\cite{Morrell2010} In H. Chang’s study, 6-b with a three-coordinated H2O molecule is the first low-energy isomer for cluster (H$_2$O)$_{6}${NH$_4$}$^+$ at B3LYP/6-31+G(d) level.\cite{Wang1998} 6-b is also the first low-energy isomer at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution.\cite{Douady2008} The energy of 6-b is only 0.14 kcal·mol\textsuperscript{-1} higher than that of 6-a at MP2/Def2TZVP level with ZPVE correction. The energies of 6-a, 6-b and 6-d are very close at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels, which implies it is easy to have a transformation among 6-a, 6-b and 6-d. It shows SCC-DFTB is good to find the low-energy isomers of cluster (H$_2$O)$_{6}${NH$_4$}$^+$ compared to MP2 and B3LYP methods. +For cluster (H$_2$O)$_{6}${NH$_4$}$^+$, no N-H bond is exposed in the five low-energy isomers displayed in Figure \ref{fig:nh4-4-6w}. 6-a is the first low-energy isomer at SCC-DFTB level, which is a symmetric double-ring species connected together by eight hydrogen bonds making it a robust structure. 6-a is also the first low-energy isomer obtained using the Monte Carlo optimizations with the intermolecular polarizable potential.\cite{Douady2008} 6-d is the first low-energy isomer at MP2/Def2TZVP level with ZPVE correction but it is only 0.22 kcal·mol\textsuperscript{-1} lower than 6-a. In Shields’s results, 6-d is also the first low-energy isomer at MP2/aug-cc-pVDZ level.\cite{Morrell2010} In H. Chang’s study, 6-b with a three-coordinated H$_2$O molecule is the first low-energy isomer for cluster (H$_2$O)$_{6}${NH$_4$}$^+$ at B3LYP/6-31+G(d) level.\cite{Wang1998} 6-b is also the first low-energy isomer at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution.\cite{Douady2008} The energy of 6-b is only 0.14 kcal·mol\textsuperscript{-1} higher than that of 6-a at MP2/Def2TZVP level with ZPVE correction. The energies of 6-a, 6-b and 6-d are very close at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels, which implies it is easy to have a transformation among 6-a, 6-b and 6-d. It shows SCC-DFTB is good to find the low-energy isomers of cluster (H$_2$O)$_{6}${NH$_4$}$^+$ compared to MP2 and B3LYP methods. - As shown in Table \ref{reBindE}, for isomers 6-a to 6-e, the relative binding energy $\Delta E_{bind.}^{whole}$ are -1.71, -1.14, -2.06, -2.90 and -1.18 kcal·mol\textsuperscript{-1} and the $\Delta E_{bind.}^{sep.}$ are -0.38, -0.76, 0.27, -1.06 and -0.60 kcal·mol\textsuperscript{-1}, respectively. It indicates the binding energy are very close at SCC-DFTB and MP2/Def2TZVP with BSSE correction levels when water molecules are calculated separately. The $\Delta E_{bind.}^{whole}$ is bigger than corresponding $\Delta E_{bind.}^{sep.}$ because of the interaction of water molecules when all the water molecules are considered as a whole part. + As shown in Table \ref{reBindE}, for isomers 6-a to 6-e, the relative binding energy $\Delta E_{bind.}^{whole}$ are -1.71, -1.14, -2.06, -2.90 and -1.18 kcal·mol\textsuperscript{-1} and the $\Delta E_{bind.}^{sep.}$ are -0.38, -0.76, 0.27, -1.06 and -0.60 kcal·mol\textsuperscript{-1}, respectively. It indicates the binding energies are very close at SCC-DFTB and MP2/Def2TZVP with BSSE correction levels when water molecules are calculated separately. The $\Delta E_{bind.}^{whole}$ is bigger than corresponding $\Delta E_{bind.}^{sep.}$ because of the interaction of water molecules when all the water molecules are considered as a whole part. -For cluster (H$_2$O)$_{7}${NH$_4$}$^+$, the five low-energy isomers are shown in Figure \ref{fig:nh4-7-10w}. The ion core {NH$_4$}$^+$ has a complete solvation shell in isomers 7-a to 7-e. 7-a and 7-b with three three-coordinated H$_2$O molecules are the first low-energy isomers at SCC-DFTB level. In F. Spiegelman’s study, 7-a is also the first low-energy isomer using the Monte Carlo optimizations with the intermolecular polarizable potential.\cite{Douady2008} 7-c is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level including three three-coordinated water molecules. 7-c is also the first low-energy isomer at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution.\cite{Douady2008} 7-e is the first low-energy isomer with three three-coordinated H$_2$O molecules at MP2/aug-cc-pVDZ level in G. Shields’s study.\cite{Morrell2010} As illustrated in Figure \ref{fig:nh4-7-10w}, the energy difference between 7-a, 7-c and 7-e at SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels are less than 0.61 kcal·mol\textsuperscript{-1} so it is possible that the first low-energy iosmer is different when different method are applied. The energy of 7-a and 7-b are the same at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels and their structures are similar, which indicates it is easy for them to transform to each other. The results for cluster (H$_2$O)$_{7}${NH$_4$}$^+$ verify the accuracy of SCC-DFTB approach. +For cluster (H$_2$O)$_{7}${NH$_4$}$^+$, the five low-energy isomers are shown in Figure \ref{fig:nh4-7-10w}. The ion core {NH$_4$}$^+$ has a complete solvation shell in isomers 7-a to 7-e. 7-a and 7-b with three three-coordinated H$_2$O molecules are the first low-energy isomers at SCC-DFTB level. In F. Spiegelman’s study, 7-a is also the first low-energy isomer using the Monte Carlo optimizations with the intermolecular polarizable potential.\cite{Douady2008} 7-c is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level including three three-coordinated water molecules. 7-c is also the first low-energy isomer at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution.\cite{Douady2008} 7-e is the first low-energy isomer with three three-coordinated H$_2$O molecules at MP2/aug-cc-pVDZ level in G. Shields’s study.\cite{Morrell2010} As illustrated in Figure \ref{fig:nh4-7-10w}, the energy difference between 7-a, 7-c and 7-e at SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels are less than 0.61 kcal·mol\textsuperscript{-1} so it is possible that the first low-energy isomer is different when different method are applied. The energy of 7-a and 7-b are the same at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels and their structures are similar, which indicates it is easy for them to transform to each other. The results for cluster (H$_2$O)$_{7}${NH$_4$}$^+$ verify the accuracy of SCC-DFTB approach. \begin{figure}[h!] \includegraphics[width=1.0\linewidth]{nh4-7-10w.png} @@ -428,22 +419,22 @@ For cluster (H$_2$O)$_{7}${NH$_4$}$^+$, the five low-energy isomers are shown in As shown in Table \ref{reBindE}, for isomers 7-a to 7-e, the relative binding energy $\Delta E_{bind.}^{whole}$ are -2.95, -2.92, -2.17, -1.28 and -3.22 kcal·mol\textsuperscript{-1} and the $\Delta E_{bind.}^{sep.}$are only -0.39, -0.38, 0.09, -1.35 and -2.27 kcal·mol\textsuperscript{-1}, respectively. It indicates the binding energies of 7-a to 7-e at SCC-DFTB agree well especially for 7-a to 7-d with those at MP2/Def2TZVP with BSSE correction level when water molecules are calculated separately. When all the water molecules are regarded as a whole part, the results of SCC-DFTB are not as good as those of the MP2 with BSSE method. -For cluster (H$_2$O)$_{8}${NH$_4$}$^+$, 8-a to 8-e are the five low-energy isomers displayed in Figure \ref{fig:nh4-7-10w}. In 8-a to 8-d, the ion core {NH$_4$}$^+$ has a complete solvation shell. 8-a is the first low-energy isomer in our calculation at SCC-DFTB level. In F. Spiegelman’s study, 8-b is the first low-energy isomer at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution.\cite{Douady2008} The structures of 8-a and 8-b are very similar and the energy differences are only 0.09 and 0.18 kcal·mol\textsuperscript{-1} at SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels, respectively. 8-d with seven three-coordinated H$_2$O molecules in the cube frame is the first low-energy isomer in our calculation at MP2/Def2TZVP with ZPVE correction level, which is consistent with F. Spiegelman’s results obtained using Monte Carlo optimizations.\cite{Douady2008} In 8-e, {NH$_4$}$^+$ has an exposed N-H bond and it also has seven three-coordinated H$_2$O molecules in its cage frame. The energies of isomers 8-a to 8-e are very close calculated using SCC-DFTB and MP2 methods, so it’s possible that the energy order will change when different methods or basis sets are applied. The results certificate the SCC-DFTB is good enough to find the low-energy isomers for cluster (H$_2$O)$_{8}${NH$_4$}$^+$. +For cluster (H$_2$O)$_{8}${NH$_4$}$^+$, 8-a to 8-e are the five low-energy isomers displayed in Figure \ref{fig:nh4-7-10w}. In 8-a to 8-d, the ion core {NH$_4$}$^+$ has a complete solvation shell. 8-a is the first low-energy isomer in our calculation at SCC-DFTB level. In F. Spiegelman’s study, 8-b is the first low-energy isomer at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution.\cite{Douady2008} The structures of 8-a and 8-b are very similar and the energy differences are only 0.09 and 0.18 kcal·mol\textsuperscript{-1} at SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels, respectively. 8-d with seven three-coordinated H$_2$O molecules in the cube frame is the first low-energy isomer in our calculation at MP2/Def2TZVP with ZPVE correction level, which is consistent with F. Spiegelman’s results obtained using Monte Carlo optimizations.\cite{Douady2008} In 8-e, {NH$_4$}$^+$ has an exposed N-H bond and it also has seven three-coordinated H$_2$O molecules in its cage frame. The energies of isomers 8-a to 8-e are very close calculated using SCC-DFTB and MP2 methods, so it’s possible that the energy order will change when different methods or basis sets are applied. The results certificate the SCC-DFTB is good enough to find the low-energy isomers for cluster (H$_2$O)$_{8}${NH$_4$}$^+$. As shown in Table \ref{reBindE}, for isomers 8-a to 8-e, the relative binding energy $\Delta E_{bind.}^{whole}$are -2.20, -1.61, -3.71, -2.43 and -0.55 kcal·mol\textsuperscript{-1}, respectively and the biggest $\Delta E_{bind.}^{sep.}$ is -2.01 kcal·mol\textsuperscript{-1}. It shows the binding energies at SCC-DFTB level agree well with those at MP2/Def2TZVP with BSSE correction level when water molecules are calculated separately. From these results, when all the water molecules are considered as a whole part, the results of SCC-DFTB didn’t agree well with those of the MP2 with BSSE correction method. For cluster (H$_2$O)$_{9}${NH$_4$}$^+$, the five low-energy structures of (H$_2$O)$_{9}${NH$_4$}$^+$ are illustrated in Figure \ref{fig:nh4-7-10w}. 9-a with seven three-coordinated H$_2$O molecules in the cage frame is the first low-energy isomer at SCC-DFTB level. 9-a is also the first low-energy structure at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution in F. Spiegelman’s study.\cite{Douady2008} 9-b with one N-H bond exposed in {NH$_4$}$^+$ is the second low-energy isomer whose energy is only 0.22 kcal·mol\textsuperscript{-1} higher than that of 9-a in the results of SCC-DFTB calculation. 9-b is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level in our calculation and it is also the first low-energy isomer at B3LYP/6-31++G(d,p) level in F. Spiegelman’s study.\cite{Douady2008} 9-c, 9-d and 9-e have a complete solvation shell. All the water molecules are connected together in the structure of 9-c. The structures of 9-a and 9-e are very similar and their energy difference is only 0.11 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction level. The energy difference of isomers 9-a to 9-e is less than 0.51 kcal·mol\textsuperscript{-1} at SCC-DFTB and less than 0.86 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction, so it’s easy for them to transform to each other making it possible for the variation of the energy order. The results certificate the SCC-DFTB is good enough to find the low-energy isomers for cluster (H$_2$O)$_{9}${NH$_4$}$^+$. As shown in Table \ref{reBindE}, for isomers 9-a to 9-e, the relative binding energy $\Delta E_{bind.}^{whole}$ are -2.20, -1.61, -3.71, -2.43 and -0.55 kcal·mol\textsuperscript{-1} and the relative binding energy $\Delta E_{bind.}^{sep.}$ are -1.39, -0.84, -0.85, -1.78, and -0.91 kcal·mol\textsuperscript{-1}, respectively. -It is obvious that the absolute values of $\Delta E_{bind.}^{whole}$ are bigger than the corresponding $\Delta E_{bind.}^{sep.}$. It shows the binding energies at SCC-DFTB level agree well with those at MP2/Def2TZVP with BSSE correction level when water molecules are calculated separately. According to the results, When all the water molecules are considered as a whole part, the results of SCC-DFTB didn’t agree well with those of the MP2 with BSSE correction method. +It is obvious that the absolute values of $\Delta E_{bind.}^{whole}$ are bigger than the corresponding $\Delta E_{bind.}^{sep.}$. It shows the binding energies at SCC-DFTB level agree well with those at MP2/Def2TZVP with BSSE correction level when water molecules are calculated separately. According to the results, when all the water molecules are considered as a whole part, the results of SCC-DFTB didn’t agree well with those of the MP2 with BSSE correction method. -For cluster (H$_2$O)$_{10}${NH$_4$}$^+$, 10-a to 10-e are the five low-energy isomers in which the ion core {NH$_4$}$^+$ has a complete solvation shell shown in Figure \ref{fig:nh4-7-10w}. 10-a with eight three-coordinated H2O molecules in its big cage structure is the first low-energy isomer calculated using the SCC-DFTB approach. 10-a is also the first low-energy structure at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution in F. Spiegelman’s study.\cite{Douady2008} In 10-b and 10-e, there is a four-coordinated H$_2$O molecule in their cage structures. 10-d is the first low-energy structure in our calculation results using MP2/Def2TZVP with ZPVE correction, which is also the first low-energy isomer at B3LYP/6-31++G(d,p) level in F. Spiegelman’s study.\cite{Douady2008} The energy of 10-b is only 0.17 kcal·mol\textsuperscript{-1} higher than that of 10-a at SCC-DFTB level, and it is only 0.31 kcal·mol\textsuperscript{-1} lower than that of 10-a at MP2/Def2TZVP with ZPVE correction level. The energy of isomers 10-a to 10-e are very close at both SCC-DFTB and MP2/Def2TZVP levels, which indicates the results with SCC-DFTB agree well with those using MP2/Def2TZVP method for cluster (H$_2$O)$_{10}${NH$_4$}$^+$. +For cluster (H$_2$O)$_{10}${NH$_4$}$^+$, 10-a to 10-e are the five low-energy isomers in which the ion core {NH$_4$}$^+$ has a complete solvation shell shown in Figure \ref{fig:nh4-7-10w}. 10-a with eight three-coordinated H$_2$O molecules in its big cage structure is the first low-energy isomer calculated using the SCC-DFTB approach. 10-a is also the first low-energy structure at B3LYP/6-31++G(d,p) level including the harmonic ZPE contribution in F. Spiegelman’s study.\cite{Douady2008} In 10-b and 10-e, there is a four-coordinated H$_2$O molecule in their cage structures. 10-d is the first low-energy structure in our calculation results using MP2/Def2TZVP with ZPVE correction, which is also the first low-energy isomer at B3LYP/6-31++G(d,p) level in F. Spiegelman’s study.\cite{Douady2008} The energy of 10-b is only 0.17 kcal·mol\textsuperscript{-1} higher than that of 10-a at SCC-DFTB level, and it is only 0.31 kcal·mol\textsuperscript{-1} lower than that of 10-a at MP2/Def2TZVP with ZPVE correction level. The energy of isomers 10-a to 10-e are very close at both SCC-DFTB and MP2/Def2TZVP levels, which indicates the results with SCC-DFTB agree well with those using MP2/Def2TZVP method for cluster (H$_2$O)$_{10}${NH$_4$}$^+$. As shown in Table \ref{reBindE}, for isomers 10-a to 10-e, the relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ are not as small as the corresponding ones of clusters (H$_2$O)$_{1-9}${NH$_4$}$^+$, which implies the error of the relative binding energy increases with the number of water molecules in the cluster. The whole results of $\Delta E_{bind.}^{whole}$ are still bigger than those of $\Delta E_{bind.}^{sep.}$ for isomers 10-a to 10-e. \subsubsection{Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters} -For cluster (H$_2$O)$_{4}${NH$_3$}, the five low-energy structures 4$^\prime$-a to 4$^\prime$-e are displayed in Figure \ref{fig:nh3-4-7w}. 4$^\prime$-a with three N-H bonds exposed is the first low-energy isomer at SCC-DFTB level. 4$^\prime$-b with two N-H bonds exposed is the second low-energy isomer at SCC-DFTB level but it is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level. The energy differences between 4$^\prime$-a to 4$^\prime$-b are only 0.20 and 0.07 kcal·mol\textsuperscript{-1} at SCC-DFTB and MP2/Def2TZVP with ZPVE correction level, respectively. The energy difference of isomers 4$^\prime$-a to 4$^\prime$-e is less than 0.75 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction, so it’s possible for the variation of the energy order when different methods or basis sets are used. 4$^\prime$-d with a nearly planar pentagonal structure with nitrogen atom and the four oxygen atoms at the apexes is the first low-energy isomer at MP2/6-31+G(d,p) studied by J. Novoa et al\cite{Lee1996} 4$^\prime$-d is also the first low-energy isomer in D. Bacelo’s study using QCISD(T) for a single-point energy calculation based on the MP2/6-311++G(d,p) results.\cite{Bacelo2002} In addition, 4$^\prime$-a to 4$^\prime$-e are also the five low-energy isomers in D. Bacelo’s study even the energy order is different.\cite{Bacelo2002} The results show the SCC- DFTB is good enough to find the low-energy isomers isomers for cluster (H$_2$O)$_{4}${NH$_3$}. +For cluster (H$_2$O)$_{4}${NH$_3$}, the five low-energy structures 4$^\prime$-a to 4$^\prime$-e are displayed in Figure \ref{fig:nh3-4-7w}. 4$^\prime$-a with three N-H bonds exposed is the first low-energy isomer at SCC-DFTB level. 4$^\prime$-b with two N-H bonds exposed is the second low-energy isomer at SCC-DFTB level but it is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level. The energy differences between 4$^\prime$-a to 4$^\prime$-b are only 0.07 and 0.2 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction level and SCC-DFTB level, respectively. The energy difference of isomers 4$^\prime$-a to 4$^\prime$-e is less than 0.75 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction, so it’s possible for the variation of the energy order when different methods or basis sets are used. 4$^\prime$-d with a nearly planar pentagonal structure with nitrogen atom and the four oxygen atoms at the apexes is the first low-energy isomer at MP2/6-31+G(d,p) studied by J. Novoa et al\cite{Lee1996} 4$^\prime$-d is also the first low-energy isomer in D. Bacelo’s study using QCISD(T) for a single-point energy calculation based on the MP2/6-311++G(d,p) results.\cite{Bacelo2002} In addition, 4$^\prime$-a to 4$^\prime$-e are also the five low-energy isomers in D. Bacelo’s study even the energy order is different.\cite{Bacelo2002} The results show the SCC- DFTB is good enough to find the low-energy isomers isomers for cluster (H$_2$O)$_{4}${NH$_3$}. \begin{figure}[h!] \includegraphics[width=1.0\linewidth]{nh3-4-7w.png} @@ -452,21 +443,21 @@ For cluster (H$_2$O)$_{4}${NH$_3$}, the five low-energy structures 4$^\prime$-a \label{fig:nh3-4-7w} \end{figure} -The relative binding energies of isomers 4$^\prime$-a to 4$^\prime$-e are shown in Table \ref{reBindE}. Except 4$^\prime$-d, the values of $\Delta E_{bind.}^{whole}$ for 4$^\prime$-a to 4$^\prime$-e are smaller than the corresponding values of $\Delta E_{bind.}^{sep.}$. The $\Delta E_{bind.}^{sep.}$ of 4$^\prime$-d is smaller than those of other isomers. 4$^\prime$-d has a nearly planar pentagonal structure that only contains three O-H···O hydrogen bonds among the four water molecules while other isomers contain four O-H···O hydrogen bonds among the four water molecules. So the intermolecular interaction of the four water molecules in 4$^\prime$-d is not as strong as it in other isomers, this may explain the $\Delta E_{bind.}^{sep.}$ of 4$^\prime$-d is smaller than those of other isomers. In general, both relative binding energies $\Delta E_{bind.}^{sep.}$ and $\Delta E_{bind.}^{sep.}$ are not big that indicates SCC-DFTB performs well compared to the MP2 method with BSSE correction for calculating the binding energy of cluster (H$_2$O)$_{4}${NH$_3$}. +The relative binding energies of isomers 4$^\prime$-a to 4$^\prime$-e are shown in Table \ref{reBindE}. Except 4$^\prime$-d, the values of $\Delta E_{bind.}^{whole}$ for 4$^\prime$-a to 4$^\prime$-e are smaller than the corresponding values of $\Delta E_{bind.}^{sep.}$. The $\Delta E_{bind.}^{sep.}$ of 4$^\prime$-d is smaller than those of other isomers. 4$^\prime$-d has a nearly planar pentagonal structure that only contains three O-H···O hydrogen bonds among the four water molecules while other isomers contain four O-H···O hydrogen bonds among the four water molecules. So the intermolecular interaction of the four water molecules in 4$^\prime$-d is not as strong as it is in other isomers, this may explain the $\Delta E_{bind.}^{sep.}$ of 4$^\prime$-d is smaller than those of other isomers. In general, both relative binding energies $\Delta E_{bind.}^{sep.}$ and $\Delta E_{bind.}^{sep.}$ are not big that indicates SCC-DFTB performs well compared to the MP2 method with BSSE correction for calculating the binding energy of cluster (H$_2$O)$_{4}${NH$_3$}. -For cluster (H$_2$O)$_{5}${NH$_3$}, 5$^\prime$-a to 5$^\prime$-e are the five low-energy isomers shown in Figure \ref{fig:nh3-4-7w}. 5$^\prime$-a with four three-coordinated water molecules is the first low-energy structure at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. 5$^\prime$-b and 5$^\prime$-c are the second and third isomers at SCC-DFTB level and they are the third and second isomers at MP2/Def2TZVP level with ZPVE. The energy difference between 5$^\prime$-b and 5$^\prime$-c is only 0.05 and 0.44 kcal·mol\textsuperscript{-1} at SCC-DFTB level and MP2/Def2TZVP with ZPVE correction level, respectively. In addition, the structures of 5$^\prime$-b and 5$^\prime$-c are very similar so it is possible for them to transform to each other. 5$^\prime$-d with two three-coordinated water molecules is the fourth low-energy structure at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. 5$^\prime$-e with four three-coordinated water molecules is the fifth low-energy structure at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. The frames of 5$^\prime$-a and 5$^\prime$-e are almost the same but the water molecule who offers the hydrogen or oxygen to form the O-H···O hydrogen bonds has a small difference. The energy of 5$^\prime$-e is 1.51 kcal·mol\textsuperscript{-1} higher than that of 5$^\prime$-a at MP2/Def2TZVP with ZPVE correction level, which implies the intermolecular connection mode has an influence on the stability of the isomers. The results show the SCC-DFTB approach performs well to find the low-energy isomers for cluster (H$_2$O)$_{5}${NH$_3$} compared with MP2/Def2TZVP with ZPVE correction method. +For cluster (H$_2$O)$_{5}${NH$_3$}, 5$^\prime$-a to 5$^\prime$-e are the five low-energy isomers shown in Figure \ref{fig:nh3-4-7w}. 5$^\prime$-a with four three-coordinated water molecules is the first low-energy structure at both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels. 5$^\prime$-b and 5$^\prime$-c are the second and third isomers at SCC-DFTB level and they are the third and second isomers at MP2/Def2TZVP level with ZPVE. The energy difference between 5$^\prime$-b and 5$^\prime$-c is only 0.44 and 0.05 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction level and SCC-DFTB level, respectively. In addition, the structures of 5$^\prime$-b and 5$^\prime$-c are very similar so it is possible for them to transform to each other. 5$^\prime$-d with two three-coordinated water molecules is the fourth low-energy structure at both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels. 5$^\prime$-e with four three-coordinated water molecules is the fifth low-energy structure at both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels. The frames of 5$^\prime$-a and 5$^\prime$-e are almost the same but the water molecule who offers the hydrogen or oxygen to form the O-H···O hydrogen bonds has a small difference. The energy of 5$^\prime$-e is 1.51 kcal·mol\textsuperscript{-1} higher than that of 5$^\prime$-a at MP2/Def2TZVP with ZPVE correction level, which implies the intermolecular connection mode has an influence on the stability of the isomers. The results show the SCC-DFTB approach performs well to find the low-energy isomers for cluster (H$_2$O)$_{5}${NH$_3$} compared with MP2/Def2TZVP with ZPVE correction method. The relative binding energies of isomers 5$^\prime$-a to 5$^\prime$-e are shown in Table \ref{reBindE}. The values of $\Delta E_{bind.}^{whole}$ are less than 0.82 kcal·mol\textsuperscript{-1} for 5$^\prime$-a to 5$^\prime$-e. The values of $\Delta E_{bind.}^{sep.}$ are bigger than the corresponding values of $\Delta E_{bind.}^{whole}$. It indicates SCC-DFTB agrees better with MP2/Def2TZVP $\Delta E_{bind.}^{whole}$ when all the water molecules are regarded as a whole part than considering separately for calculating the binding energy of cluster (H$_2$O)$_{5}${NH$_3$}. -For cluster (H$_2$O)$_{6}${NH$_3$}, the five low-energy structures 6$^\prime$-a to 6$^\prime$-e are displayed in Figure \ref{fig:nh3-4-7w}. 6$^\prime$-a is the first low-energy structure at SCC-DFTB level. All water molecules in 6$^\prime$-a are three-coordinated. 6$^\prime$-b is the second low-energy isomer at SCC-DFTB level and it’s only 0.05 and 0.42 kcal·mol\textsuperscript{-1} higher than the ones of 6$^\prime$-a at SCC-DFTB level and MP2/Def2TZVP with ZPVE correction level, respectively. 6$^\prime$-c to 6$^\prime$-d are the third and fourth low-energy isomers in which the six water molecules form a triangular prism structure and there are one and two four-coordinated water molecules in 6$^\prime$-c to 6$^\prime$-d, respectively. 6$^\prime$-e is the fifth low-energy structure at SCC-DFTB level but it’s the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level. The energy of 6$^\prime$-a to 6$^\prime$-e are very close at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels that it is difficult to keep the energy order when different methods or basis sets are applied. This also shown the SCC-DFTB method used is efficient to find the low-energy isomers of cluster (H$_2$O)$_{6}${NH$_3$}. +For cluster (H$_2$O)$_{6}${NH$_3$}, the five low-energy structures 6$^\prime$-a to 6$^\prime$-e are displayed in Figure \ref{fig:nh3-4-7w}. 6$^\prime$-a is the first low-energy structure at SCC-DFTB level. All water molecules in 6$^\prime$-a are three-coordinated. 6$^\prime$-b is the second low-energy isomer at SCC-DFTB level and it’s only 0.42 and 0.05 kcal·mol\textsuperscript{-1} higher than the ones of 6$^\prime$-a at MP2/Def2TZVP with ZPVE correction level and SCC-DFTB level, respectively. 6$^\prime$-c to 6$^\prime$-d are the third and fourth low-energy isomers in which the six water molecules form a triangular prism structure and there are one and two four-coordinated water molecules in 6$^\prime$-c to 6$^\prime$-d, respectively. 6$^\prime$-e is the fifth low-energy structure at SCC-DFTB level but it’s the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level. The energy of 6$^\prime$-a to 6$^\prime$-e are very close at both both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels that it is difficult to keep the energy order when different methods or basis sets are applied. This also shows the SCC-DFTB method used is efficient to find the low-energy isomers of cluster (H$_2$O)$_{6}${NH$_3$}. The relative binding energies of isomers 6$^\prime$-a to 6$^\prime$-e are listed in Table \ref{reBindE}. The smallest and the biggest values of $\Delta E_{bind.}^{whole}$ are -0.05 and -1.11 kcal·mol\textsuperscript{-1}, respectively. The smallest absolute value of $\Delta E_{bind.}^{sep.}$ is 1.96 kcal·mol\textsuperscript{-1}. The binding energies calculated with SCC-DFTB agree well with those calculated at MP2/Def2TZVP level for cluster (H$_2$O)$_{6}${NH$_3$} when all the water molecules are considered as a whole part. -For cluster (H$_2$O)$_{7}${NH$_3$}, the five low-energy isomers 7$^\prime$-a to 7$^\prime$-e are illustrated in Figure \ref{fig:nh3-4-7w}. 7$^\prime$-a with a cubic structure is the first low-lying energy structure at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. 7$^\prime$-b is the second low-energy structure at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. 7$^\prime$-b has a similar structure with 7$^\prime$-a but the NH$_3$ in it has two exposed N-H bonds. 7$^\prime$-c and 7$^\prime$-d have similar structures and they are the third and fourth low-lying energy isomers at SCC-DFTB level and their energy difference is only 0.74 kcal·mol\textsuperscript{-1}. 7$^\prime$-e with three exposed N-H bonds is the fifth low-energy isomer at both SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. The results of SCC-DFTB method agree well with those of MP2/Def2TZVP with ZPVE correction for the five low-energy isomers of cluster (H$_2$O)$_{7}${NH$_3$}. +For cluster (H$_2$O)$_{7}${NH$_3$}, the five low-energy isomers 7$^\prime$-a to 7$^\prime$-e are illustrated in Figure \ref{fig:nh3-4-7w}. 7$^\prime$-a with a cubic structure is the first low-lying energy structure at both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels. 7$^\prime$-b is the second low-energy structure at both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels. 7$^\prime$-b has a similar structure with 7$^\prime$-a but the NH$_3$ in it has two exposed N-H bonds. 7$^\prime$-c and 7$^\prime$-d have similar structures and they are the third and fourth low-lying energy isomers at SCC-DFTB level and their energy difference is only 0.74 kcal·mol\textsuperscript{-1}. 7$^\prime$-e with three exposed N-H bonds is the fifth low-energy isomer at both MP2/Def2TZVP with ZPVE correction and SCC-DFTB levels. The results of SCC-DFTB method agree well with those of MP2/Def2TZVP with ZPVE correction for the five low-energy isomers of cluster (H$_2$O)$_{7}${NH$_3$}. The smallest and the biggest values of $\Delta E_{bind.}^{whole}$ of isomers 7$^\prime$-a to 7$^\prime$-e are -0.02 and -1.11 kcal·mol\textsuperscript{-1}, respectively and the smallest absolute value of $\Delta E_{bind.}^{sep.}$ is 2.02 kcal·mol\textsuperscript{-1} shown in Table \ref{reBindE}. The binding energies calculated with SCC-DFTB agree well with those obtained using MP2/Def2TZVP for cluster (H$_2$O)$_{7}${NH$_3$} when all the water molecules are considered as a whole part. -For cluster (H$_2$O)$_{8}${NH$_3$}, 8$^\prime$-a to 8$^\prime$-e are the five low-energy structures shown in Figure \ref{fig:nh3-8-10w}. 8$^\prime$-a in which eight water molecules constitute a cube is the first low-lying energy structure in SCC-DFTB calculation results. 8$^\prime$-b also with a water-cube structure is the second low-energy structure at SCC-DFTB level and it is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level. The energy differences between 8$^\prime$-a and 8$^\prime$-b are only 0.93 an 0.30 kcal·mol\textsuperscript{-1} at SCC-DFTB and MP2/Def2TZVP with ZPVE correction levels. From Figure \ref{fig:nh3-8-10w}, the fifth low-energy isomer 8$^\prime$-e includes less number of hydrogen bonds than other isomers and its energy has a clearly increase compared to other isomers. The results show the SCC-DFTB method performs well to obtain the low-energy isomers of cluster (H$_2$O)$_{8}${NH$_3$}. +For cluster (H$_2$O)$_{8}${NH$_3$}, 8$^\prime$-a to 8$^\prime$-e are the five low-energy structures shown in Figure \ref{fig:nh3-8-10w}. 8$^\prime$-a in which eight water molecules constitute a cube is the first low-lying energy structure in SCC-DFTB calculation results. 8$^\prime$-b also with a water-cube structure is the second low-energy structure at SCC-DFTB level and it is the first low-energy isomer at MP2/Def2TZVP with ZPVE correction level. The energy differences between 8$^\prime$-a and 8$^\prime$-b are only 0.30 and 0.93 kcal·mol\textsuperscript{-1} at MP2/Def2TZVP with ZPVE correction level and SCC-DFTB level. From Figure \ref{fig:nh3-8-10w}, the fifth low-energy isomer 8$^\prime$-e includes less hydrogen bonds than other isomers and its energy has a clearly increase compared to other isomers. The results show the SCC-DFTB method performs well to obtain the low-energy isomers of cluster (H$_2$O)$_{8}${NH$_3$}. \begin{figure}[h!] \includegraphics[width=1.0\linewidth]{nh3-8-10w.png} @@ -487,35 +478,90 @@ The smallest and biggest values of $\Delta E_{bind.}^{whole}$ of isomers 10$^\pr \subsubsection{Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster} -For cluster (H$_2$O)$_{20}${NH$_4$}$^+$, the lowest-energy structure shown in Figure \ref{fig:nh3-nh4-20w} (a) was obtained with the combination of SCC-DFTB and PTMD which is consistent with that of previous study.\cite{Kazimirski2003, Douady2009, Bandow2006} -Microcanonical and canonical caloric curves were obtained using exchange Monte Carlo simulations by F. Spiegelman’s group.\cite{Douady2009} -I also calculated the canonical heat capacities of cluster (H$_2$O)$_{20}${NH$_4$}$^+$ using the combination of SCC-DFTB and PTMD depicted in Figure. +The lowest-energy isomer of (H$_2$O)$_{20}${NH$_4$}$^+$ was previously reported by Douady \textit{et al.}\cite{Douady2008,Douady2009} +as well as by other studies.\cite{Kazimirski2003, Bandow2006} Douady \textit{et al.} conducted a Monte Carlo simulation in combination with +the Kozack-Jordan polarizable potential.\cite{Kozack1992polar,Kozack1992empiri} This isomer displays a closed-shell structure, similar to the +well-know structure of (H$_2$O)$_{21}${H}$^+$, with the {NH$_4$}$^+$ ion fully solvated at the center of the aggregate. The structure of +(H$_2$O)$_{20}${NH$_4$}$^+$ is depicted in Figure~\ref{fig:nh3-nh4-20w}. Starting from the coordinates Douady \textit{et al.} kindly +sent to us, our PTMD exploration of the PES does not lead any lower-energy isomer. We thus consider this isomer to be also the lowest-energy +isomer at the SCC-DFTB level. \begin{figure}[h!] - \includegraphics[width=0.6\linewidth]{nh3-nh4-20w.jpeg} + \includegraphics[width=0.4\linewidth]{nh4-20.png} \centering - \caption{The five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.} + \caption{Lowest-energy isomer of (H$_2$O)$_{20}${NH$_4$}$^{+}$.} \label{fig:nh3-nh4-20w} \end{figure} +Douady \textit{et al.} further computed the heat capacity of (H$_2$O)$_{20}${NH$_4$}$^+$ as a function of the +temperature.\cite{Douady2009} In order to further demonstrate the accuracy of SCC-DFTB we have conducted a +similar calculation. The modelling of heat capacity as a function of the temperature can be achieved in different +ways. The simplest one consists in performing MC or MD simulations at different temperatures and extracting +for each one the heat capacity from a direct calculation of the variance of the potential energy. This approach +is somewhat statistically inefficient and thus alternative approaches have been proposed. Indeed, to reduce +the statistical noise and to extrapolate heat capacities at temperatures not explicitly simulated, one can benefit +from the fact that in MD or MC simulations a given configuration may be visited at different temperatures. +Labastie and Whetten,\cite{Labastie1990} proposed a method to take advantage of these overlaps to calculate +heat capacity curves. It is referred to as the multiple histogram method. It uses probability densities, extracted +from a 10~ns PTMD simulation, of finding an energy at a given temperature leading to a set of histograms for +each simulated temperature. The entropy and partition functions are extracted from these histograms which +can then give access to internal energy at any given temperature. The heat capacity at temperature $T$ is finally +calculated as: + +\begin{equation} \label{heatCapacity} +C(T) = \frac{N_{dof}k_B}{2} + \frac{\langle V^{2} \rangle - \langle V \rangle ^{2}}{k_{B}T^{2}} +\end{equation} +where $k_{B}$ is the Boltzmann constant, $N_{dof}$ the number of degrees of freedom, $\langle V \rangle$ and +$\langle V^{2} \rangle$ the internal energy and square of internal energy at temperature $T$, respectively. +The first term of equation~\ref{heatCapacity} is the classical limit of the heat capacity at T = 0~K. +Figure~\ref{fheat_c} displays the heat capacity curve we obtained. It is very similar to the one obtained by Douady +and co-workers. It is flat up to $\sim$150~K with a sharp increase starting at $\sim$165~K. This behaviour +also exits in (H$_2$O)$_{21}${H}$^+$,\cite{Douady2009,Korchagina2017} and was interpreted by a weak +density of low-energy isomers above the global minimum, \textit{i.e.} a particularly stable lowest-energy structure.\cite{Korchagina2017} +Douady\textit{et al.} observed a slightly higher transition temperature of (H$_2$O)$_{20}${NH$_4$}$^+$ as +compared to (H$_2$O)$_{21}${H}$^+$. This is also true at the SCC-DFTB level as the transition +temperature of (H$_2$O)$_{21}${H}$^+$ was evaluated at $\sim$140~K.\cite{Korchagina2017} +This confirms that SCC-DFTB with the improved set of N---H parameters, besides properly describing +structures and binding energies, also lead to correct thermodynamical properties. + + \begin{figure}[h!] + \includegraphics[width=0.5\linewidth]{capacity-curve-new.eps} + \centering + \caption{Canonical heat capacity as a function of the temperature of (H$_2$O)$_{20}${NH$_4$}$^{+}$.} + \label{fheat_c} +\end{figure} + \subsection{Conclusions for Ammonium/Ammonia Including Water Clusters} -The low-energy isomers reported for (H$_2$O)$_{1-10, 20}${NH$_4$}$^+$ and (H$_2$O)$_{1-10, 20}$NH$_3$ clusters are obtained with a combination of -SCC-DFTB (0.12/1.16) and PTMD. Binding energies as a function of the N---O distance in (H$_2$O){NH$_4$}$^+$ and (H$_2$O)NH$_3$ demonstrate -that the improve parameters I proposed are in much better agreement with reference calculations than the original SCC-DFTB parameters. -The low-energy isomers of clusters (H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}$NH$_3$ at the SCC-DFTB (0.12/1.16) level -agree well with those at MP2/Def2TZVP level and the corresponding results in the literature. The SCC-DFTB binding energies also agree well -with those calculated with MP2/Def2TZVP method with BSSE correction. This demonstrate that SCC-DFTB (0.12/1.16) approach is good -enough to model ammonium and ammonia containing water clusters. +In this paper, we have introduced a modification to the N-H set of parameters by modifying both the original mio-set of N---H integrals +and the evaluation of the charges. The proposed new set of parameters solve the spurious deprotonation observed for {NH$_4$}$^+$ +using the original set of parameters. We first demonstrate that this new set of parameters leads also to improved description of the +dissociation curves of both (H$_2$O){NH$_4$}$^+$ and (H$_2$O)NH$_3$ dimers as compared to MP2/Def2TZVP method with BSSE +correction reference calculations. +By combining this new potential, SCC-DFTB (0.12/1.16), to PTMD simulations, a number of low-energy isomers are reported for +(H$_2$O)$_{1-10}${NH$_4$}$^+$ and (H$_2$O)$_{1-10}$NH$_3$ clusters. Further geometry optimizations at the MP2/Def2TZVP +lead to structures very similar to those reported at the SCC-DFTB level and also reported in the literature. The SCC-DFTB binding +energies also agree well with those calculated with the MP2/Def2TZVP approch including with BSSE correction. This demonstrates +that SCC-DFTB (0.12/1.16) approach is well suited to the description of ammonium and ammonia containing water clusters. -Among the five lowest-energy structures of (H$_2$O)$_{4}${NH$_4$}$^+$, four of them display a dangling N-H bond. Among the five lowest-energy -structures of (H$_2$O)$_{5}${NH$_4$}$^+$, only two structures display a dangling N-H bond. Among the five lowest-energy isomers of (H$_2$O)$_{6-10}${NH$_4$}$^+$, -all the structures, except 8-e, display a ion core {NH$_4$}$^+$ that has a complete solvation shell but it is not located at the center of the water cluster. -In the most stable structures of (H$_2$O)$_{20}${NH$_4$}$^+$, the ion core {NH$_4$}$^+$ has a complete solvation shell and it is in the center of the -water cluster. In contrast, in the low-energy isomers of (H$_2$O)$_{1-10}$NH$_3$ clusters, NH$_3$ is never fully solvated by the water cluster. +Among the five lowest-energy structures of (H$_2$O)$_{4}${NH$_4$}$^+$, four of them display a dangling N-H bond. Among the five +lowest-energy structures of (H$_2$O)$_{5}${NH$_4$}$^+$, only two structures display a dangling N-H bond. Among the five +lowest-energy isomers of (H$_2$O)$_{6-10}${NH$_4$}$^+$, all the structures, except 8-e, display a ion core {NH$_4$}$^+$ +that has a complete solvation shell but it is not located at the center of the water cluster. In the most stable structures of +(H$_2$O)$_{20}${NH$_4$}$^+$, reported in a previous study, the ion core {NH$_4$}$^+$ has a complete solvation shell +and it is located in the center of the water cluster. (H$_2$O)$_{1-10}$NH$_3$ clusters display significantly different structures. +Indeed, NH$_3$ is never fully solvated by the water molecules whatever the cluster size. It either participates to the surface +hydrogen bond network in a few cases, or acts as a surface molecule, only bonded to the water molecules by a unique +hydrogen bond. -The present study demonstrate thet ability of SCC-DFTB to model small size ammonium and ammonia containing water clusters, which is less -expensive than \textit{ab initio} methods. It is possible for SCC-DFTB to describe the larger scaled ammonium and ammonia containing water clusters. +Application of the presently proposed potential to the calculation of the heat capacity curve of (H$_2$O)$_{4}${NH$_4$}$^+$ +further demonstrates the quality of the potential as the SCC-DFTB curve is close to the previously reported curve. The +present study therefore demonstrates the ability of SCC-DFTB to model small size ammonium and ammonia containing +water clusters. Due to the low computational cost of SCC-DFTB as compared to \textit{ab initio} methods, one can envisage +its application to describe the larger size ammonium and ammonia containing water clusters. One can also envisage the +study of water clusters containing a mixture of nitrogen and sulphur compounds, for instance, ammonium and sulfate ions. +These species, their conjugated basis and acid in combination with dimethylamine and water molecules represent the basis +for nucleation of atmospheric particles and SCC-DFTB could play a major in the theoretical description of these species. \section{Structural and Energetic Properties of Protonated Uracil Water Clusters} \label{structureUH} @@ -548,13 +594,13 @@ only neutral species ((H$_2$O)$_{n}$U) were considered.\cite{Shishkin2000, Gadre Those studies showed that for sizes up to with $n$ = 3, the water molecules arrange in monomers or dimers in the plane of the uracil molecule \cite{Gadre2000, Van2001diffu, Gaigeot2001, Danilov2006, Bacchus2015} with no trimer formation. But for $n$ \textgreater~3, very different structures were predicted depending on the considered study. For instance, M. Ghomi predicted that for $n$ = 7,\cite{Gaigeot2001} water molecules arrange - in dimers and trimers in the plane of the uracil molecule, whereas for $n$ = 11, water molecules form locked chains.\cite{Shishkin2000} 3D configurations were also proposed. For instance, all water molecules lie above the uracil plane for $n$ = 4, 5 reported by F. Calvo \textit{et al.}.\cite{Bacchus2015} Similarly, for $n$ = 11, V. Danilov \textit{et al.} also obtained a structure that consists of a water cluster above the uracil molecule.\cite{Danilov2006} Such structures are predicted to start with 4 water molecules - reported by F. Calvo and collaborator \cite{Bacchus2015} or with 6 water molecules (though 5 have not been calculated) reported by S. Gadre \textit{et al.}.\cite{Gadre2000} + in dimers and trimers in the plane of the uracil molecule, whereas for $n$ = 11, water molecules form locked chains.\cite{Shishkin2000} 3D configurations were also proposed. For instance, all water molecules lie above the uracil plane for $n$ = 4, 5 reported by F. Calvo \textit{et al}.\cite{Bacchus2015} Similarly, for $n$ = 11, V. Danilov \textit{et al.} also obtained a structure that consists of a water cluster above the uracil molecule.\cite{Danilov2006} Such structures are predicted to start with 4 water molecules + reported by F. Calvo and collaborator \cite{Bacchus2015} or with 6 water molecules (though 5 have not been calculated) reported by S. Gadre \textit{et al}.\cite{Gadre2000} Those studies may suggest that for few water molecules (up to two), the proton should be located on the uracil molecule, whereas when a large number of water molecules surround the uracil, the charge is expected to be located on the water molecules. Of course, the excess proton is expected to strongly influence the structure of the lowest energy isomers of each species, as observed for pure water clusters, so the size at which the proton is transferred from uracil to water cannot be deduced from the aforementioned studies. Moreover, all those theoretical studies do not lead to the same low-energy - structures as highlighted by V. Danilov and F. Calvo.\cite{Danilov2006, Bacchus2015} Consequently, although it is instructive from a qualitative point + structures as highlighted by V. Danilov and F. Calvo. \cite{Danilov2006, Bacchus2015} Consequently, although it is instructive from a qualitative point of view, the analysis of the experimental data by S. Zamith and J.-M. L'Hermite cannot be based on those studies. I have therefore undertaken a theoretical simulation of hydrated protonated uracil clusters (H$_2$O)$_{1-7, 11, 12}$UH$^+$ to determine their lowest-energy structures to complete the experiments by S. Zamith and J.-M. L'Hermite at the \textit{Laboratoire Collisions Agr\'egats R\'eactivit\'e }(LCAR). This work has @@ -619,10 +665,10 @@ This analysis based on PA is however quite crude. Indeed, it assumes that the pr \subsubsection{Calculated Structures of Protonated Uracil Water Clusters} \label{calcul_ur} As discussed in section~\ref{sec:ammoniumwater}, I have proposed a modified set of NH parameters to describe sp$^3$ nitrogen atoms. For, -sp$^2$ nitrogen atoms there is no need to modified the integral parameters as SCC-DFTB describe them rather correctly. Consequently, only the -$D_{NH}$ parameter needs to be defined for the present calculations. Table~\ref{tab:DNH} present the binding energy of the two +sp$^2$ nitrogen atoms there is no need to modify the integral parameters as SCC-DFTB describe them rather correctly. Consequently, only the +$D_{NH}$ parameter needs to be defined for the present calculations. Table~\ref{tab:DNH} presents the binding energies of the two (H$_2$O)U isomers represented in Figure~\ref{uracil_i} at MP2/Def2TZVP and SCC-DFTB levels of theory. Both $D_\textrm{NH}$ = 0.12 and -$D_\textrm{NH}$ = 0.14 lead to consistent binding energies. So, to be consistent with the work performed in the previous section, we +$D_\textrm{NH}$ = 0.14 lead to reasonable binding energies. So, to be consistent with the work performed in the previous section, we have used $D_\textrm{NH}$ = 0.12 in the following. \begin{figure}[h!] diff --git a/thesis/4/collision.aux b/thesis/4/collision.aux index 5549385..e12eea5 100644 --- a/thesis/4/collision.aux +++ b/thesis/4/collision.aux @@ -5,16 +5,16 @@ \citation{Wong2004,Bush2008} \citation{Holm2010,Gatchell2014,Gatchell2017} \citation{Boering1992,Wells2005,Zamith2019thermal} -\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}} +\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\newlabel{chap:collision}{{4}{97}{Dynamical Simulation of Collision-Induced Dissociation}{chapter.4}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}} -\newlabel{exp_cid}{{4.1}{97}{Experimental Methods}{section.4.1}{}} -\@writefile{brf}{\backcite{Brechignac1989}{{97}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Brechignac1994}{{97}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Wong2004}{{97}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Bush2008}{{97}{4.1}{section.4.1}}} +\newlabel{chap:collision}{{4}{99}{Dynamical Simulation of Collision-Induced Dissociation}{chapter.4}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}} +\newlabel{exp_cid}{{4.1}{99}{Experimental Methods}{section.4.1}{}} +\@writefile{brf}{\backcite{Brechignac1989}{{99}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Brechignac1994}{{99}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Wong2004}{{99}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Bush2008}{{99}{4.1}{section.4.1}}} \citation{Ma1997,Chowdhury2009} \citation{Nelson1994,Molina2015} \citation{Carl2007} @@ -31,80 +31,80 @@ \citation{Dawson1982,Bakker2008,Mcquinn2009,Zamith2012} \citation{Liu2006} \citation{Carl2013,Hofstetter2013,Coates2018} -\@writefile{brf}{\backcite{Holm2010}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Gatchell2017}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Gatchell2014}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Zamith2019thermal}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Boering1992}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Wells2005}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Ma1997}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Chowdhury2009}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Nelson1994}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Molina2015}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Carl2007}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Wells2005}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Sleno2004ion}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Cody1982}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Olsen2007higher}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Hart2011}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Gauthier1991}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Laskin2005}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Coates2018}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Mcquinn2009}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Carl2013}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Hofstetter2013}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Coates2017}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Graul1989}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Wei1991}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Goebbert2006}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Haag2009}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Liu2006}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Nguyen2011}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Shuck2014}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Castrovilli2017}{{98}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Bera2018}{{98}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Holm2010}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Gatchell2017}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Gatchell2014}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Zamith2019thermal}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Boering1992}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Wells2005}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Ma1997}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Chowdhury2009}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Nelson1994}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Molina2015}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Carl2007}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Wells2005}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Sleno2004ion}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Cody1982}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Olsen2007higher}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Hart2011}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Gauthier1991}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Laskin2005}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Coates2018}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Mcquinn2009}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Carl2013}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Hofstetter2013}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Coates2017}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Graul1989}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Wei1991}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Goebbert2006}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Haag2009}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Liu2006}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Nguyen2011}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Shuck2014}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Castrovilli2017}{{100}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Bera2018}{{100}{4.1}{section.4.1}}} \citation{Spasov2000,Armentrout2008} \citation{Braud2019} \citation{Zamith2020threshold} \citation{Klippenstein1992,Baer1996} \citation{Armentrout2008} -\@writefile{brf}{\backcite{Liu2006}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Castrovilli2017}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Markush2016}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Bakker2008}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Li1992}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Bobbert2002}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Coates2018}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Carl2013}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Hofstetter2013}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Dawson1982}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Bakker2008}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Zamith2012}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Mcquinn2009}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Liu2006}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Coates2018}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Carl2013}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Hofstetter2013}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Spasov2000}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Armentrout2008}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Braud2019}{{99}{4.1}{section.4.1}}} -\@writefile{brf}{\backcite{Zamith2020threshold}{{99}{4.1}{section.4.1}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}} -\newlabel{principleTCID}{{4.1.1}{99}{Principle of TCID}{subsection.4.1.1}{}} -\@writefile{brf}{\backcite{Klippenstein1992}{{99}{4.1.1}{subsection.4.1.1}}} -\@writefile{brf}{\backcite{Baer1996}{{99}{4.1.1}{subsection.4.1.1}}} +\@writefile{brf}{\backcite{Liu2006}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Castrovilli2017}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Markush2016}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Bakker2008}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Li1992}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Bobbert2002}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Coates2018}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Carl2013}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Hofstetter2013}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Dawson1982}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Bakker2008}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Zamith2012}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Mcquinn2009}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Liu2006}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Coates2018}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Carl2013}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Hofstetter2013}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Spasov2000}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Armentrout2008}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Braud2019}{{101}{4.1}{section.4.1}}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{101}{4.1}{section.4.1}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}} +\newlabel{principleTCID}{{4.1.1}{101}{Principle of TCID}{subsection.4.1.1}{}} +\@writefile{brf}{\backcite{Klippenstein1992}{{101}{4.1.1}{subsection.4.1.1}}} +\@writefile{brf}{\backcite{Baer1996}{{101}{4.1.1}{subsection.4.1.1}}} \citation{Rodgers1998,Armentrout2007} \citation{Braud2017} -\@writefile{brf}{\backcite{Armentrout2008}{{100}{4.1.1}{subsection.4.1.1}}} -\newlabel{CIDcross}{{4.1}{100}{Principle of TCID}{equation.4.1.1}{}} -\@writefile{brf}{\backcite{Rodgers1998}{{100}{4.1.1}{equation.4.1.1}}} -\@writefile{brf}{\backcite{Armentrout2007}{{100}{4.1.1}{equation.4.1.1}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}} -\newlabel{EXPsetup}{{4.1.2}{100}{Experimental Setup}{subsection.4.1.2}{}} -\@writefile{brf}{\backcite{Braud2017}{{100}{4.1.2}{figure.caption.39}}} +\@writefile{brf}{\backcite{Armentrout2008}{{102}{4.1.1}{subsection.4.1.1}}} +\newlabel{CIDcross}{{4.1}{102}{Principle of TCID}{equation.4.1.1}{}} +\@writefile{brf}{\backcite{Rodgers1998}{{102}{4.1.1}{equation.4.1.1}}} +\@writefile{brf}{\backcite{Armentrout2007}{{102}{4.1.1}{equation.4.1.1}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}} +\newlabel{EXPsetup}{{4.1.2}{102}{Experimental Setup}{subsection.4.1.2}{}} +\@writefile{brf}{\backcite{Braud2017}{{102}{4.1.2}{figure.caption.40}}} \citation{Chirot2006new} -\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{101}{figure.caption.39}} -\newlabel{experiment-setup}{{4.1}{101}{Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley–McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley–McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector}{figure.caption.39}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{103}{figure.caption.40}} +\newlabel{experiment-setup}{{4.1}{103}{Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley–McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley–McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector}{figure.caption.40}{}} \citation{Elstner1998,Porezag1995,Seifert1996,Frenzel2004,Elstner2014,Spiegelman2020} \citation{Simon2017,Korchagina2017,Rapacioli2018,Simon2018} \citation{Warshel1976} @@ -113,119 +113,119 @@ \citation{Kukk2015} \citation{Simon2017} \citation{Simon2017,Simon2018,Rapacioli2018atomic} -\@writefile{brf}{\backcite{Chirot2006new}{{102}{4.1.2}{figure.caption.39}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{102}{figure.caption.40}} -\newlabel{exp-setup}{{4.2}{102}{Schematic of the simplified experimental setup}{figure.caption.40}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}} -\newlabel{Comput_meth}{{4.2}{102}{Computational Details}{section.4.2}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}} -\newlabel{DFTBpotential}{{4.2.1}{102}{SCC-DFTB Potential}{subsection.4.2.1}{}} -\@writefile{brf}{\backcite{Elstner1998}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Elstner2014}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Porezag1995}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Seifert1996}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Frenzel2004}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Spiegelman2020}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Korchagina2017}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Simon2017}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Rapacioli2018}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Simon2018}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Warshel1976}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Cui2001}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Iftner2014}{{102}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Kukk2015}{{102}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Chirot2006new}{{104}{4.1.2}{figure.caption.40}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{104}{figure.caption.41}} +\newlabel{exp-setup}{{4.2}{104}{Schematic of the simplified experimental setup}{figure.caption.41}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}} +\newlabel{Comput_meth}{{4.2}{104}{Computational Details}{section.4.2}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}} +\newlabel{DFTBpotential}{{4.2.1}{104}{SCC-DFTB Potential}{subsection.4.2.1}{}} +\@writefile{brf}{\backcite{Elstner1998}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Elstner2014}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Porezag1995}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Seifert1996}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Frenzel2004}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Spiegelman2020}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Korchagina2017}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Simon2017}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Rapacioli2018}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Simon2018}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Warshel1976}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Cui2001}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Iftner2014}{{104}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Kukk2015}{{104}{4.2.1}{subsection.4.2.1}}} \citation{Dontot2019} \citation{Nose1984,Hoover1985} -\@writefile{brf}{\backcite{Kukk2015}{{103}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Simon2017}{{103}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Simon2017}{{103}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Simon2018}{{103}{4.2.1}{subsection.4.2.1}}} -\@writefile{brf}{\backcite{Rapacioli2018atomic}{{103}{4.2.1}{subsection.4.2.1}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}} -\newlabel{makingtrajectories}{{4.2.2}{103}{Collision Trajectories}{subsection.4.2.2}{}} -\@writefile{brf}{\backcite{Dontot2019}{{103}{4.2.2}{subsection.4.2.2}}} -\@writefile{brf}{\backcite{Nose1984}{{103}{4.2.2}{subsection.4.2.2}}} -\@writefile{brf}{\backcite{Hoover1985}{{103}{4.2.2}{subsection.4.2.2}}} -\newlabel{vectorq}{{4.2}{104}{Collision Trajectories}{equation.4.2.2}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{104}{figure.caption.41}} -\newlabel{howinputs}{{4.3}{104}{Schematic of the generation of the initial inputs}{figure.caption.41}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}} -\newlabel{trajecanylysis}{{4.2.3}{104}{Trajectory Analysis}{subsection.4.2.3}{}} +\@writefile{brf}{\backcite{Kukk2015}{{105}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Simon2017}{{105}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Simon2017}{{105}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Simon2018}{{105}{4.2.1}{subsection.4.2.1}}} +\@writefile{brf}{\backcite{Rapacioli2018atomic}{{105}{4.2.1}{subsection.4.2.1}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}} +\newlabel{makingtrajectories}{{4.2.2}{105}{Collision Trajectories}{subsection.4.2.2}{}} +\@writefile{brf}{\backcite{Dontot2019}{{105}{4.2.2}{subsection.4.2.2}}} +\@writefile{brf}{\backcite{Nose1984}{{105}{4.2.2}{subsection.4.2.2}}} +\@writefile{brf}{\backcite{Hoover1985}{{105}{4.2.2}{subsection.4.2.2}}} +\newlabel{vectorq}{{4.2}{106}{Collision Trajectories}{equation.4.2.2}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{106}{figure.caption.42}} +\newlabel{howinputs}{{4.3}{106}{Schematic of the generation of the initial inputs}{figure.caption.42}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}} +\newlabel{trajecanylysis}{{4.2.3}{106}{Trajectory Analysis}{subsection.4.2.3}{}} \citation{Braud2019} -\newlabel{integ}{{4.3}{105}{Trajectory Analysis}{equation.4.2.3}{}} -\newlabel{sec:collisionwUH}{{4.3}{105}{Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{section.4.3}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}} -\@writefile{brf}{\backcite{Braud2019}{{105}{4.3.1}{subsection.4.3.1}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}} -\newlabel{resul_disc}{{4.3.2}{106}{Results and Discussion}{subsection.4.3.2}{}} -\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}} -\newlabel{convergence}{{4.3.2.1}{106}{Statistical Convergence}{subsubsection.4.3.2.1}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{107}{figure.caption.42}} -\newlabel{3b-sphere}{{4.4}{107}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively}{figure.caption.42}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{108}{figure.caption.43}} -\newlabel{12f-sphere}{{4.5}{108}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively}{figure.caption.43}{}} -\newlabel{PNUL}{{4.4}{108}{Statistical Convergence}{equation.4.3.4}{}} +\newlabel{integ}{{4.3}{107}{Trajectory Analysis}{equation.4.2.3}{}} +\newlabel{sec:collisionwUH}{{4.3}{107}{Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{section.4.3}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}} +\@writefile{brf}{\backcite{Braud2019}{{107}{4.3.1}{subsection.4.3.1}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}} +\newlabel{resul_disc}{{4.3.2}{108}{Results and Discussion}{subsection.4.3.2}{}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}} +\newlabel{convergence}{{4.3.2.1}{108}{Statistical Convergence}{subsubsection.4.3.2.1}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{109}{figure.caption.43}} +\newlabel{3b-sphere}{{4.4}{109}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively}{figure.caption.43}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{110}{figure.caption.44}} +\newlabel{12f-sphere}{{4.5}{110}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively}{figure.caption.44}{}} +\newlabel{PNUL}{{4.4}{110}{Statistical Convergence}{equation.4.3.4}{}} \citation{Braud2019} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}} -\newlabel{time}{{4.3.3}{109}{Time-Dependent Proportion of Fragments}{subsection.4.3.3}{}} -\@writefile{brf}{\backcite{Braud2019}{{109}{4.3.3}{subsection.4.3.3}}} -\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{110}{table.caption.44}} -\newlabel{tab:converge-1w-5w}{{4.1}{110}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.44}{}} -\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{111}{table.caption.45}} -\newlabel{tab:converge-6w-12w}{{4.2}{111}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.45}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{112}{figure.caption.46}} -\newlabel{proporEachFrag-1a2a}{{4.6}{112}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right)}{figure.caption.46}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}} -\newlabel{small}{{4.3.4}{112}{Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{subsection.4.3.4}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}} +\newlabel{time}{{4.3.3}{111}{Time-Dependent Proportion of Fragments}{subsection.4.3.3}{}} +\@writefile{brf}{\backcite{Braud2019}{{111}{4.3.3}{subsection.4.3.3}}} +\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{112}{table.caption.45}} +\newlabel{tab:converge-1w-5w}{{4.1}{112}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.45}{}} +\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{113}{table.caption.46}} +\newlabel{tab:converge-6w-12w}{{4.2}{113}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.46}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{114}{figure.caption.47}} +\newlabel{proporEachFrag-1a2a}{{4.6}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right)}{figure.caption.47}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}} +\newlabel{small}{{4.3.4}{114}{Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{subsection.4.3.4}{}} \citation{Braud2019} -\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{113}{figure.caption.47}} -\newlabel{proporEachFrag-3a4a-zoom}{{4.7}{113}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.47}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{114}{figure.caption.48}} -\newlabel{proporEachFrag-5a6a-zoom}{{4.8}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.48}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{114}{figure.caption.49}} -\newlabel{proporEachFrag-11a-zoom}{{4.9}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions}{figure.caption.49}{}} -\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{115}{table.caption.52}} -\newlabel{tab:full}{{4.3}{115}{Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \AA $^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }{table.caption.52}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.50}} -\newlabel{proporEachFrag-7a12a-zoom}{{4.10}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.50}{}} -\@writefile{brf}{\backcite{Braud2019}{{116}{4.3.4}{table.caption.52}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{117}{figure.caption.51}} -\newlabel{proporEachFrag-7d12c-zoom}{{4.11}{117}{Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.51}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{118}{figure.caption.53}} -\newlabel{fig-1a-3b}{{4.12}{118}{Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.53}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{119}{figure.caption.54}} -\newlabel{fig-4a-5d}{{4.13}{119}{Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.54}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.55}} -\newlabel{fig-6a-6f}{{4.14}{120}{Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.55}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.56}} -\newlabel{fig-7a-7d}{{4.15}{121}{Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.56}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{115}{figure.caption.48}} +\newlabel{proporEachFrag-3a4a-zoom}{{4.7}{115}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.48}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.49}} +\newlabel{proporEachFrag-5a6a-zoom}{{4.8}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.49}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{116}{figure.caption.50}} +\newlabel{proporEachFrag-11a-zoom}{{4.9}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions}{figure.caption.50}{}} +\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{117}{table.caption.53}} +\newlabel{tab:full}{{4.3}{117}{Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \AA $^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }{table.caption.53}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{118}{figure.caption.51}} +\newlabel{proporEachFrag-7a12a-zoom}{{4.10}{118}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.51}{}} +\@writefile{brf}{\backcite{Braud2019}{{118}{4.3.4}{table.caption.53}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{119}{figure.caption.52}} +\newlabel{proporEachFrag-7d12c-zoom}{{4.11}{119}{Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.52}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.54}} +\newlabel{fig-1a-3b}{{4.12}{120}{Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.54}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.55}} +\newlabel{fig-4a-5d}{{4.13}{121}{Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.55}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{122}{figure.caption.56}} +\newlabel{fig-6a-6f}{{4.14}{122}{Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.56}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{123}{figure.caption.57}} +\newlabel{fig-7a-7d}{{4.15}{123}{Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.57}{}} \citation{Braud2019} -\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{122}{figure.caption.57}} -\newlabel{neutralUloss-Ne-Ar}{{4.16}{122}{Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.57}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}} -\newlabel{large}{{4.3.5}{122}{Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{subsection.4.3.5}{}} -\@writefile{brf}{\backcite{Braud2019}{{122}{4.3.5}{subsection.4.3.5}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{123}{figure.caption.58}} -\newlabel{cross-section-Ne-Ar}{{4.17}{123}{Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.58}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{124}{figure.caption.58}} +\newlabel{neutralUloss-Ne-Ar}{{4.16}{124}{Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.58}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}} +\newlabel{large}{{4.3.5}{124}{Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{subsection.4.3.5}{}} +\@writefile{brf}{\backcite{Braud2019}{{124}{4.3.5}{subsection.4.3.5}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{125}{figure.caption.59}} +\newlabel{cross-section-Ne-Ar}{{4.17}{125}{Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.59}{}} \citation{Braud2019} -\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.59}} -\newlabel{fig-11a-f}{{4.18}{125}{Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.59}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.60}} -\newlabel{fig-12a-f}{{4.19}{125}{Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.60}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}} -\newlabel{mass-spectra}{{4.3.6}{126}{Mass Spectra of Fragments with Excess Proton}{subsection.4.3.6}{}} -\@writefile{brf}{\backcite{Braud2019}{{126}{4.3.6}{subsection.4.3.6}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{126}{figure.caption.61}} -\newlabel{MS-BR-1w-4w-Ne-Ar-branch}{{4.20}{126}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area)}{figure.caption.61}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{127}{figure.caption.62}} -\newlabel{MS-BR-5w-11w-Ne-Ar-branch}{{4.21}{127}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area)}{figure.caption.62}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{128}{figure.caption.63}} -\newlabel{MS-BR-12w-Ne-branch}{{4.22}{128}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green)}{figure.caption.63}{}} -\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{129}{table.caption.64}} -\newlabel{tab:fragenergy}{{4.4}{129}{Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }{table.caption.64}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}} -\newlabel{Concl}{{4.3.7}{129}{Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{subsection.4.3.7}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.60}} +\newlabel{fig-11a-f}{{4.18}{127}{Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.60}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.61}} +\newlabel{fig-12a-f}{{4.19}{127}{Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.61}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}} +\newlabel{mass-spectra}{{4.3.6}{128}{Mass Spectra of Fragments with Excess Proton}{subsection.4.3.6}{}} +\@writefile{brf}{\backcite{Braud2019}{{128}{4.3.6}{subsection.4.3.6}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{128}{figure.caption.62}} +\newlabel{MS-BR-1w-4w-Ne-Ar-branch}{{4.20}{128}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area)}{figure.caption.62}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{129}{figure.caption.63}} +\newlabel{MS-BR-5w-11w-Ne-Ar-branch}{{4.21}{129}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area)}{figure.caption.63}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{130}{figure.caption.64}} +\newlabel{MS-BR-12w-Ne-branch}{{4.22}{130}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green)}{figure.caption.64}{}} +\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{131}{table.caption.65}} +\newlabel{tab:fragenergy}{{4.4}{131}{Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }{table.caption.65}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}} +\newlabel{Concl}{{4.3.7}{131}{Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{subsection.4.3.7}{}} \citation{Chung2011,Saggese2015,Eaves2015,Mao2017,Wang2018} \citation{Kyrtopoulos2001,Farmer2003} \citation{Aumaitre2019} @@ -240,35 +240,35 @@ \citation{Delaunay2015} \citation{Zhen2018} \citation{Chen2018} -\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}} -\@writefile{brf}{\backcite{Eaves2015}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Chung2011}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Saggese2015}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Mao2017}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Wang2018}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Kyrtopoulos2001}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Farmer2003}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Aumaitre2019}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Tielens2008}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Leger1984}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Allamandola1985}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Rapacioli2005}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Berne2008}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Wang2018}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Eschenbach1998}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Goulart2017}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Lei2019}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Joblin2017}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Roser2015}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Lemmens2019}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Joblin2017}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Holm2010}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Gatchell2015}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Gatchell2017}{{131}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Zamith2019thermal}{{131}{4.4.1}{subsection.4.4.1}}} +\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}} +\@writefile{brf}{\backcite{Eaves2015}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Chung2011}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Saggese2015}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Mao2017}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Wang2018}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Kyrtopoulos2001}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Farmer2003}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Aumaitre2019}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Tielens2008}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Leger1984}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Allamandola1985}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Rapacioli2005}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Berne2008}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Wang2018}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Eschenbach1998}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Goulart2017}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Lei2019}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Joblin2017}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Roser2015}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Lemmens2019}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Joblin2017}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Holm2010}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Gatchell2015}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Gatchell2017}{{133}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Zamith2019thermal}{{133}{4.4.1}{subsection.4.4.1}}} \citation{Piacenza2005,Birer2015} \citation{Zhao2008truhlar,Rapacioli2009corr,Mao2017,Bowal2019} \citation{Ricca2013} @@ -283,106 +283,106 @@ \citation{Gatchell2016,Gatchell2016knockout} \citation{Zamith2020threshold} \citation{Zamith2019thermal} -\@writefile{brf}{\backcite{Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Delaunay2015}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Zhen2018}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Chen2018}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Piacenza2005}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Birer2015}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Rapacioli2009corr}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Mao2017}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Zhao2008truhlar}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Bowal2019}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Ricca2013}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Grafenstein2009}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Rapacioli2009}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Joblin2017}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Dontot2019}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Dontot2016}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Dontot2020}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Elstner1998}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Porezag1995}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Seifert1996}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Spiegelman2020}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Rapacioli2011}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Gatchell2016}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Gatchell2016knockout}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Zamith2020threshold}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{brf}{\backcite{Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}} -\newlabel{Eparti}{{4.5}{133}{Calculation of Energies}{equation.4.4.5}{}} -\newlabel{Eintra}{{4.6}{134}{Calculation of Energies}{equation.4.4.6}{}} -\newlabel{Einter}{{4.7}{134}{Calculation of Energies}{equation.4.4.7}{}} -\newlabel{Erotation}{{4.9}{134}{Calculation of Energies}{equation.4.4.9}{}} +\@writefile{brf}{\backcite{Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Delaunay2015}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Zhen2018}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Chen2018}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Piacenza2005}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Birer2015}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Rapacioli2009corr}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Mao2017}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Zhao2008truhlar}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Bowal2019}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Ricca2013}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Grafenstein2009}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Rapacioli2009}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Joblin2017}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Dontot2019}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Dontot2016}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Dontot2020}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Elstner1998}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Porezag1995}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Seifert1996}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Spiegelman2020}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Rapacioli2011}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Gatchell2016}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Gatchell2016knockout}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{brf}{\backcite{Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}} +\newlabel{Eparti}{{4.5}{135}{Calculation of Energies}{equation.4.4.5}{}} +\newlabel{Eintra}{{4.6}{136}{Calculation of Energies}{equation.4.4.6}{}} +\newlabel{Einter}{{4.7}{136}{Calculation of Energies}{equation.4.4.7}{}} +\newlabel{Erotation}{{4.9}{136}{Calculation of Energies}{equation.4.4.9}{}} \citation{Zamith2020threshold} \citation{Levine1987} \citation{Zamith2020threshold} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}} -\@writefile{brf}{\backcite{Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}} -\@writefile{brf}{\backcite{Levine1987}{{135}{4.4.3}{subsection.4.4.3}}} -\@writefile{brf}{\backcite{Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}} +\@writefile{brf}{\backcite{Levine1987}{{137}{4.4.3}{subsection.4.4.3}}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}} \citation{Dontot2019,Zamith2020threshold} -\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{136}{figure.caption.65}} -\newlabel{MDPST}{{4.23}{136}{Principle of MD+PST}{figure.caption.65}{}} -\newlabel{sec:results}{{4.4.4}{137}{Results and Discussion}{subsection.4.4.4}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}} -\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.4}{subsection.4.4.4}}} -\@writefile{brf}{\backcite{Dontot2019}{{137}{4.4.4}{subsection.4.4.4}}} -\newlabel{sec:MS}{{4.4.4.1}{137}{TOFMS Comparison}{subsubsection.4.4.4.1}{}} -\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{137}{figure.caption.66}} -\newlabel{expTOF}{{4.24}{137}{Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model}{figure.caption.66}{}} -\newlabel{sec:MDanalysis}{{4.4.4.2}{138}{Molecular Dynamics Analysis}{subsubsection.4.4.4.2}{}} -\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{139}{figure.caption.67}} -\newlabel{collisions}{{4.25}{139}{Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\AA {} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively)}{figure.caption.67}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{138}{figure.caption.66}} +\newlabel{MDPST}{{4.23}{138}{Principle of MD+PST}{figure.caption.66}{}} +\newlabel{sec:results}{{4.4.4}{139}{Results and Discussion}{subsection.4.4.4}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{139}{4.4.4}{subsection.4.4.4}}} +\@writefile{brf}{\backcite{Dontot2019}{{139}{4.4.4}{subsection.4.4.4}}} +\newlabel{sec:MS}{{4.4.4.1}{139}{TOFMS Comparison}{subsubsection.4.4.4.1}{}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{139}{figure.caption.67}} +\newlabel{expTOF}{{4.24}{139}{Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model}{figure.caption.67}{}} +\newlabel{sec:MDanalysis}{{4.4.4.2}{140}{Molecular Dynamics Analysis}{subsubsection.4.4.4.2}{}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{141}{figure.caption.68}} +\newlabel{collisions}{{4.25}{141}{Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\AA {} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively)}{figure.caption.68}{}} \citation{Chen2014,Gatchell2016knockout} -\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{141}{figure.caption.68}} -\newlabel{distriPerc-Etf-175eV-d-bin03}{{4.26}{141}{Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model}{figure.caption.68}{}} -\@writefile{brf}{\backcite{Gatchell2016knockout}{{141}{4.4.4.2}{figure.caption.69}}} -\@writefile{brf}{\backcite{Chen2014}{{141}{4.4.4.2}{figure.caption.69}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{142}{figure.caption.69}} -\newlabel{fragmentation}{{4.27}{142}{Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\AA {} and a collision energy of 27.5 eV leading to intramolecular fragmentation}{figure.caption.69}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{142}{figure.caption.70}} -\newlabel{opacitycurves}{{4.28}{142}{Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies}{figure.caption.70}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{143}{figure.caption.69}} +\newlabel{distriPerc-Etf-175eV-d-bin03}{{4.26}{143}{Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model}{figure.caption.69}{}} +\@writefile{brf}{\backcite{Gatchell2016knockout}{{143}{4.4.4.2}{figure.caption.70}}} +\@writefile{brf}{\backcite{Chen2014}{{143}{4.4.4.2}{figure.caption.70}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{144}{figure.caption.70}} +\newlabel{fragmentation}{{4.27}{144}{Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\AA {} and a collision energy of 27.5 eV leading to intramolecular fragmentation}{figure.caption.70}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{144}{figure.caption.71}} +\newlabel{opacitycurves}{{4.28}{144}{Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies}{figure.caption.71}{}} \citation{Zamith2020threshold} \citation{Dontot2019,Zamith2020threshold} -\@writefile{brf}{\backcite{Zamith2020threshold}{{143}{4.4.4.2}{figure.caption.70}}} -\@writefile{brf}{\backcite{Zamith2020threshold}{{143}{4.4.4.2}{equation.4.4.12}}} -\@writefile{brf}{\backcite{Dontot2019}{{143}{4.4.4.2}{equation.4.4.12}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{144}{figure.caption.71}} -\newlabel{cross-section}{{4.29}{144}{Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs}{figure.caption.71}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{145}{figure.caption.72}} -\newlabel{transferredE-Ar-300}{{4.30}{145}{At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted}{figure.caption.72}{}} -\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{146}{table.caption.73}} -\newlabel{tab:table1}{{4.5}{146}{The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }{table.caption.73}{}} -\newlabel{separately}{{4.13}{146}{Molecular Dynamics Analysis}{equation.4.4.13}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{147}{figure.caption.74}} -\newlabel{Epartition-Ar-300-SP}{{4.31}{147}{Mean kinetic energy partition at the end of the MD simulations}{figure.caption.74}{}} -\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{148}{table.caption.75}} -\newlabel{tab:table2}{{4.6}{148}{The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\AA .\relax }{table.caption.75}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{148}{figure.caption.76}} -\newlabel{Epartition-Ar-300-Tstep-01}{{4.32}{148}{Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles}{figure.caption.76}{}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{145}{4.4.4.2}{figure.caption.71}}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{145}{4.4.4.2}{equation.4.4.12}}} +\@writefile{brf}{\backcite{Dontot2019}{{145}{4.4.4.2}{equation.4.4.12}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{146}{figure.caption.72}} +\newlabel{cross-section}{{4.29}{146}{Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs}{figure.caption.72}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{147}{figure.caption.73}} +\newlabel{transferredE-Ar-300}{{4.30}{147}{At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted}{figure.caption.73}{}} +\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{148}{table.caption.74}} +\newlabel{tab:table1}{{4.5}{148}{The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }{table.caption.74}{}} +\newlabel{separately}{{4.13}{148}{Molecular Dynamics Analysis}{equation.4.4.13}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{149}{figure.caption.75}} +\newlabel{Epartition-Ar-300-SP}{{4.31}{149}{Mean kinetic energy partition at the end of the MD simulations}{figure.caption.75}{}} +\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{150}{table.caption.76}} +\newlabel{tab:table2}{{4.6}{150}{The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\AA .\relax }{table.caption.76}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{150}{figure.caption.77}} +\newlabel{Epartition-Ar-300-Tstep-01}{{4.32}{150}{Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles}{figure.caption.77}{}} \citation{Dontot2020} -\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{149}{figure.caption.77}} -\newlabel{prot-Ar-300}{{4.33}{149}{Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy}{figure.caption.77}{}} -\@writefile{brf}{\backcite{Dontot2020}{{149}{4.4.4.2}{figure.caption.78}}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{150}{figure.caption.78}} -\newlabel{Epartition-Ar-300-d-ud}{{4.34}{150}{Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy}{figure.caption.78}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{151}{figure.caption.79}} -\newlabel{figuretimescale}{{4.35}{151}{Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue)}{figure.caption.79}{}} -\newlabel{kineticT}{{4.14}{151}{Molecular Dynamics Analysis}{equation.4.4.14}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{152}{figure.caption.80}} -\newlabel{T-time-zoom_abcdef}{{4.36}{152}{Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\AA {}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel}{figure.caption.80}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{153}{figure.caption.81}} -\newlabel{E-time-abcdef}{{4.37}{153}{Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \AA {}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation}{figure.caption.81}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{151}{figure.caption.78}} +\newlabel{prot-Ar-300}{{4.33}{151}{Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy}{figure.caption.78}{}} +\@writefile{brf}{\backcite{Dontot2020}{{151}{4.4.4.2}{figure.caption.79}}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{152}{figure.caption.79}} +\newlabel{Epartition-Ar-300-d-ud}{{4.34}{152}{Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy}{figure.caption.79}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{153}{figure.caption.80}} +\newlabel{figuretimescale}{{4.35}{153}{Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue)}{figure.caption.80}{}} +\newlabel{kineticT}{{4.14}{153}{Molecular Dynamics Analysis}{equation.4.4.14}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{154}{figure.caption.81}} +\newlabel{T-time-zoom_abcdef}{{4.36}{154}{Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\AA {}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel}{figure.caption.81}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{155}{figure.caption.82}} +\newlabel{E-time-abcdef}{{4.37}{155}{Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \AA {}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation}{figure.caption.82}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}} \citation{Chen2014,Gatchell2016knockout} -\@writefile{brf}{\backcite{Gatchell2016knockout}{{155}{4.4.5}{subsection.4.4.5}}} -\@writefile{brf}{\backcite{Chen2014}{{155}{4.4.5}{subsection.4.4.5}}} +\@writefile{brf}{\backcite{Gatchell2016knockout}{{157}{4.4.5}{subsection.4.4.5}}} +\@writefile{brf}{\backcite{Chen2014}{{157}{4.4.5}{subsection.4.4.5}}} \FN@pp@footnotehinttrue \@setckpt{4/collision}{ -\setcounter{page}{157} +\setcounter{page}{159} \setcounter{equation}{14} \setcounter{enumi}{5} \setcounter{enumii}{0} diff --git a/thesis/5/general_conclusion.aux b/thesis/5/general_conclusion.aux index e446dd7..9fdda4b 100644 --- a/thesis/5/general_conclusion.aux +++ b/thesis/5/general_conclusion.aux @@ -1,20 +1,20 @@ \relax \providecommand\hyper@newdestlabel[2]{} \FN@pp@footnotehinttrue -\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}} +\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}} +\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}} \citation{Simon2019,Braud2019} -\@writefile{brf}{\backcite{Braud2019}{{158}{5.1}{section.5.1}}} -\@writefile{brf}{\backcite{Simon2019}{{158}{5.1}{section.5.1}}} +\@writefile{brf}{\backcite{Braud2019}{{160}{5.1}{section.5.1}}} +\@writefile{brf}{\backcite{Simon2019}{{160}{5.1}{section.5.1}}} \citation{Zamith2020threshold,Zheng2021} -\@writefile{brf}{\backcite{Zamith2020threshold}{{160}{5.1}{section.5.1}}} -\@writefile{brf}{\backcite{Zheng2021}{{160}{5.1}{section.5.1}}} -\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}} +\@writefile{brf}{\backcite{Zamith2020threshold}{{162}{5.1}{section.5.1}}} +\@writefile{brf}{\backcite{Zheng2021}{{162}{5.1}{section.5.1}}} +\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}} \FN@pp@footnotehinttrue \@setckpt{5/general_conclusion}{ -\setcounter{page}{162} +\setcounter{page}{164} \setcounter{equation}{0} \setcounter{enumi}{5} \setcounter{enumii}{0} diff --git a/thesis/6_backmatter/declaration.aux b/thesis/6_backmatter/declaration.aux index 0d5f020..35d2650 100644 --- a/thesis/6_backmatter/declaration.aux +++ b/thesis/6_backmatter/declaration.aux @@ -1,7 +1,7 @@ \relax \providecommand\hyper@newdestlabel[2]{} \@setckpt{6_backmatter/declaration}{ -\setcounter{page}{180} +\setcounter{page}{182} \setcounter{equation}{0} \setcounter{enumi}{5} \setcounter{enumii}{0} @@ -21,7 +21,7 @@ \setcounter{ContinuedFloat}{0} \setcounter{pp@next@reset}{1} \setcounter{@fnserial}{0} -\setcounter{NAT@ctr}{483} +\setcounter{NAT@ctr}{485} \setcounter{Item}{5} \setcounter{Hfootnote}{0} \setcounter{bookmark@seq@number}{65} diff --git a/thesis/6_backmatter/references.bib b/thesis/6_backmatter/references.bib index 0edd903..5e447d6 100644 --- a/thesis/6_backmatter/references.bib +++ b/thesis/6_backmatter/references.bib @@ -2,6 +2,27 @@ %% Created for Jakob Suckale at 2007-09-06 11:30:44 +0200 %% Saved with string encoding Unicode (UTF-8) +@article{Kozack1992empiri, + title={Empirical models for the hydration of protons}, + author={Kozack, RE and Jordan, PC}, + journal={J. Chem. Phys.}, + volume={96}, + number={4}, + pages={3131--3136}, + year={1992}, + publisher={American Institute of Physics}} + +@article{Labastie1990, + Author = {Labastie, Pierre and Whetten, Robert L}, + File = {:Users/loliveira/Library/Application Support/Mendeley Desktop/Downloaded/Labastie, Whetten - 1990 - E-.pdf:pdf}, + Journal = {Phys. Rev. Lett.}, + Number = {13}, + Pages = {1567--1570}, + Title = {{Statistical Thermodynamics of the Cluster Solid-Liquid Transition}}, + Volume = {65}, + Year = {1990}} + + @article{Bandow2006, title={Larger water clusters with edges and corners on their way to ice: Structural trends elucidated with an improved parallel evolutionary algorithm}, author={Bandow, Bernhard and Hartke, Bernd}, @@ -1477,7 +1498,7 @@ year = {2010}} Year = {1976}} @article{Stegmaier2011, - title={A Bronze Matryoshka: The Discrete Intermetalloid Cluster [Sn@Cu$_{12}$@Sn$_{20}$]$_{12}^-$ -in the Ternary Phases A$_{12}$Cu$_{12}$Sn$_{21}$ (A= Na, K)}, + title={A Bronze Matryoshka: The Discrete Intermetalloid Cluster [Sn@Cu$_{12}$@Sn$_{20}$]$_{12}^-$ in the Ternary Phases A$_{12}$Cu$_{12}$Sn$_{21}$ (A= Na, K)}, author={Stegmaier, Saskia and Fässler, Thomas F}, journal={J. Am. Chem. Soc.}, volume={133}, diff --git a/thesis/thesis.aux b/thesis/thesis.aux index 15bd30e..ca4e7f8 100644 --- a/thesis/thesis.aux +++ b/thesis/thesis.aux @@ -80,7 +80,7 @@ \bibcite{Kulmala2000}{{33}{}{{}}{{}}} \bibcite{Wang2008}{{34}{}{{}}{{}}} \bibcite{Depalma2014}{{35}{}{{}}{{}}} -\@writefile{toc}{\contentsline {chapter}{References}{163}{chapter*.82}} +\@writefile{toc}{\contentsline {chapter}{References}{165}{chapter*.83}} \bibcite{Katakuse1985}{{36}{}{{}}{{}}} \bibcite{Posthumus2009}{{37}{}{{}}{{}}} \bibcite{Castleman2009}{{38}{}{{}}{{}}} @@ -436,99 +436,101 @@ \bibcite{Pickard2005}{{388}{}{{}}{{}}} \bibcite{Kazimirski2003}{{389}{}{{}}{{}}} \bibcite{Bandow2006}{{390}{}{{}}{{}}} -\bibcite{Maclot2011}{{391}{}{{}}{{}}} -\bibcite{Domaracka2012}{{392}{}{{}}{{}}} -\bibcite{Markush2016}{{393}{}{{}}{{}}} -\bibcite{Wincel2009}{{394}{}{{}}{{}}} -\bibcite{Boudaiffa2000}{{395}{}{{}}{{}}} -\bibcite{Smyth2011}{{396}{}{{}}{{}}} -\bibcite{Siefermann2011}{{397}{}{{}}{{}}} -\bibcite{Alizadeh2013}{{398}{}{{}}{{}}} -\bibcite{Rasmussen2010}{{399}{}{{}}{{}}} -\bibcite{Sadr2014}{{400}{}{{}}{{}}} -\bibcite{Molina2016}{{401}{}{{}}{{}}} -\bibcite{Bakker2008}{{402}{}{{}}{{}}} -\bibcite{Shishkin2000}{{403}{}{{}}{{}}} -\bibcite{Gadre2000}{{404}{}{{}}{{}}} -\bibcite{Van2001diffu}{{405}{}{{}}{{}}} -\bibcite{Gaigeot2001}{{406}{}{{}}{{}}} -\bibcite{Danilov2006}{{407}{}{{}}{{}}} -\bibcite{Bacchus2015}{{408}{}{{}}{{}}} -\bibcite{Dalleska1993}{{409}{}{{}}{{}}} -\bibcite{Zamith2012}{{410}{}{{}}{{}}} -\bibcite{Myers2007}{{411}{}{{}}{{}}} -\bibcite{Hansen2009}{{412}{}{{}}{{}}} -\bibcite{Kurinovich2002}{{413}{}{{}}{{}}} -\bibcite{Magnera1991}{{414}{}{{}}{{}}} -\bibcite{Cheng1998}{{415}{}{{}}{{}}} -\bibcite{Zundel1968}{{416}{}{{}}{{}}} -\bibcite{Brechignac1989}{{417}{}{{}}{{}}} -\bibcite{Brechignac1994}{{418}{}{{}}{{}}} -\bibcite{Wong2004}{{419}{}{{}}{{}}} -\bibcite{Bush2008}{{420}{}{{}}{{}}} -\bibcite{Gatchell2014}{{421}{}{{}}{{}}} -\bibcite{Boering1992}{{422}{}{{}}{{}}} -\bibcite{Wells2005}{{423}{}{{}}{{}}} -\bibcite{Ma1997}{{424}{}{{}}{{}}} -\bibcite{Chowdhury2009}{{425}{}{{}}{{}}} -\bibcite{Sleno2004ion}{{426}{}{{}}{{}}} -\bibcite{Cody1982}{{427}{}{{}}{{}}} -\bibcite{Olsen2007higher}{{428}{}{{}}{{}}} -\bibcite{Hart2011}{{429}{}{{}}{{}}} -\bibcite{Gauthier1991}{{430}{}{{}}{{}}} -\bibcite{Laskin2005}{{431}{}{{}}{{}}} -\bibcite{Mcquinn2009}{{432}{}{{}}{{}}} -\bibcite{Carl2013}{{433}{}{{}}{{}}} -\bibcite{Hofstetter2013}{{434}{}{{}}{{}}} -\bibcite{Coates2017}{{435}{}{{}}{{}}} -\bibcite{Haag2009}{{436}{}{{}}{{}}} -\bibcite{Li1992}{{437}{}{{}}{{}}} -\bibcite{Bobbert2002}{{438}{}{{}}{{}}} -\bibcite{Spasov2000}{{439}{}{{}}{{}}} -\bibcite{Armentrout2008}{{440}{}{{}}{{}}} -\bibcite{Rodgers1998}{{441}{}{{}}{{}}} -\bibcite{Armentrout2007}{{442}{}{{}}{{}}} -\bibcite{Braud2017}{{443}{}{{}}{{}}} -\bibcite{Chirot2006new}{{444}{}{{}}{{}}} -\bibcite{Frenzel2004}{{445}{}{{}}{{}}} -\bibcite{Spiegelman2020}{{446}{}{{}}{{}}} -\bibcite{Simon2017}{{447}{}{{}}{{}}} -\bibcite{Rapacioli2018}{{448}{}{{}}{{}}} -\bibcite{Simon2018}{{449}{}{{}}{{}}} -\bibcite{Warshel1976}{{450}{}{{}}{{}}} -\bibcite{Cui2001}{{451}{}{{}}{{}}} -\bibcite{Iftner2014}{{452}{}{{}}{{}}} -\bibcite{Kukk2015}{{453}{}{{}}{{}}} -\bibcite{Rapacioli2018atomic}{{454}{}{{}}{{}}} -\bibcite{Dontot2019}{{455}{}{{}}{{}}} -\bibcite{Chung2011}{{456}{}{{}}{{}}} -\bibcite{Saggese2015}{{457}{}{{}}{{}}} -\bibcite{Mao2017}{{458}{}{{}}{{}}} -\bibcite{Wang2018}{{459}{}{{}}{{}}} -\bibcite{Kyrtopoulos2001}{{460}{}{{}}{{}}} -\bibcite{Farmer2003}{{461}{}{{}}{{}}} -\bibcite{Aumaitre2019}{{462}{}{{}}{{}}} -\bibcite{Rapacioli2005}{{463}{}{{}}{{}}} -\bibcite{Berne2008}{{464}{}{{}}{{}}} -\bibcite{Eschenbach1998}{{465}{}{{}}{{}}} -\bibcite{Goulart2017}{{466}{}{{}}{{}}} -\bibcite{Lei2019}{{467}{}{{}}{{}}} -\bibcite{Roser2015}{{468}{}{{}}{{}}} -\bibcite{Lemmens2019}{{469}{}{{}}{{}}} -\bibcite{Delaunay2015}{{470}{}{{}}{{}}} -\bibcite{Piacenza2005}{{471}{}{{}}{{}}} -\bibcite{Birer2015}{{472}{}{{}}{{}}} -\bibcite{Zhao2008truhlar}{{473}{}{{}}{{}}} -\bibcite{Bowal2019}{{474}{}{{}}{{}}} -\bibcite{Ricca2013}{{475}{}{{}}{{}}} -\bibcite{Grafenstein2009}{{476}{}{{}}{{}}} -\bibcite{Dontot2016}{{477}{}{{}}{{}}} -\bibcite{Dontot2020}{{478}{}{{}}{{}}} -\bibcite{Rapacioli2011}{{479}{}{{}}{{}}} -\bibcite{Gatchell2016}{{480}{}{{}}{{}}} -\bibcite{Gatchell2016knockout}{{481}{}{{}}{{}}} -\bibcite{Levine1987}{{482}{}{{}}{{}}} -\bibcite{Chen2014}{{483}{}{{}}{{}}} +\bibcite{Kozack1992empiri}{{391}{}{{}}{{}}} +\bibcite{Labastie1990}{{392}{}{{}}{{}}} +\bibcite{Maclot2011}{{393}{}{{}}{{}}} +\bibcite{Domaracka2012}{{394}{}{{}}{{}}} +\bibcite{Markush2016}{{395}{}{{}}{{}}} +\bibcite{Wincel2009}{{396}{}{{}}{{}}} +\bibcite{Boudaiffa2000}{{397}{}{{}}{{}}} +\bibcite{Smyth2011}{{398}{}{{}}{{}}} +\bibcite{Siefermann2011}{{399}{}{{}}{{}}} +\bibcite{Alizadeh2013}{{400}{}{{}}{{}}} +\bibcite{Rasmussen2010}{{401}{}{{}}{{}}} +\bibcite{Sadr2014}{{402}{}{{}}{{}}} +\bibcite{Molina2016}{{403}{}{{}}{{}}} +\bibcite{Bakker2008}{{404}{}{{}}{{}}} +\bibcite{Shishkin2000}{{405}{}{{}}{{}}} +\bibcite{Gadre2000}{{406}{}{{}}{{}}} +\bibcite{Van2001diffu}{{407}{}{{}}{{}}} +\bibcite{Gaigeot2001}{{408}{}{{}}{{}}} +\bibcite{Danilov2006}{{409}{}{{}}{{}}} +\bibcite{Bacchus2015}{{410}{}{{}}{{}}} +\bibcite{Dalleska1993}{{411}{}{{}}{{}}} +\bibcite{Zamith2012}{{412}{}{{}}{{}}} +\bibcite{Myers2007}{{413}{}{{}}{{}}} +\bibcite{Hansen2009}{{414}{}{{}}{{}}} +\bibcite{Kurinovich2002}{{415}{}{{}}{{}}} +\bibcite{Magnera1991}{{416}{}{{}}{{}}} +\bibcite{Cheng1998}{{417}{}{{}}{{}}} +\bibcite{Zundel1968}{{418}{}{{}}{{}}} +\bibcite{Brechignac1989}{{419}{}{{}}{{}}} +\bibcite{Brechignac1994}{{420}{}{{}}{{}}} +\bibcite{Wong2004}{{421}{}{{}}{{}}} +\bibcite{Bush2008}{{422}{}{{}}{{}}} +\bibcite{Gatchell2014}{{423}{}{{}}{{}}} +\bibcite{Boering1992}{{424}{}{{}}{{}}} +\bibcite{Wells2005}{{425}{}{{}}{{}}} +\bibcite{Ma1997}{{426}{}{{}}{{}}} +\bibcite{Chowdhury2009}{{427}{}{{}}{{}}} +\bibcite{Sleno2004ion}{{428}{}{{}}{{}}} +\bibcite{Cody1982}{{429}{}{{}}{{}}} +\bibcite{Olsen2007higher}{{430}{}{{}}{{}}} +\bibcite{Hart2011}{{431}{}{{}}{{}}} +\bibcite{Gauthier1991}{{432}{}{{}}{{}}} +\bibcite{Laskin2005}{{433}{}{{}}{{}}} +\bibcite{Mcquinn2009}{{434}{}{{}}{{}}} +\bibcite{Carl2013}{{435}{}{{}}{{}}} +\bibcite{Hofstetter2013}{{436}{}{{}}{{}}} +\bibcite{Coates2017}{{437}{}{{}}{{}}} +\bibcite{Haag2009}{{438}{}{{}}{{}}} +\bibcite{Li1992}{{439}{}{{}}{{}}} +\bibcite{Bobbert2002}{{440}{}{{}}{{}}} +\bibcite{Spasov2000}{{441}{}{{}}{{}}} +\bibcite{Armentrout2008}{{442}{}{{}}{{}}} +\bibcite{Rodgers1998}{{443}{}{{}}{{}}} +\bibcite{Armentrout2007}{{444}{}{{}}{{}}} +\bibcite{Braud2017}{{445}{}{{}}{{}}} +\bibcite{Chirot2006new}{{446}{}{{}}{{}}} +\bibcite{Frenzel2004}{{447}{}{{}}{{}}} +\bibcite{Spiegelman2020}{{448}{}{{}}{{}}} +\bibcite{Simon2017}{{449}{}{{}}{{}}} +\bibcite{Rapacioli2018}{{450}{}{{}}{{}}} +\bibcite{Simon2018}{{451}{}{{}}{{}}} +\bibcite{Warshel1976}{{452}{}{{}}{{}}} +\bibcite{Cui2001}{{453}{}{{}}{{}}} +\bibcite{Iftner2014}{{454}{}{{}}{{}}} +\bibcite{Kukk2015}{{455}{}{{}}{{}}} +\bibcite{Rapacioli2018atomic}{{456}{}{{}}{{}}} +\bibcite{Dontot2019}{{457}{}{{}}{{}}} +\bibcite{Chung2011}{{458}{}{{}}{{}}} +\bibcite{Saggese2015}{{459}{}{{}}{{}}} +\bibcite{Mao2017}{{460}{}{{}}{{}}} +\bibcite{Wang2018}{{461}{}{{}}{{}}} +\bibcite{Kyrtopoulos2001}{{462}{}{{}}{{}}} +\bibcite{Farmer2003}{{463}{}{{}}{{}}} +\bibcite{Aumaitre2019}{{464}{}{{}}{{}}} +\bibcite{Rapacioli2005}{{465}{}{{}}{{}}} +\bibcite{Berne2008}{{466}{}{{}}{{}}} +\bibcite{Eschenbach1998}{{467}{}{{}}{{}}} +\bibcite{Goulart2017}{{468}{}{{}}{{}}} +\bibcite{Lei2019}{{469}{}{{}}{{}}} +\bibcite{Roser2015}{{470}{}{{}}{{}}} +\bibcite{Lemmens2019}{{471}{}{{}}{{}}} +\bibcite{Delaunay2015}{{472}{}{{}}{{}}} +\bibcite{Piacenza2005}{{473}{}{{}}{{}}} +\bibcite{Birer2015}{{474}{}{{}}{{}}} +\bibcite{Zhao2008truhlar}{{475}{}{{}}{{}}} +\bibcite{Bowal2019}{{476}{}{{}}{{}}} +\bibcite{Ricca2013}{{477}{}{{}}{{}}} +\bibcite{Grafenstein2009}{{478}{}{{}}{{}}} +\bibcite{Dontot2016}{{479}{}{{}}{{}}} +\bibcite{Dontot2020}{{480}{}{{}}{{}}} +\bibcite{Rapacioli2011}{{481}{}{{}}{{}}} +\bibcite{Gatchell2016}{{482}{}{{}}{{}}} +\bibcite{Gatchell2016knockout}{{483}{}{{}}{{}}} +\bibcite{Levine1987}{{484}{}{{}}{{}}} +\bibcite{Chen2014}{{485}{}{{}}{{}}} \FN@pp@footnotehinttrue \@input{6_backmatter/declaration.aux} \providecommand\NAT@force@numbers{}\NAT@force@numbers diff --git a/thesis/thesis.bbl b/thesis/thesis.bbl index 5c8d45a..b5abcfa 100644 --- a/thesis/thesis.bbl +++ b/thesis/thesis.bbl @@ -60,7 +60,7 @@ \bibitem{Stegmaier2011} {\sc Saskia Stegmaier and Thomas~F Fässler}. \newblock {\bf A Bronze Matryoshka: The Discrete Intermetalloid Cluster - [Sn@Cu$_{12}$@Sn$_{20}$]$_{12}^-$ -in the Ternary Phases + [Sn@Cu$_{12}$@Sn$_{20}$]$_{12}^-$ in the Ternary Phases A$_{12}$Cu$_{12}$Sn$_{21}$ (A= Na, K)}. \newblock {\em J. Am. Chem. Soc.}, {\bf 133}(49):19758--19768, 2011. @@ -2367,6 +2367,17 @@ algorithm}. \newblock {\em J. Phys. Chem. A}, {\bf 110}(17):5809--5822, 2006. +\bibitem{Kozack1992empiri} +{\sc RE~Kozack and PC~Jordan}. +\newblock {\bf Empirical models for the hydration of protons}. +\newblock {\em J. Chem. Phys.}, {\bf 96}(4):3131--3136, 1992. + +\bibitem{Labastie1990} +{\sc Pierre Labastie and Robert~L Whetten}. +\newblock {\bf {Statistical Thermodynamics of the Cluster Solid-Liquid + Transition}}. +\newblock {\em Phys. Rev. Lett.}, {\bf 65}(13):1567--1570, 1990. + \bibitem{Maclot2011} {\sc Sylvain Maclot, Michael Capron, R{\'e}mi Maisonny, Arkadiusz {\L}awicki, Alain M{\'e}ry, Jimmy Rangama, Jean-Yves Chesnel, Sadia Bari, Ronnie diff --git a/thesis/thesis.blg b/thesis/thesis.blg index 6a307da..5d02278 100644 --- a/thesis/thesis.blg +++ b/thesis/thesis.blg @@ -12,99 +12,100 @@ A level-1 auxiliary file: 4/collision.aux A level-1 auxiliary file: 5/general_conclusion.aux The style file: Latex/Classes/PhDbiblio-url2.bst A level-1 auxiliary file: 6_backmatter/declaration.aux -Reallocated field_info (elt_size=4) to 18041 items from 5000. +Reallocated field_info (elt_size=4) to 18122 items from 5000. Database file #1: 6_backmatter/references.bib -I was expecting a `,' or a `}'---line 1252 of file 6_backmatter/references.bib +I was expecting a `,' or a `}'---line 1273 of file 6_backmatter/references.bib : : @article{Bernal1933, (Error may have been on previous line) I'm skipping whatever remains of this entry -You're missing a field name---line 1451 of file 6_backmatter/references.bib +You're missing a field name---line 1472 of file 6_backmatter/references.bib : : %howpublished={\url{https://en.wikipedia.org/wiki/Cluster_(physics)}}} (Error may have been on previous line) I'm skipping whatever remains of this entry -Repeated entry---line 2436 of file 6_backmatter/references.bib +Repeated entry---line 2457 of file 6_backmatter/references.bib : @inproceedings{Domaracka2012 : , I'm skipping whatever remains of this entry Warning--I'm ignoring Simon2018's extra "publisher" field ---line 2669 of file 6_backmatter/references.bib -Repeated entry---line 3139 of file 6_backmatter/references.bib +--line 2690 of file 6_backmatter/references.bib +Repeated entry---line 3160 of file 6_backmatter/references.bib : @article{Joblin2017 : , I'm skipping whatever remains of this entry -Repeated entry---line 3276 of file 6_backmatter/references.bib +Repeated entry---line 3297 of file 6_backmatter/references.bib : @article{Wei1991 : , I'm skipping whatever remains of this entry -Repeated entry---line 3296 of file 6_backmatter/references.bib +Repeated entry---line 3317 of file 6_backmatter/references.bib : @article{Liu2006 : , I'm skipping whatever remains of this entry Reallocated str_pool (elt_size=1) to 130000 items from 65000. -I was expecting a `,' or a `}'---line 3649 of file 6_backmatter/references.bib +I was expecting a `,' or a `}'---line 3670 of file 6_backmatter/references.bib : : @article{Hartke1993, (Error may have been on previous line) I'm skipping whatever remains of this entry -Repeated entry---line 3736 of file 6_backmatter/references.bib +Repeated entry---line 3757 of file 6_backmatter/references.bib : @article{Douady2009 : , I'm skipping whatever remains of this entry -Repeated entry---line 3756 of file 6_backmatter/references.bib +Repeated entry---line 3777 of file 6_backmatter/references.bib : @article{Iannuzzi2003 : , I'm skipping whatever remains of this entry -Repeated entry---line 3822 of file 6_backmatter/references.bib +Repeated entry---line 3843 of file 6_backmatter/references.bib : @article{Goursot2007 : , I'm skipping whatever remains of this entry -Repeated entry---line 4048 of file 6_backmatter/references.bib +Repeated entry---line 4069 of file 6_backmatter/references.bib : @book{Kaplan2006 : , I'm skipping whatever remains of this entry -Repeated entry---line 4717 of file 6_backmatter/references.bib +Repeated entry---line 4738 of file 6_backmatter/references.bib : @article{Karplus2002 : , I'm skipping whatever remains of this entry -Repeated entry---line 4746 of file 6_backmatter/references.bib +Repeated entry---line 4767 of file 6_backmatter/references.bib : @book{Allen2017 : , I'm skipping whatever remains of this entry -I was expecting a `,' or a `}'---line 4783 of file 6_backmatter/references.bib +I was expecting a `,' or a `}'---line 4804 of file 6_backmatter/references.bib : : @article{Seifert1996, (Error may have been on previous line) I'm skipping whatever remains of this entry -Repeated entry---line 4913 of file 6_backmatter/references.bib +Repeated entry---line 4934 of file 6_backmatter/references.bib : @article{Becke1993 : , I'm skipping whatever remains of this entry -Repeated entry---line 5150 of file 6_backmatter/references.bib +Repeated entry---line 5171 of file 6_backmatter/references.bib : @article{Raghavachari1989 : , I'm skipping whatever remains of this entry -Repeated entry---line 5160 of file 6_backmatter/references.bib +Repeated entry---line 5181 of file 6_backmatter/references.bib : @article{Purvis1982 : , I'm skipping whatever remains of this entry -Repeated entry---line 5190 of file 6_backmatter/references.bib +Repeated entry---line 5211 of file 6_backmatter/references.bib : @article{Head1994 : , I'm skipping whatever remains of this entry -Repeated entry---line 5226 of file 6_backmatter/references.bib +Repeated entry---line 5247 of file 6_backmatter/references.bib : @article{Vcivzek1966 : , I'm skipping whatever remains of this entry -Repeated entry---line 5356 of file 6_backmatter/references.bib +Repeated entry---line 5377 of file 6_backmatter/references.bib : @book{Jensen2017 : , I'm skipping whatever remains of this entry -Repeated entry---line 5435 of file 6_backmatter/references.bib +Repeated entry---line 5456 of file 6_backmatter/references.bib : @article{Elstner1998 : , I'm skipping whatever remains of this entry +Warning--I didn't find a database entry for "Korchagina2017theor" Warning--can't use both volume and number fields in Castleman1978 Warning--empty journal in Shields2010 Warning--empty year in Shields2010 @@ -117,45 +118,45 @@ Warning--empty year in Unger1993 Warning--empty title in GaussianCode Warning--empty journal in GaussianCode Warning--empty year in GaussianCode -You've used 483 entries, +You've used 485 entries, 2776 wiz_defined-function locations, - 3553 strings with 95767 characters, -and the built_in function-call counts, 222834 in all, are: -= -- 23255 -> -- 9276 + 3564 strings with 96030 characters, +and the built_in function-call counts, 223724 in all, are: += -- 23353 +> -- 9302 < -- 22 -+ -- 3703 -- -- 3164 -* -- 17505 -:= -- 33895 -add.period$ -- 1454 -call.type$ -- 483 -change.case$ -- 2533 ++ -- 3713 +- -- 3172 +* -- 17573 +:= -- 34025 +add.period$ -- 1460 +call.type$ -- 485 +change.case$ -- 2541 chr.to.int$ -- 0 -cite$ -- 495 -duplicate$ -- 6853 -empty$ -- 18846 -format.name$ -- 3164 -if$ -- 51131 +cite$ -- 497 +duplicate$ -- 6881 +empty$ -- 18928 +format.name$ -- 3172 +if$ -- 51339 int.to.chr$ -- 0 -int.to.str$ -- 483 -missing$ -- 505 -newline$ -- 2414 -num.names$ -- 966 -pop$ -- 3763 +int.to.str$ -- 485 +missing$ -- 507 +newline$ -- 2424 +num.names$ -- 970 +pop$ -- 3775 preamble$ -- 1 -purify$ -- 2532 +purify$ -- 2540 quote$ -- 0 -skip$ -- 11314 +skip$ -- 11362 stack$ -- 0 -substring$ -- 13678 -swap$ -- 1972 +substring$ -- 13750 +swap$ -- 1980 text.length$ -- 22 text.prefix$ -- 0 top$ -- 0 -type$ -- 1878 +type$ -- 1886 warning$ -- 12 -while$ -- 1749 -width$ -- 486 -write$ -- 5280 +while$ -- 1757 +width$ -- 488 +write$ -- 5302 (There were 21 error messages) diff --git a/thesis/thesis.brf b/thesis/thesis.brf index 0ab1f61..4ca9983 100644 --- a/thesis/thesis.brf +++ b/thesis/thesis.brf @@ -448,9 +448,9 @@ \backcite {Perkins1984}{{53}{3.2.1}{subsection.3.2.1}} \backcite {Hulthe1997}{{53}{3.2.1}{subsection.3.2.1}} \backcite {Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}} -\backcite {Chang1998}{{53}{3.2.1}{subsection.3.2.1}} -\backcite {Jiang1999}{{53}{3.2.1}{subsection.3.2.1}} -\backcite {Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}} +\backcite {Chang1998}{{54}{3.2.1}{subsection.3.2.1}} +\backcite {Jiang1999}{{54}{3.2.1}{subsection.3.2.1}} +\backcite {Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}} \backcite {Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}} \backcite {Galashev2013}{{54}{3.2.1}{subsection.3.2.1}} \backcite {Lee1996}{{54}{3.2.1}{subsection.3.2.1}} @@ -472,7 +472,7 @@ \backcite {Simon2013water}{{54}{3.2.1}{subsection.3.2.1}} \backcite {Korchagina2016}{{54}{3.2.1}{subsection.3.2.1}} \backcite {Simon2017formation}{{54}{3.2.1}{subsection.3.2.1}} -\backcite {Winget2003}{{54}{3.2.1}{subsection.3.2.1}} +\backcite {Winget2003}{{55}{3.2.1}{subsection.3.2.1}} \backcite {Gaus2013para}{{55}{3.2.1}{subsection.3.2.1}} \backcite {Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}} \backcite {Thompson2003}{{55}{3.2.1}{subsection.3.2.1}} @@ -484,12 +484,12 @@ \backcite {Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}} \backcite {Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}} \backcite {Douady2008}{{59}{3.2.2.2}{subsubsection.3.2.2.2}} -\backcite {Douady2009}{{60}{3.2.2.2}{table.caption.16}} -\backcite {Wang1998}{{60}{3.2.2.2}{table.caption.16}} -\backcite {Jiang1999}{{60}{3.2.2.2}{table.caption.16}} -\backcite {Douady2008}{{60}{3.2.2.2}{table.caption.16}} -\backcite {Morrell2010}{{60}{3.2.2.2}{table.caption.16}} -\backcite {Lee2004}{{60}{3.2.2.2}{table.caption.16}} +\backcite {Douady2009}{{61}{3.2.2.2}{table.caption.16}} +\backcite {Wang1998}{{61}{3.2.2.2}{table.caption.16}} +\backcite {Jiang1999}{{61}{3.2.2.2}{table.caption.16}} +\backcite {Douady2008}{{61}{3.2.2.2}{table.caption.16}} +\backcite {Morrell2010}{{61}{3.2.2.2}{table.caption.16}} +\backcite {Lee2004}{{61}{3.2.2.2}{table.caption.16}} \backcite {Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}} \backcite {Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}} \backcite {Douady2008}{{61}{3.2.2.3}{subsubsection.3.2.2.3}} @@ -518,231 +518,239 @@ \backcite {Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}} \backcite {Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}} \backcite {Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} +\backcite {Douady2008}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} \backcite {Kazimirski2003}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} \backcite {Bandow2006}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} -\backcite {Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} -\backcite {Castrovilli2017}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Maclot2011}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Domaracka2012}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Markush2016}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Wincel2009}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Boudaiffa2000}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Smyth2011}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Siefermann2011}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Alizadeh2013}{{75}{3.3.1}{subsection.3.3.1}} -\backcite {Rasmussen2010}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Coates2018}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Nelson1994}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Sadr2014}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Molina2016}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Bakker2008}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Gadre2000}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Gadre2000}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Gadre2000}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}} -\backcite {Braud2019}{{77}{3.3.1}{subsection.3.3.1}} -\backcite {Dalleska1993}{{78}{3.3.2.1}{figure.caption.23}} -\backcite {Zamith2012}{{78}{3.3.2.1}{figure.caption.23}} -\backcite {Myers2007}{{78}{3.3.2.1}{equation.3.3.3}} -\backcite {Zamith2012}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Bakker2008}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}} -\backcite {Dalleska1993}{{80}{3.14}{figure.caption.24}} -\backcite {Zamith2012}{{80}{3.14}{figure.caption.24}} -\backcite {Kurinovich2002}{{81}{3.3.2.1}{figure.caption.25}} -\backcite {Magnera1991}{{81}{3.3.2.1}{figure.caption.25}} -\backcite {Cheng1998}{{81}{3.3.2.1}{figure.caption.25}} -\backcite {Cheng1998}{{81}{3.3.2.1}{figure.caption.25}} -\backcite {Bakker2008}{{81}{3.3.2.1}{figure.caption.26}} -\backcite {Magnera1991}{{82}{3.16}{figure.caption.26}} -\backcite {Cheng1998}{{82}{3.16}{figure.caption.26}} -\backcite {Kurinovich2002}{{82}{3.16}{figure.caption.26}} -\backcite {Wolken2000}{{84}{3.3.2.2}{table.caption.28}} -\backcite {Pedersen2014}{{84}{3.3.2.2}{table.caption.28}} -\backcite {Pedersen2014}{{84}{3.3.2.2}{table.caption.28}} -\backcite {Bakker2008}{{84}{3.3.2.2}{table.caption.28}} -\backcite {Zundel1968}{{88}{3.3.2.2}{figure.caption.34}} -\backcite {Molina2015}{{92}{3.3.2.2}{figure.caption.38}} -\backcite {Molina2016}{{92}{3.3.2.2}{figure.caption.38}} -\backcite {Brechignac1989}{{97}{4.1}{section.4.1}} -\backcite {Brechignac1994}{{97}{4.1}{section.4.1}} -\backcite {Wong2004}{{97}{4.1}{section.4.1}} -\backcite {Bush2008}{{97}{4.1}{section.4.1}} -\backcite {Holm2010}{{98}{4.1}{section.4.1}} -\backcite {Gatchell2017}{{98}{4.1}{section.4.1}} -\backcite {Gatchell2014}{{98}{4.1}{section.4.1}} -\backcite {Zamith2019thermal}{{98}{4.1}{section.4.1}} -\backcite {Boering1992}{{98}{4.1}{section.4.1}} -\backcite {Wells2005}{{98}{4.1}{section.4.1}} -\backcite {Ma1997}{{98}{4.1}{section.4.1}} -\backcite {Chowdhury2009}{{98}{4.1}{section.4.1}} -\backcite {Nelson1994}{{98}{4.1}{section.4.1}} -\backcite {Molina2015}{{98}{4.1}{section.4.1}} -\backcite {Carl2007}{{98}{4.1}{section.4.1}} -\backcite {Wells2005}{{98}{4.1}{section.4.1}} -\backcite {Sleno2004ion}{{98}{4.1}{section.4.1}} -\backcite {Cody1982}{{98}{4.1}{section.4.1}} -\backcite {Olsen2007higher}{{98}{4.1}{section.4.1}} -\backcite {Hart2011}{{98}{4.1}{section.4.1}} -\backcite {Gauthier1991}{{98}{4.1}{section.4.1}} -\backcite {Laskin2005}{{98}{4.1}{section.4.1}} -\backcite {Coates2018}{{98}{4.1}{section.4.1}} -\backcite {Mcquinn2009}{{98}{4.1}{section.4.1}} -\backcite {Carl2013}{{98}{4.1}{section.4.1}} -\backcite {Hofstetter2013}{{98}{4.1}{section.4.1}} -\backcite {Coates2017}{{98}{4.1}{section.4.1}} -\backcite {Graul1989}{{98}{4.1}{section.4.1}} -\backcite {Wei1991}{{98}{4.1}{section.4.1}} -\backcite {Goebbert2006}{{98}{4.1}{section.4.1}} -\backcite {Haag2009}{{98}{4.1}{section.4.1}} -\backcite {Liu2006}{{98}{4.1}{section.4.1}} -\backcite {Nguyen2011}{{98}{4.1}{section.4.1}} -\backcite {Shuck2014}{{98}{4.1}{section.4.1}} -\backcite {Castrovilli2017}{{98}{4.1}{section.4.1}} -\backcite {Bera2018}{{98}{4.1}{section.4.1}} -\backcite {Liu2006}{{99}{4.1}{section.4.1}} -\backcite {Castrovilli2017}{{99}{4.1}{section.4.1}} -\backcite {Markush2016}{{99}{4.1}{section.4.1}} -\backcite {Bakker2008}{{99}{4.1}{section.4.1}} -\backcite {Li1992}{{99}{4.1}{section.4.1}} -\backcite {Bobbert2002}{{99}{4.1}{section.4.1}} -\backcite {Coates2018}{{99}{4.1}{section.4.1}} -\backcite {Carl2013}{{99}{4.1}{section.4.1}} -\backcite {Hofstetter2013}{{99}{4.1}{section.4.1}} -\backcite {Dawson1982}{{99}{4.1}{section.4.1}} -\backcite {Bakker2008}{{99}{4.1}{section.4.1}} -\backcite {Zamith2012}{{99}{4.1}{section.4.1}} -\backcite {Mcquinn2009}{{99}{4.1}{section.4.1}} -\backcite {Liu2006}{{99}{4.1}{section.4.1}} -\backcite {Coates2018}{{99}{4.1}{section.4.1}} -\backcite {Carl2013}{{99}{4.1}{section.4.1}} -\backcite {Hofstetter2013}{{99}{4.1}{section.4.1}} -\backcite {Spasov2000}{{99}{4.1}{section.4.1}} -\backcite {Armentrout2008}{{99}{4.1}{section.4.1}} -\backcite {Braud2019}{{99}{4.1}{section.4.1}} -\backcite {Zamith2020threshold}{{99}{4.1}{section.4.1}} -\backcite {Klippenstein1992}{{99}{4.1.1}{subsection.4.1.1}} -\backcite {Baer1996}{{99}{4.1.1}{subsection.4.1.1}} -\backcite {Armentrout2008}{{100}{4.1.1}{subsection.4.1.1}} -\backcite {Rodgers1998}{{100}{4.1.1}{equation.4.1.1}} -\backcite {Armentrout2007}{{100}{4.1.1}{equation.4.1.1}} -\backcite {Braud2017}{{100}{4.1.2}{figure.caption.39}} -\backcite {Chirot2006new}{{102}{4.1.2}{figure.caption.39}} -\backcite {Elstner1998}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Elstner2014}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Porezag1995}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Seifert1996}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Frenzel2004}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Spiegelman2020}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Korchagina2017}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Simon2017}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Rapacioli2018}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Simon2018}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Warshel1976}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Cui2001}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Iftner2014}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Kukk2015}{{102}{4.2.1}{subsection.4.2.1}} -\backcite {Kukk2015}{{103}{4.2.1}{subsection.4.2.1}} -\backcite {Simon2017}{{103}{4.2.1}{subsection.4.2.1}} -\backcite {Simon2017}{{103}{4.2.1}{subsection.4.2.1}} -\backcite {Simon2018}{{103}{4.2.1}{subsection.4.2.1}} -\backcite {Rapacioli2018atomic}{{103}{4.2.1}{subsection.4.2.1}} -\backcite {Dontot2019}{{103}{4.2.2}{subsection.4.2.2}} -\backcite {Nose1984}{{103}{4.2.2}{subsection.4.2.2}} -\backcite {Hoover1985}{{103}{4.2.2}{subsection.4.2.2}} -\backcite {Braud2019}{{105}{4.3.1}{subsection.4.3.1}} -\backcite {Braud2019}{{109}{4.3.3}{subsection.4.3.3}} -\backcite {Braud2019}{{116}{4.3.4}{table.caption.52}} -\backcite {Braud2019}{{122}{4.3.5}{subsection.4.3.5}} -\backcite {Braud2019}{{126}{4.3.6}{subsection.4.3.6}} -\backcite {Eaves2015}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Chung2011}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Saggese2015}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Mao2017}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Wang2018}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Kyrtopoulos2001}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Farmer2003}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Aumaitre2019}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Tielens2008}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Leger1984}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Allamandola1985}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Rapacioli2005}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Berne2008}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Wang2018}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Eschenbach1998}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Goulart2017}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Lei2019}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Joblin2017}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Roser2015}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Lemmens2019}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Joblin2017}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Holm2010}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Gatchell2015}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Gatchell2017}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Zamith2019thermal}{{131}{4.4.1}{subsection.4.4.1}} -\backcite {Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Delaunay2015}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Zhen2018}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Chen2018}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Piacenza2005}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Birer2015}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Rapacioli2009corr}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Mao2017}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Zhao2008truhlar}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Bowal2019}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Ricca2013}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Grafenstein2009}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Rapacioli2009}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Joblin2017}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Dontot2019}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Dontot2016}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Dontot2020}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Elstner1998}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Porezag1995}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Seifert1996}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Spiegelman2020}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Rapacioli2011}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Gatchell2016}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Gatchell2016knockout}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Zamith2020threshold}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}} -\backcite {Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}} -\backcite {Levine1987}{{135}{4.4.3}{subsection.4.4.3}} -\backcite {Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}} -\backcite {Zamith2020threshold}{{137}{4.4.4}{subsection.4.4.4}} -\backcite {Dontot2019}{{137}{4.4.4}{subsection.4.4.4}} -\backcite {Gatchell2016knockout}{{141}{4.4.4.2}{figure.caption.69}} -\backcite {Chen2014}{{141}{4.4.4.2}{figure.caption.69}} -\backcite {Zamith2020threshold}{{143}{4.4.4.2}{figure.caption.70}} -\backcite {Zamith2020threshold}{{143}{4.4.4.2}{equation.4.4.12}} -\backcite {Dontot2019}{{143}{4.4.4.2}{equation.4.4.12}} -\backcite {Dontot2020}{{149}{4.4.4.2}{figure.caption.78}} -\backcite {Gatchell2016knockout}{{155}{4.4.5}{subsection.4.4.5}} -\backcite {Chen2014}{{155}{4.4.5}{subsection.4.4.5}} -\backcite {Braud2019}{{158}{5.1}{section.5.1}} -\backcite {Simon2019}{{158}{5.1}{section.5.1}} -\backcite {Zamith2020threshold}{{160}{5.1}{section.5.1}} -\backcite {Zheng2021}{{160}{5.1}{section.5.1}} +\backcite {Kozack1992polar}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} +\backcite {Kozack1992empiri}{{73}{3.2.2.5}{subsubsection.3.2.2.5}} +\backcite {Douady2009}{{74}{3.2.2.5}{figure.caption.22}} +\backcite {Labastie1990}{{74}{3.2.2.5}{figure.caption.22}} +\backcite {Korchagina2017}{{75}{3.2.2.5}{equation.3.2.1}} +\backcite {Douady2009}{{75}{3.2.2.5}{equation.3.2.1}} +\backcite {Korchagina2017}{{75}{3.2.2.5}{equation.3.2.1}} +\backcite {Korchagina2017}{{75}{3.2.2.5}{equation.3.2.1}} +\backcite {Castrovilli2017}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Maclot2011}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Domaracka2012}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Markush2016}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Wincel2009}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Boudaiffa2000}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Smyth2011}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Siefermann2011}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Alizadeh2013}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Rasmussen2010}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Coates2018}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Nelson1994}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Sadr2014}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Molina2016}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Bakker2008}{{77}{3.3.1}{subsection.3.3.1}} +\backcite {Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Gadre2000}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Gadre2000}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Gadre2000}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Braud2019}{{78}{3.3.1}{subsection.3.3.1}} +\backcite {Dalleska1993}{{79}{3.3.2.1}{figure.caption.24}} +\backcite {Zamith2012}{{79}{3.3.2.1}{figure.caption.24}} +\backcite {Myers2007}{{80}{3.3.2.1}{equation.3.3.4}} +\backcite {Zamith2012}{{80}{3.3.2.1}{equation.3.3.4}} +\backcite {Dalleska1993}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Dalleska1993}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Hansen2009}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Wincel2009}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Bakker2008}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Dalleska1993}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Hansen2009}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Wincel2009}{{81}{3.3.2.1}{equation.3.3.4}} +\backcite {Dalleska1993}{{81}{3.15}{figure.caption.25}} +\backcite {Zamith2012}{{81}{3.15}{figure.caption.25}} +\backcite {Kurinovich2002}{{83}{3.3.2.1}{figure.caption.26}} +\backcite {Magnera1991}{{83}{3.3.2.1}{figure.caption.26}} +\backcite {Cheng1998}{{83}{3.3.2.1}{figure.caption.26}} +\backcite {Cheng1998}{{83}{3.3.2.1}{figure.caption.26}} +\backcite {Bakker2008}{{83}{3.3.2.1}{figure.caption.27}} +\backcite {Magnera1991}{{84}{3.17}{figure.caption.27}} +\backcite {Cheng1998}{{84}{3.17}{figure.caption.27}} +\backcite {Kurinovich2002}{{84}{3.17}{figure.caption.27}} +\backcite {Wolken2000}{{85}{3.3.2.2}{table.caption.29}} +\backcite {Pedersen2014}{{85}{3.3.2.2}{table.caption.29}} +\backcite {Pedersen2014}{{86}{3.3.2.2}{table.caption.29}} +\backcite {Bakker2008}{{86}{3.3.2.2}{table.caption.29}} +\backcite {Zundel1968}{{89}{3.3.2.2}{figure.caption.35}} +\backcite {Molina2015}{{93}{3.3.2.2}{figure.caption.39}} +\backcite {Molina2016}{{93}{3.3.2.2}{figure.caption.39}} +\backcite {Brechignac1989}{{99}{4.1}{section.4.1}} +\backcite {Brechignac1994}{{99}{4.1}{section.4.1}} +\backcite {Wong2004}{{99}{4.1}{section.4.1}} +\backcite {Bush2008}{{99}{4.1}{section.4.1}} +\backcite {Holm2010}{{100}{4.1}{section.4.1}} +\backcite {Gatchell2017}{{100}{4.1}{section.4.1}} +\backcite {Gatchell2014}{{100}{4.1}{section.4.1}} +\backcite {Zamith2019thermal}{{100}{4.1}{section.4.1}} +\backcite {Boering1992}{{100}{4.1}{section.4.1}} +\backcite {Wells2005}{{100}{4.1}{section.4.1}} +\backcite {Ma1997}{{100}{4.1}{section.4.1}} +\backcite {Chowdhury2009}{{100}{4.1}{section.4.1}} +\backcite {Nelson1994}{{100}{4.1}{section.4.1}} +\backcite {Molina2015}{{100}{4.1}{section.4.1}} +\backcite {Carl2007}{{100}{4.1}{section.4.1}} +\backcite {Wells2005}{{100}{4.1}{section.4.1}} +\backcite {Sleno2004ion}{{100}{4.1}{section.4.1}} +\backcite {Cody1982}{{100}{4.1}{section.4.1}} +\backcite {Olsen2007higher}{{100}{4.1}{section.4.1}} +\backcite {Hart2011}{{100}{4.1}{section.4.1}} +\backcite {Gauthier1991}{{100}{4.1}{section.4.1}} +\backcite {Laskin2005}{{100}{4.1}{section.4.1}} +\backcite {Coates2018}{{100}{4.1}{section.4.1}} +\backcite {Mcquinn2009}{{100}{4.1}{section.4.1}} +\backcite {Carl2013}{{100}{4.1}{section.4.1}} +\backcite {Hofstetter2013}{{100}{4.1}{section.4.1}} +\backcite {Coates2017}{{100}{4.1}{section.4.1}} +\backcite {Graul1989}{{100}{4.1}{section.4.1}} +\backcite {Wei1991}{{100}{4.1}{section.4.1}} +\backcite {Goebbert2006}{{100}{4.1}{section.4.1}} +\backcite {Haag2009}{{100}{4.1}{section.4.1}} +\backcite {Liu2006}{{100}{4.1}{section.4.1}} +\backcite {Nguyen2011}{{100}{4.1}{section.4.1}} +\backcite {Shuck2014}{{100}{4.1}{section.4.1}} +\backcite {Castrovilli2017}{{100}{4.1}{section.4.1}} +\backcite {Bera2018}{{100}{4.1}{section.4.1}} +\backcite {Liu2006}{{101}{4.1}{section.4.1}} +\backcite {Castrovilli2017}{{101}{4.1}{section.4.1}} +\backcite {Markush2016}{{101}{4.1}{section.4.1}} +\backcite {Bakker2008}{{101}{4.1}{section.4.1}} +\backcite {Li1992}{{101}{4.1}{section.4.1}} +\backcite {Bobbert2002}{{101}{4.1}{section.4.1}} +\backcite {Coates2018}{{101}{4.1}{section.4.1}} +\backcite {Carl2013}{{101}{4.1}{section.4.1}} +\backcite {Hofstetter2013}{{101}{4.1}{section.4.1}} +\backcite {Dawson1982}{{101}{4.1}{section.4.1}} +\backcite {Bakker2008}{{101}{4.1}{section.4.1}} +\backcite {Zamith2012}{{101}{4.1}{section.4.1}} +\backcite {Mcquinn2009}{{101}{4.1}{section.4.1}} +\backcite {Liu2006}{{101}{4.1}{section.4.1}} +\backcite {Coates2018}{{101}{4.1}{section.4.1}} +\backcite {Carl2013}{{101}{4.1}{section.4.1}} +\backcite {Hofstetter2013}{{101}{4.1}{section.4.1}} +\backcite {Spasov2000}{{101}{4.1}{section.4.1}} +\backcite {Armentrout2008}{{101}{4.1}{section.4.1}} +\backcite {Braud2019}{{101}{4.1}{section.4.1}} +\backcite {Zamith2020threshold}{{101}{4.1}{section.4.1}} +\backcite {Klippenstein1992}{{101}{4.1.1}{subsection.4.1.1}} +\backcite {Baer1996}{{101}{4.1.1}{subsection.4.1.1}} +\backcite {Armentrout2008}{{102}{4.1.1}{subsection.4.1.1}} +\backcite {Rodgers1998}{{102}{4.1.1}{equation.4.1.1}} +\backcite {Armentrout2007}{{102}{4.1.1}{equation.4.1.1}} +\backcite {Braud2017}{{102}{4.1.2}{figure.caption.40}} +\backcite {Chirot2006new}{{104}{4.1.2}{figure.caption.40}} +\backcite {Elstner1998}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Elstner2014}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Porezag1995}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Seifert1996}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Frenzel2004}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Spiegelman2020}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Korchagina2017}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Simon2017}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Rapacioli2018}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Simon2018}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Warshel1976}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Cui2001}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Iftner2014}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Kukk2015}{{104}{4.2.1}{subsection.4.2.1}} +\backcite {Kukk2015}{{105}{4.2.1}{subsection.4.2.1}} +\backcite {Simon2017}{{105}{4.2.1}{subsection.4.2.1}} +\backcite {Simon2017}{{105}{4.2.1}{subsection.4.2.1}} +\backcite {Simon2018}{{105}{4.2.1}{subsection.4.2.1}} +\backcite {Rapacioli2018atomic}{{105}{4.2.1}{subsection.4.2.1}} +\backcite {Dontot2019}{{105}{4.2.2}{subsection.4.2.2}} +\backcite {Nose1984}{{105}{4.2.2}{subsection.4.2.2}} +\backcite {Hoover1985}{{105}{4.2.2}{subsection.4.2.2}} +\backcite {Braud2019}{{107}{4.3.1}{subsection.4.3.1}} +\backcite {Braud2019}{{111}{4.3.3}{subsection.4.3.3}} +\backcite {Braud2019}{{118}{4.3.4}{table.caption.53}} +\backcite {Braud2019}{{124}{4.3.5}{subsection.4.3.5}} +\backcite {Braud2019}{{128}{4.3.6}{subsection.4.3.6}} +\backcite {Eaves2015}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Chung2011}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Saggese2015}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Mao2017}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Wang2018}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Kyrtopoulos2001}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Farmer2003}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Aumaitre2019}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Tielens2008}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Leger1984}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Allamandola1985}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Rapacioli2005}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Berne2008}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Wang2018}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Eschenbach1998}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Goulart2017}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Lei2019}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Joblin2017}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Roser2015}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Lemmens2019}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Joblin2017}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Holm2010}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Gatchell2015}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Gatchell2017}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Zamith2019thermal}{{133}{4.4.1}{subsection.4.4.1}} +\backcite {Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Delaunay2015}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Zhen2018}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Chen2018}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Piacenza2005}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Birer2015}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Rapacioli2009corr}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Mao2017}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Zhao2008truhlar}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Bowal2019}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Ricca2013}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Grafenstein2009}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Rapacioli2009}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Joblin2017}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Dontot2019}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Dontot2016}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Dontot2020}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Elstner1998}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Porezag1995}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Seifert1996}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Spiegelman2020}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Rapacioli2011}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Gatchell2016}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Gatchell2016knockout}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Zamith2020threshold}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}} +\backcite {Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}} +\backcite {Levine1987}{{137}{4.4.3}{subsection.4.4.3}} +\backcite {Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}} +\backcite {Zamith2020threshold}{{139}{4.4.4}{subsection.4.4.4}} +\backcite {Dontot2019}{{139}{4.4.4}{subsection.4.4.4}} +\backcite {Gatchell2016knockout}{{143}{4.4.4.2}{figure.caption.70}} +\backcite {Chen2014}{{143}{4.4.4.2}{figure.caption.70}} +\backcite {Zamith2020threshold}{{145}{4.4.4.2}{figure.caption.71}} +\backcite {Zamith2020threshold}{{145}{4.4.4.2}{equation.4.4.12}} +\backcite {Dontot2019}{{145}{4.4.4.2}{equation.4.4.12}} +\backcite {Dontot2020}{{151}{4.4.4.2}{figure.caption.79}} +\backcite {Gatchell2016knockout}{{157}{4.4.5}{subsection.4.4.5}} +\backcite {Chen2014}{{157}{4.4.5}{subsection.4.4.5}} +\backcite {Braud2019}{{160}{5.1}{section.5.1}} +\backcite {Simon2019}{{160}{5.1}{section.5.1}} +\backcite {Zamith2020threshold}{{162}{5.1}{section.5.1}} +\backcite {Zheng2021}{{162}{5.1}{section.5.1}} diff --git a/thesis/thesis.log b/thesis/thesis.log index a5f5ae7..1dca63f 100644 --- a/thesis/thesis.log +++ b/thesis/thesis.log @@ -1,4 +1,4 @@ -This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex 2018.9.24) 15 JUN 2021 21:27 +This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex 2018.9.24) 16 JUN 2021 00:17 entering extended mode restricted \write18 enabled. %&-line parsing enabled. @@ -980,27 +980,27 @@ LaTeX Warning: `h' float specifier changed to `ht'. <3/figures/uracil.pdf, id=1526, 853.1875pt x 422.57875pt> File: 3/figures/uracil.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/uracil.pdf used on input line 82. +Package pdftex.def Info: 3/figures/uracil.pdf used on input line 81. (pdftex.def) Requested size: 206.28247pt x 102.16893pt. LaTeX Warning: `!h' float specifier changed to `!ht'. [51] [52 <./3/figures/uracil.pdf>] [53] [54] -<3/figures/E-distance-nh4-w.png, id=1677, 735.74875pt x 766.865pt> +<3/figures/E-distance-nh4-w.png, id=1676, 735.74875pt x 766.865pt> File: 3/figures/E-distance-nh4-w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/E-distance-nh4-w.png used on input line 200 +Package pdftex.def Info: 3/figures/E-distance-nh4-w.png used on input line 191 . (pdftex.def) Requested size: 247.54149pt x 258.00423pt. LaTeX Warning: `!h' float specifier changed to `!ht'. -<3/figures/E-distance-nh3-w.png, id=1678, 758.835pt x 763.85374pt> +<3/figures/E-distance-nh3-w.png, id=1677, 758.835pt x 763.85374pt> File: 3/figures/E-distance-nh3-w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/E-distance-nh3-w.png used on input line 208 +Package pdftex.def Info: 3/figures/E-distance-nh3-w.png used on input line 199 . (pdftex.def) Requested size: 247.54149pt x 249.1703pt. @@ -1011,179 +1011,182 @@ png>] <3/figures/dimers.png, id=1701, 489.83pt x 425.59pt> File: 3/figures/dimers.png Graphic file (type png) -Package pdftex.def Info: 3/figures/dimers.png used on input line 245. +Package pdftex.def Info: 3/figures/dimers.png used on input line 236. (pdftex.def) Requested size: 123.77074pt x 107.53368pt. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 258. +(hyperref) removing `subscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 258. +(hyperref) removing `subscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 258. +(hyperref) removing `subscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `superscript' on input line 258. +(hyperref) removing `superscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 258. +(hyperref) removing `subscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 258. +(hyperref) removing `subscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 258. +(hyperref) removing `subscript' on input line 249. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 258. +(hyperref) removing `math shift' on input line 249. [58 <./3/figures/dimers.png>] <3/figures/nh3-nh4-1w.png, id=1718, 312.16624pt x 555.07375pt> File: 3/figures/nh3-nh4-1w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/nh3-nh4-1w.png used on input line 282. +Package pdftex.def Info: 3/figures/nh3-nh4-1w.png used on input line 273. (pdftex.def) Requested size: 82.51172pt x 146.71269pt. <3/figures/nh3-nh4-2w.png, id=1719, 695.59875pt x 513.92pt> File: 3/figures/nh3-nh4-2w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/nh3-nh4-2w.png used on input line 291. +Package pdftex.def Info: 3/figures/nh3-nh4-2w.png used on input line 282. (pdftex.def) Requested size: 206.28247pt x 152.40494pt. -<3/figures/nh3-nh4-3w.png, id=1720, 747.79375pt x 888.31876pt> -File: 3/figures/nh3-nh4-3w.png Graphic file (type png) - -Package pdftex.def Info: 3/figures/nh3-nh4-3w.png used on input line 300. -(pdftex.def) Requested size: 206.28247pt x 245.0407pt. LaTeX Warning: `!h' float specifier changed to `!ht'. -[59 <./3/figures/nh3-nh4-1w.png> <./3/figures/nh3-nh4-2w.png>] [60 <./3/figures +<3/figures/nh3-nh4-3w.png, id=1720, 747.79375pt x 888.31876pt> +File: 3/figures/nh3-nh4-3w.png Graphic file (type png) + +Package pdftex.def Info: 3/figures/nh3-nh4-3w.png used on input line 291. +(pdftex.def) Requested size: 206.28247pt x 245.0407pt. + +LaTeX Warning: `!h' float specifier changed to `!ht'. + +[59 <./3/figures/nh3-nh4-1w.png>] [60 <./3/figures/nh3-nh4-2w.png> <./3/figures /nh3-nh4-3w.png>] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 341. +(hyperref) removing `subscript' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 341. +(hyperref) removing `subscript' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 341. +(hyperref) removing `subscript' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `superscript' on input line 341. +(hyperref) removing `superscript' on input line 332. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 341. +(hyperref) removing `math shift' on input line 332. -<3/figures/nh4-4-6w.png, id=1756, 1189.44376pt x 887.315pt> +<3/figures/nh4-4-6w.png, id=1755, 1189.44376pt x 887.315pt> File: 3/figures/nh4-4-6w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/nh4-4-6w.png used on input line 353. +Package pdftex.def Info: 3/figures/nh4-4-6w.png used on input line 344. (pdftex.def) Requested size: 371.30594pt x 276.98738pt. LaTeX Warning: `!h' float specifier changed to `!ht'. -LaTeX Warning: Float too large for page by 46.56264pt on input line 408. +LaTeX Warning: Float too large for page by 46.56264pt on input line 399. [61] [62] [63 <./3/figures/nh4-4-6w.png>] [64] <3/figures/nh4-7-10w.png, id=1796, 1093.08376pt x 902.37125pt> File: 3/figures/nh4-7-10w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/nh4-7-10w.png used on input line 423. +Package pdftex.def Info: 3/figures/nh4-7-10w.png used on input line 414. (pdftex.def) Requested size: 412.56496pt x 340.57767pt. @@ -1192,44 +1195,44 @@ LaTeX Warning: `!h' float specifier changed to `!ht'. [65] [66 <./3/figures/nh4-7-10w.png>] [67] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 444. +(hyperref) removing `math shift' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 444. +(hyperref) removing `subscript' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 444. +(hyperref) removing `math shift' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 444. +(hyperref) removing `math shift' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 444. +(hyperref) removing `subscript' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 444. +(hyperref) removing `math shift' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 444. +(hyperref) removing `math shift' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 444. +(hyperref) removing `subscript' on input line 435. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 444. +(hyperref) removing `math shift' on input line 435. <3/figures/nh3-4-7w.png, id=1828, 911.405pt x 861.2175pt> File: 3/figures/nh3-4-7w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/nh3-4-7w.png used on input line 449. +Package pdftex.def Info: 3/figures/nh3-4-7w.png used on input line 440. (pdftex.def) Requested size: 412.56496pt x 389.85713pt. LaTeX Warning: `!h' float specifier changed to `!ht'. @@ -1238,7 +1241,7 @@ LaTeX Warning: `!h' float specifier changed to `!ht'. <3/figures/nh3-8-10w.png, id=1852, 937.5025pt x 854.19125pt> File: 3/figures/nh3-8-10w.png Graphic file (type png) -Package pdftex.def Info: 3/figures/nh3-8-10w.png used on input line 472. +Package pdftex.def Info: 3/figures/nh3-8-10w.png used on input line 463. (pdftex.def) Requested size: 412.56496pt x 375.89745pt. @@ -1247,318 +1250,341 @@ LaTeX Warning: `!h' float specifier changed to `!ht'. [71] [72 <./3/figures/nh3-8-10w.png>] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 488. +(hyperref) removing `subscript' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 488. +(hyperref) removing `subscript' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 488. +(hyperref) removing `subscript' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `superscript' on input line 488. +(hyperref) removing `superscript' on input line 479. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 488. +(hyperref) removing `math shift' on input line 479. -<3/figures/nh3-nh4-20w.jpeg, id=1875, 465.74pt x 253.94875pt> -File: 3/figures/nh3-nh4-20w.jpeg Graphic file (type jpg) - -Package pdftex.def Info: 3/figures/nh3-nh4-20w.jpeg used on input line 495. -(pdftex.def) Requested size: 247.54149pt x 134.97192pt. +<3/figures/nh4-20.png, id=1877, 843.15pt x 876.27374pt> +File: 3/figures/nh4-20.png Graphic file (type png) + +Package pdftex.def Info: 3/figures/nh4-20.png used on input line 490. +(pdftex.def) Requested size: 165.02345pt x 171.5078pt. LaTeX Warning: `!h' float specifier changed to `!ht'. -[73] [74 <./3/figures/nh3-nh4-20w.jpeg>] [75] -LaTeX Font Info: Try loading font information for OML+ptm on input line 549. +[73] [74 <./3/figures/nh4-20.png (PNG copy)>] +Package epstopdf Info: Source file: <3/figures/capacity-curve-new.eps> +(epstopdf) date: 2021-06-15 15:45:22 +(epstopdf) size: 138695 bytes +(epstopdf) Output file: <3/figures/capacity-curve-new-eps-converted +-to.pdf> +(epstopdf) date: 2021-06-16 00:10:51 +(epstopdf) size: 56532 bytes +(epstopdf) Command: +(epstopdf) \includegraphics on input line 528. +Package epstopdf Info: Output file is already uptodate. +<3/figures/capacity-curve-new-eps-converted-to.pdf, id=1901, 853.1875pt x 795.9 +7375pt> +File: 3/figures/capacity-curve-new-eps-converted-to.pdf Graphic file (type pdf) + + +Package pdftex.def Info: 3/figures/capacity-curve-new-eps-converted-to.pdf use +d on input line 528. +(pdftex.def) Requested size: 206.28247pt x 192.44649pt. + [75 <./3/figures/capacity-curve-new-eps-converted-to.pdf>] [76] [77] +LaTeX Font Info: Try loading font information for OML+ptm on input line 595. (/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omlptm.fd File: omlptm.fd ) LaTeX Font Info: Font shape `OML/ptm/m/n' in size <10.95> not available -(Font) Font shape `OML/cmm/m/it' tried instead on input line 549. - [76] -<3/figures/mass7w.pdf, id=1953, 804.00375pt x 546.04pt> +(Font) Font shape `OML/cmm/m/it' tried instead on input line 595. + [78] +<3/figures/mass7w.pdf, id=1982, 804.00375pt x 546.04pt> File: 3/figures/mass7w.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/mass7w.pdf used on input line 582. +Package pdftex.def Info: 3/figures/mass7w.pdf used on input line 628. (pdftex.def) Requested size: 330.05322pt x 224.1528pt. - [77] -[78 <./3/figures/mass7w.pdf>] -<3/figures/fragcrosssec.pdf, id=1997, 893.3375pt x 589.20125pt> + [79] +[80 <./3/figures/mass7w.pdf>] +<3/figures/fragcrosssec.pdf, id=2025, 893.3375pt x 589.20125pt> File: 3/figures/fragcrosssec.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/fragcrosssec.pdf used on input line 599. +Package pdftex.def Info: 3/figures/fragcrosssec.pdf used on input line 645. (pdftex.def) Requested size: 330.05322pt x 217.68637pt. -<3/figures/Uloss.pdf, id=2003, 695.59875pt x 512.91624pt> + [81 <./3/figures/fragcrosssec.pdf>] +<3/figures/Uloss.pdf, id=2047, 695.59875pt x 512.91624pt> File: 3/figures/Uloss.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/Uloss.pdf used on input line 604. +Package pdftex.def Info: 3/figures/Uloss.pdf used on input line 650. (pdftex.def) Requested size: 330.05322pt x 243.37164pt. - [79] [80 <./3/figures/fragcrosssec.pdf>] -<3/figures/protonAffinity.pdf, id=2031, 681.54625pt x 458.71375pt> + [82 <./3/figures/Uloss.pdf>] +<3/figures/protonAffinity.pdf, id=2069, 681.54625pt x 458.71375pt> File: 3/figures/protonAffinity.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/protonAffinity.pdf used on input line 614. +Package pdftex.def Info: 3/figures/protonAffinity.pdf used on input line 660. (pdftex.def) Requested size: 330.05322pt x 222.13992pt. - [81 <./3/figures/Uloss.pdf>] [82 <./3/figures/protonAffinity.pdf>] -<3/figures/a-b.pdf, id=2075, 437.635pt x 272.01625pt> + [83] +<3/figures/a-b.pdf, id=2090, 437.635pt x 272.01625pt> File: 3/figures/a-b.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/a-b.pdf used on input line 629. +Package pdftex.def Info: 3/figures/a-b.pdf used on input line 675. (pdftex.def) Requested size: 206.28247pt x 128.21706pt. - [83 <./3/figures/a-b.pdf>] -<3/figures/1a-f.pdf, id=2103, 907.39pt x 718.685pt> + + +LaTeX Warning: `!h' float specifier changed to `!ht'. + +[84 <./3/figures/protonAffinity.pdf>] [85 <./3/figures/a-b.pdf>] +<3/figures/1a-f.pdf, id=2132, 907.39pt x 718.685pt> File: 3/figures/1a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/1a-f.pdf used on input line 670. +Package pdftex.def Info: 3/figures/1a-f.pdf used on input line 716. (pdftex.def) Requested size: 412.56496pt x 326.76093pt. -<3/figures/1a-f-b3lyp.pdf, id=2104, 997.7275pt x 757.83125pt> +<3/figures/1a-f-b3lyp.pdf, id=2133, 997.7275pt x 757.83125pt> File: 3/figures/1a-f-b3lyp.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/1a-f-b3lyp.pdf used on input line 672. +Package pdftex.def Info: 3/figures/1a-f-b3lyp.pdf used on input line 718. (pdftex.def) Requested size: 412.56496pt x 313.36089pt. - [84] -<3/figures/2a-f.pdf, id=2115, 1054.94125pt x 807.015pt> +<3/figures/2a-f.pdf, id=2137, 1054.94125pt x 807.015pt> File: 3/figures/2a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/2a-f.pdf used on input line 676. +Package pdftex.def Info: 3/figures/2a-f.pdf used on input line 722. (pdftex.def) Requested size: 412.56496pt x 315.59656pt. -<3/figures/3a-f.pdf, id=2116, 1054.94125pt x 807.015pt> +<3/figures/3a-f.pdf, id=2138, 1054.94125pt x 807.015pt> File: 3/figures/3a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/3a-f.pdf used on input line 678. +Package pdftex.def Info: 3/figures/3a-f.pdf used on input line 724. (pdftex.def) Requested size: 412.56496pt x 315.59656pt. - [85 <./3/figures/1a-f.pdf>] [86 <./3/figures/1a-f-b3lyp.pdf>] -<3/figures/4a-f.pdf, id=2151, 1021.8175pt x 793.96625pt> + [86] [87 <./3/figures/1a-f.pdf>] +<3/figures/4a-f.pdf, id=2165, 1021.8175pt x 793.96625pt> File: 3/figures/4a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/4a-f.pdf used on input line 682. +Package pdftex.def Info: 3/figures/4a-f.pdf used on input line 728. (pdftex.def) Requested size: 412.56496pt x 320.56114pt. -<3/figures/5a-f.pdf, id=2152, 964.60374pt x 824.07875pt> +<3/figures/5a-f.pdf, id=2166, 964.60374pt x 824.07875pt> File: 3/figures/5a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/5a-f.pdf used on input line 684. +Package pdftex.def Info: 3/figures/5a-f.pdf used on input line 730. (pdftex.def) Requested size: 412.56496pt x 352.46078pt. - -[87 <./3/figures/2a-f.pdf>] [88 <./3/figures/3a-f.pdf>] [89 <./3/figures/4a-f.p -df>] -<3/figures/6a-f.pdf, id=2206, 1035.87pt x 826.08624pt> + [88 <./3/figures/1a-f-b3lyp.pdf>] [89 <./3/figures/2a-f.pdf>] [90 <./3/figures +/3a-f.pdf>] +<3/figures/6a-f.pdf, id=2220, 1035.87pt x 826.08624pt> File: 3/figures/6a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/6a-f.pdf used on input line 693. +Package pdftex.def Info: 3/figures/6a-f.pdf used on input line 739. (pdftex.def) Requested size: 412.56496pt x 329.01688pt. -<3/figures/7a-f.pdf, id=2207, 922.44624pt x 814.04124pt> +<3/figures/7a-f.pdf, id=2221, 922.44624pt x 814.04124pt> File: 3/figures/7a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/7a-f.pdf used on input line 695. +Package pdftex.def Info: 3/figures/7a-f.pdf used on input line 741. (pdftex.def) Requested size: 412.56496pt x 364.07935pt. -<3/figures/11a-f.pdf, id=2208, 930.47626pt x 761.84625pt> +<3/figures/11a-f.pdf, id=2222, 930.47626pt x 761.84625pt> File: 3/figures/11a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/11a-f.pdf used on input line 696. +Package pdftex.def Info: 3/figures/11a-f.pdf used on input line 742. (pdftex.def) Requested size: 412.56496pt x 337.7941pt. -<3/figures/12a-f.pdf, id=2209, 955.57pt x 780.9175pt> +<3/figures/12a-f.pdf, id=2223, 955.57pt x 780.9175pt> File: 3/figures/12a-f.pdf Graphic file (type pdf) -Package pdftex.def Info: 3/figures/12a-f.pdf used on input line 699. +Package pdftex.def Info: 3/figures/12a-f.pdf used on input line 745. (pdftex.def) Requested size: 412.56496pt x 337.1583pt. - [90 <./3/figures/5a-f.pdf>] [91 <./3/figures/6a-f.pdf>] + [91 <./3/figures/4a-f.pdf>] [92 <./3/figures/5a-f.pdf>] LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 707. +(Font) Font shape `OT1/ptm/b/n' tried instead on input line 753. LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 707. +(Font) Font shape `OT1/ptm/b/n' tried instead on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 707. +(hyperref) removing `math shift' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 707. +(hyperref) removing `subscript' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 707. +(hyperref) removing `math shift' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 707. +(hyperref) removing `math shift' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `subscript' on input line 707. +(hyperref) removing `subscript' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 707. +(hyperref) removing `math shift' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 707. +(hyperref) removing `math shift' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `superscript' on input line 707. +(hyperref) removing `superscript' on input line 753. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `math shift' on input line 707. +(hyperref) removing `math shift' on input line 753. -) [92] [93 <./3/figures/7a-f.pdf>] [94 <./3/figures/11a-f.pdf>] [95 <./3/figure -s/12a-f.pdf>] +[93 <./3/figures/6a-f.pdf>]) [94] [95 <./3/figures/7a-f.pdf>] [96 <./3/figures/ +11a-f.pdf>] [97 <./3/figures/12a-f.pdf>] \openout2 = `4/collision.aux'. - (./4/collision.tex [96 + (./4/collision.tex [98 ] 4. -[97] [98] [99] -<4/figures/experiment-setup.pdf, id=2393, 1187.43625pt x 274.02374pt> +[99] [100] [101] +<4/figures/experiment-setup.pdf, id=2423, 1187.43625pt x 274.02374pt> File: 4/figures/experiment-setup.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/experiment-setup.pdf used on input line 94. (pdftex.def) Requested size: 412.56496pt x 95.20729pt. - [100] [101 <./4/figures/experiment-setup.pdf>] -<4/figures/exp-setup.pdf, id=2422, 959.585pt x 327.2225pt> + [102] [103 <./4/figures/experiment-setup.pdf>] +<4/figures/exp-setup.pdf, id=2450, 959.585pt x 327.2225pt> File: 4/figures/exp-setup.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/exp-setup.pdf used on input line 106. (pdftex.def) Requested size: 412.56496pt x 140.68794pt. - [102 <./4/figures/exp-setup.pdf>] + [104 <./4/figures/exp-setup.pdf>] LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <10.95> not available (Font) Font shape `OT1/ptm/b/it' tried instead on input line 128. - [103] -<4/figures/howinputs.pdf, id=2480, 1150.2975pt x 584.1825pt> + [105] +<4/figures/howinputs.pdf, id=2508, 1150.2975pt x 584.1825pt> File: 4/figures/howinputs.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/howinputs.pdf used on input line 135. (pdftex.def) Requested size: 412.56496pt x 209.5211pt. - [104 <./4/figures/howinputs.pdf>] [105] -<4/figures/3b-sphere.png, id=2510, 787.94376pt x 759.83875pt> + [106 <./4/figures/howinputs.pdf>] [107] +<4/figures/3b-sphere.png, id=2539, 787.94376pt x 759.83875pt> File: 4/figures/3b-sphere.png Graphic file (type png) Package pdftex.def Info: 4/figures/3b-sphere.png used on input line 188. (pdftex.def) Requested size: 330.05322pt x 318.27213pt. - [106] -<4/figures/12f-sphere.png, id=2517, 784.9325pt x 770.88pt> + [108] +<4/figures/12f-sphere.png, id=2547, 784.9325pt x 770.88pt> File: 4/figures/12f-sphere.png Graphic file (type png) Package pdftex.def Info: 4/figures/12f-sphere.png used on input line 190. (pdftex.def) Requested size: 330.05322pt x 324.1438pt. - [107 <./4/figures/3b-sphere.png>] [108 <./4/figures/12f-sphere.png>] [109] [11 -0] [111] -<4/figures/proporEachFrag-1a2a.pdf, id=2565, 1046.91125pt x 505.89pt> + [109 <./4/figures/3b-sphere.png>] [110 <./4/figures/12f-sphere.png>] [111] [11 +2] +[113] +<4/figures/proporEachFrag-1a2a.pdf, id=2594, 1046.91125pt x 505.89pt> File: 4/figures/proporEachFrag-1a2a.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/proporEachFrag-1a2a.pdf used on input line 307. (pdftex.def) Requested size: 412.56496pt x 199.35733pt. -<4/figures/proporEachFrag-3a4a-zoom.pdf, id=2566, 932.48375pt x 889.3225pt> +<4/figures/proporEachFrag-3a4a-zoom.pdf, id=2595, 932.48375pt x 889.3225pt> File: 4/figures/proporEachFrag-3a4a-zoom.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/proporEachFrag-3a4a-zoom.pdf used on input line 309. (pdftex.def) Requested size: 330.05322pt x 314.76857pt. -<4/figures/proporEachFrag-5a6a-zoom.pdf, id=2567, 932.48375pt x 890.32625pt> +<4/figures/proporEachFrag-5a6a-zoom.pdf, id=2596, 932.48375pt x 890.32625pt> File: 4/figures/proporEachFrag-5a6a-zoom.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/proporEachFrag-5a6a-zoom.pdf used on input line 311. (pdftex.def) Requested size: 330.05322pt x 315.12386pt. -<4/figures/proporEachFrag-11a-zoom.pdf, id=2568, 966.61125pt x 469.755pt> +<4/figures/proporEachFrag-11a-zoom.pdf, id=2597, 966.61125pt x 469.755pt> File: 4/figures/proporEachFrag-11a-zoom.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/proporEachFrag-11a-zoom.pdf used on input l ine 313. (pdftex.def) Requested size: 330.05322pt x 160.39554pt. -<4/figures/proporEachFrag-7a12a-zoom.pdf, id=2569, 932.48375pt x 892.33376pt> +<4/figures/proporEachFrag-7a12a-zoom.pdf, id=2598, 932.48375pt x 892.33376pt> File: 4/figures/proporEachFrag-7a12a-zoom.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/proporEachFrag-7a12a-zoom.pdf used on input line 315. (pdftex.def) Requested size: 330.05322pt x 315.8344pt. -<4/figures/proporEachFrag-7d12c-zoom.pdf, id=2570, 972.63374pt x 881.2925pt> +<4/figures/proporEachFrag-7d12c-zoom.pdf, id=2599, 972.63374pt x 881.2925pt> File: 4/figures/proporEachFrag-7d12c-zoom.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/proporEachFrag-7d12c-zoom.pdf used on input line 317. (pdftex.def) Requested size: 330.05322pt x 299.05724pt. - -[112 <./4/figures/proporEachFrag-1a2a.pdf>] + [114 <./4/figures/proporEachFrag-1a2a.pdf>] LaTeX Warning: Float too large for page by 87.84254pt on input line 375. -[113 <./4/figures/proporEachFrag-3a4a-zoom.pdf>] [114 <./4/figures/proporEachFr -ag-5a6a-zoom.pdf> <./4/figures/proporEachFrag-11a-zoom.pdf>] [115] [116 <./4/fi -gures/proporEachFrag-7a12a-zoom.pdf>] [117 <./4/figures/proporEachFrag-7d12c-zo +[115 <./4/figures/proporEachFrag-3a4a-zoom.pdf>] [116 <./4/figures/proporEachFr +ag-5a6a-zoom.pdf> <./4/figures/proporEachFrag-11a-zoom.pdf>] [117] [118 <./4/fi +gures/proporEachFrag-7a12a-zoom.pdf>] [119 <./4/figures/proporEachFrag-7d12c-zo om.pdf>] -<4/figures/fig-1a-3b.pdf, id=2670, 939.51pt x 735.74875pt> +<4/figures/fig-1a-3b.pdf, id=2699, 939.51pt x 735.74875pt> File: 4/figures/fig-1a-3b.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fig-1a-3b.pdf used on input line 385. (pdftex.def) Requested size: 330.05322pt x 258.47017pt. -<4/figures/fig-4a-5d.pdf, id=2671, 955.57pt x 808.01875pt> +<4/figures/fig-4a-5d.pdf, id=2700, 955.57pt x 808.01875pt> File: 4/figures/fig-4a-5d.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fig-4a-5d.pdf used on input line 387. (pdftex.def) Requested size: 330.05322pt x 279.08733pt. - [118 <./4/figures/fig-1a-3b.pdf>] [119 <./4/figures/fig-4a-5d.pdf>] -<4/figures/fig-6a-6f.pdf, id=2707, 1031.855pt x 770.88pt> + [120 <./4/figures/fig-1a-3b.pdf>] [121 <./4/figures/fig-4a-5d.pdf>] +<4/figures/fig-6a-6f.pdf, id=2735, 1031.855pt x 770.88pt> File: 4/figures/fig-6a-6f.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fig-6a-6f.pdf used on input line 405. (pdftex.def) Requested size: 330.05322pt x 246.56902pt. -<4/figures/fig-7a-7d.pdf, id=2708, 618.31pt x 635.37375pt> +<4/figures/fig-7a-7d.pdf, id=2736, 618.31pt x 635.37375pt> File: 4/figures/fig-7a-7d.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fig-7a-7d.pdf used on input line 407. (pdftex.def) Requested size: 330.05322pt x 339.17023pt. -[120 <./4/figures/fig-6a-6f.pdf>] [121 <./4/figures/fig-7a-7d.pdf>] -<4/figures/neutralUloss-Ne-Ar.pdf, id=2742, 853.1875pt x 853.1875pt> +[122 <./4/figures/fig-6a-6f.pdf>] [123 <./4/figures/fig-7a-7d.pdf>] +<4/figures/neutralUloss-Ne-Ar.pdf, id=2770, 853.1875pt x 853.1875pt> File: 4/figures/neutralUloss-Ne-Ar.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/neutralUloss-Ne-Ar.pdf used on input line 4 16. (pdftex.def) Requested size: 330.05322pt x 330.05997pt. -<4/figures/cross-section-Ne-Ar.pdf, id=2743, 853.1875pt x 853.1875pt> +<4/figures/cross-section-Ne-Ar.pdf, id=2771, 853.1875pt x 853.1875pt> File: 4/figures/cross-section-Ne-Ar.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/cross-section-Ne-Ar.pdf used on input line @@ -1601,40 +1627,40 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): (hyperref) removing `math shift' on input line 421. -[122 <./4/figures/neutralUloss-Ne-Ar.pdf>] [123 <./4/figures/cross-section-Ne-A +[124 <./4/figures/neutralUloss-Ne-Ar.pdf>] [125 <./4/figures/cross-section-Ne-A r.pdf>] -<4/figures/fig-11a-f.pdf, id=2788, 849.1725pt x 572.1375pt> +<4/figures/fig-11a-f.pdf, id=2818, 849.1725pt x 572.1375pt> File: 4/figures/fig-11a-f.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fig-11a-f.pdf used on input line 448. (pdftex.def) Requested size: 330.05322pt x 222.3732pt. -<4/figures/fig-12a-f.pdf, id=2789, 994.71625pt x 767.86874pt> +<4/figures/fig-12a-f.pdf, id=2819, 994.71625pt x 767.86874pt> File: 4/figures/fig-12a-f.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fig-12a-f.pdf used on input line 451. (pdftex.def) Requested size: 330.05322pt x 254.78004pt. - [124] [125 <./4/figures/fig-11a-f.pdf> <./4/figures/fig-12a-f.pdf>] -<4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf, id=2825, 974.64125pt x 865.2325pt> + [126] [127 <./4/figures/fig-11a-f.pdf> <./4/figures/fig-12a-f.pdf>] +<4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf, id=2853, 974.64125pt x 865.2325pt> File: 4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf used on input line 459. (pdftex.def) Requested size: 330.05322pt x 293.00015pt. -<4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf, id=2826, 975.645pt x 872.25874pt> +<4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf, id=2854, 975.645pt x 872.25874pt> File: 4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf used on input line 461. (pdftex.def) Requested size: 330.05322pt x 295.07336pt. -[126 <./4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf>] -<4/figures/MS-BR-12w-Ne-branch.pdf, id=2844, 647.41875pt x 435.6275pt> +[128 <./4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf>] +<4/figures/MS-BR-12w-Ne-branch.pdf, id=2872, 647.41875pt x 435.6275pt> File: 4/figures/MS-BR-12w-Ne-branch.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/MS-BR-12w-Ne-branch.pdf used on input line 463. (pdftex.def) Requested size: 330.05322pt x 222.08067pt. - [127 <./4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf>] [128 <./4/figures/MS-BR-12w- + [129 <./4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf>] [130 <./4/figures/MS-BR-12w- Ne-branch.pdf>] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): @@ -1672,106 +1698,106 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): (hyperref) removing `math shift' on input line 509. -[129] [130] [131] [132] [133] [134] -<4/figures/MDPST.pdf, id=3003, 896.34875pt x 760.8425pt> +[131] [132] [133] [134] [135] [136] +<4/figures/MDPST.pdf, id=3031, 896.34875pt x 760.8425pt> File: 4/figures/MDPST.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/MDPST.pdf used on input line 626. (pdftex.def) Requested size: 412.56496pt x 350.18915pt. - [135] [136 <./4/figures/MDPST.pdf>] -<4/figures/expTOF.pdf, id=3030, 1172.38pt x 413.545pt> + [137] [138 <./4/figures/MDPST.pdf>] +<4/figures/expTOF.pdf, id=3059, 1172.38pt x 413.545pt> File: 4/figures/expTOF.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/expTOF.pdf used on input line 645. (pdftex.def) Requested size: 412.56496pt x 145.52538pt. -[137 <./4/figures/expTOF.pdf>] -<4/figures/collisions.pdf, id=3055, 727.71875pt x 815.045pt> +[139 <./4/figures/expTOF.pdf>] +<4/figures/collisions.pdf, id=3084, 727.71875pt x 815.045pt> File: 4/figures/collisions.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/collisions.pdf used on input line 658. (pdftex.def) Requested size: 412.56496pt x 462.08072pt. - [138] [139 <./4/figures/collisions.pdf>] -<4/figures/distriPerc-Etf-175eV-d-bin03.pdf, id=3080, 1137.24875pt x 881.2925pt + [140] [141 <./4/figures/collisions.pdf>] +<4/figures/distriPerc-Etf-175eV-d-bin03.pdf, id=3108, 1137.24875pt x 881.2925pt > File: 4/figures/distriPerc-Etf-175eV-d-bin03.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/distriPerc-Etf-175eV-d-bin03.pdf used on in put line 671. (pdftex.def) Requested size: 330.05322pt x 255.76999pt. -<4/figures/fragmentation.pdf, id=3082, 1040.88875pt x 624.3325pt> +<4/figures/fragmentation.pdf, id=3110, 1040.88875pt x 624.3325pt> File: 4/figures/fragmentation.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/fragmentation.pdf used on input line 678. (pdftex.def) Requested size: 412.56496pt x 247.46126pt. -[140] -<4/figures/opacitycurves.pdf, id=3093, 1137.24875pt x 853.1875pt> +[142] +<4/figures/opacitycurves.pdf, id=3121, 1137.24875pt x 853.1875pt> File: 4/figures/opacitycurves.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/opacitycurves.pdf used on input line 685. (pdftex.def) Requested size: 330.05322pt x 247.61331pt. - [141 <./4/figures/distriPerc-Etf-175eV-d-bin03.pdf>] [142 <./4/figures/fragmen + [143 <./4/figures/distriPerc-Etf-175eV-d-bin03.pdf>] [144 <./4/figures/fragmen tation.pdf> <./4/figures/opacitycurves.pdf>] -<4/figures/cross-section.pdf, id=3138, 1137.24875pt x 853.1875pt> +<4/figures/cross-section.pdf, id=3167, 1137.24875pt x 853.1875pt> File: 4/figures/cross-section.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/cross-section.pdf used on input line 701. (pdftex.def) Requested size: 330.05322pt x 247.61331pt. - [143] [144 <./4/figures/cross-section.pdf>] -<4/figures/transferredE-Ar-300.pdf, id=3165, 1137.24875pt x 853.1875pt> + [145] [146 <./4/figures/cross-section.pdf>] +<4/figures/transferredE-Ar-300.pdf, id=3193, 1137.24875pt x 853.1875pt> File: 4/figures/transferredE-Ar-300.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/transferredE-Ar-300.pdf used on input line 713. (pdftex.def) Requested size: 330.05322pt x 247.61331pt. - [145 <./4/figures/transferredE-Ar-300.pdf>] -<4/figures/Epartition-Ar-300-SP.pdf, id=3194, 1137.24875pt x 910.40125pt> + [147 <./4/figures/transferredE-Ar-300.pdf>] +<4/figures/Epartition-Ar-300-SP.pdf, id=3223, 1137.24875pt x 910.40125pt> File: 4/figures/Epartition-Ar-300-SP.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/Epartition-Ar-300-SP.pdf used on input line 767. (pdftex.def) Requested size: 330.05322pt x 264.21797pt. -<4/figures/Epartition-Ar-300-Tstep-01.pdf, id=3197, 1137.24875pt x 853.1875pt> +<4/figures/Epartition-Ar-300-Tstep-01.pdf, id=3226, 1137.24875pt x 853.1875pt> File: 4/figures/Epartition-Ar-300-Tstep-01.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/Epartition-Ar-300-Tstep-01.pdf used on inpu t line 796. (pdftex.def) Requested size: 330.05322pt x 247.61331pt. - [146] -<4/figures/prot-Ar-300.pdf, id=3208, 1137.24875pt x 995.72pt> + [148] +<4/figures/prot-Ar-300.pdf, id=3236, 1137.24875pt x 995.72pt> File: 4/figures/prot-Ar-300.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/prot-Ar-300.pdf used on input line 801. (pdftex.def) Requested size: 330.05322pt x 288.97931pt. - [147 <./4/figures/Epartition-Ar-300-SP.pdf>] [148 <./4/figures/Epartition-Ar-3 + [149 <./4/figures/Epartition-Ar-300-SP.pdf>] [150 <./4/figures/Epartition-Ar-3 00-Tstep-01.pdf>] -<4/figures/Epartition-Ar-300-d-ud.pdf, id=3250, 1137.24875pt x 1023.825pt> +<4/figures/Epartition-Ar-300-d-ud.pdf, id=3279, 1137.24875pt x 1023.825pt> File: 4/figures/Epartition-Ar-300-d-ud.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/Epartition-Ar-300-d-ud.pdf used on input li ne 810. (pdftex.def) Requested size: 330.05322pt x 297.13597pt. - [149 <./4/figures/prot-Ar-300.pdf>] -<4/figures/figuretimescale.pdf, id=3288, 674.52pt x 497.86pt> + [151 <./4/figures/prot-Ar-300.pdf>] +<4/figures/figuretimescale.pdf, id=3316, 674.52pt x 497.86pt> File: 4/figures/figuretimescale.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/figuretimescale.pdf used on input line 818. (pdftex.def) Requested size: 330.05322pt x 243.61168pt. -<4/figures/T-time-zoom_abcdef.pdf, id=3289, 642.4pt x 892.33376pt> +<4/figures/T-time-zoom_abcdef.pdf, id=3317, 642.4pt x 892.33376pt> File: 4/figures/T-time-zoom_abcdef.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/T-time-zoom_abcdef.pdf used on input line 8 22. (pdftex.def) Requested size: 330.05322pt x 458.47456pt. -<4/figures/E-time-abcdef.pdf, id=3290, 794.97pt x 843.15pt> +<4/figures/E-time-abcdef.pdf, id=3318, 794.97pt x 843.15pt> File: 4/figures/E-time-abcdef.pdf Graphic file (type pdf) Package pdftex.def Info: 4/figures/E-time-abcdef.pdf used on input line 824. (pdftex.def) Requested size: 412.56496pt x 437.57854pt. - [150 <./4/figures/Epartition-Ar-300-d-ud.pdf>] [151 <./4/figures/figuretimesca -le.pdf>] [152 <./4/figures/T-time-zoom_abcdef.pdf>] [153 <./4/figures/E-time-ab + [152 <./4/figures/Epartition-Ar-300-d-ud.pdf>] [153 <./4/figures/figuretimesca +le.pdf>] [154 <./4/figures/T-time-zoom_abcdef.pdf>] [155 <./4/figures/E-time-ab cdef.pdf>] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): @@ -1789,32 +1815,32 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): (hyperref) removing `math shift' on input line 836. -[154] [155]) [156] +[156] [157]) [158] \openout2 = `5/general_conclusion.aux'. (./5/general_conclusion.tex 5. -[157 +[159 -] [158] [159] [160]) [161] (./thesis.bbl (./thesis.brf) +] [160] [161] [162]) [163] (./thesis.bbl (./thesis.brf) \tf@brf=\write6 \openout6 = `thesis.brf'. - [162 + [164 ] Underfull \hbox (badness 10000) in paragraph at lines 173--173 []\OT1/ptm/m/sc/6 Julien Boulon, Is-abelle Braud, S[]ebastien Zamith, [] -[163] [164] +[165] [166] Underfull \hbox (badness 10000) in paragraph at lines 446--446 []\OT1/ptm/m/sc/6 Wandared Poka-panich, Hen-rik Berg-ersen, Ioana L [] -[165] +[167] LaTeX Font Info: Font shape `TS1/ptm/bx/n' in size <6> not available (Font) Font shape `TS1/ptm/b/n' tried instead on input line 655. @@ -1822,17 +1848,17 @@ Underfull \hbox (badness 5105) in paragraph at lines 764--764 []\OT1/ptm/m/sc/6 MS Call[]en, MT De la Cruz, JM L[]opez, R Murillo, [] -[166] +[168] Underfull \hbox (badness 6428) in paragraph at lines 827--827 \OT1/ptm/m/sc/6 Tao Chen, Linda Gi-a-co-mozzi, Ro-drigo F Nasci-mento, [] -[167] [168] [169] [170] +[169] [170] [171] [172] Underfull \hbox (badness 5607) in paragraph at lines 1668--1668 []\OT1/ptm/m/sc/6 Pietro Bal-lone, Wanda An-dreoni, Roberto Car, and [] -[171] [172] +[173] [174] Underfull \hbox (badness 10000) in paragraph at lines 2010--2010 []\OT1/ptm/m/sc/6 Claudio Fabi-ano Motta Toledo, L Oliveira, and [] @@ -1843,30 +1869,30 @@ Underfull \hbox (badness 5417) in paragraph at lines 2020--2020 /n/6 . [] -[173] +[175] Underfull \hbox (badness 7116) in paragraph at lines 2221--2221 []\OT1/ptm/m/sc/6 Yih-Sheng Wang, Hai-Chou Chang, Jyh-Chiang Jiang, [] -[174] -Underfull \hbox (badness 10000) in paragraph at lines 2407--2407 +[176] +Underfull \hbox (badness 10000) in paragraph at lines 2418--2418 []\OT1/ptm/m/sc/6 Badia Bouda[]^^Pffa, Pierre Cloutier, Darel Hunt-ing, [] -Underfull \hbox (badness 10000) in paragraph at lines 2497--2497 +Underfull \hbox (badness 10000) in paragraph at lines 2508--2508 []\OT1/ptm/m/sc/6 S[]ebastien Zamith, Pierre Labastie, and Jean-Marc [] -[175] [176] -Underfull \hbox (badness 6252) in paragraph at lines 2848--2848 +[177] [178] +Underfull \hbox (badness 6252) in paragraph at lines 2859--2859 []\OT1/ptm/m/sc/6 Annette Es-chen-bach, Rein-hard Wien-berg, and Bernd [] -[177]) [178] +[179]) [180] \openout2 = `6_backmatter/declaration.aux'. - (./6_backmatter/declaration.tex [179 + (./6_backmatter/declaration.tex [181 ]) Package atveryend Info: Empty hook `BeforeClearDocument' on input line 307. @@ -1880,19 +1906,25 @@ Package atveryend Info: Empty hook `AfterLastShipout' on input line 307. Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 307. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 307. Package rerunfilecheck Info: File `thesis.out' has not changed. -(rerunfilecheck) Checksum: 54B844088F193135A8E4AE44D25629B8;5769. -Package rerunfilecheck Info: File `thesis.brf' has not changed. -(rerunfilecheck) Checksum: E8709CD4E67FBBA5E85D00C43F8AA4F5;39356. +(rerunfilecheck) Checksum: 0F3EE0394D04EF93405904ECFC25B26A;5771. + + +Package rerunfilecheck Warning: File `thesis.brf' has changed. +(rerunfilecheck) Rerun to get bibliographical references right. + +Package rerunfilecheck Info: Checksums for `thesis.brf': +(rerunfilecheck) Before: 8C2FA9B8FFBF24F1F5A91F4F88AD72D7;39821 +(rerunfilecheck) After: BB62947988DECE8A99BFAF39E0499855;39888. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 307. ) Here is how much of TeX's memory you used: - 14706 strings out of 492649 - 226010 string characters out of 6129622 - 339212 words of memory out of 5000000 - 17245 multiletter control sequences out of 15000+600000 + 14732 strings out of 492649 + 226594 string characters out of 6129622 + 339698 words of memory out of 5000000 + 17263 multiletter control sequences out of 15000+600000 84285 words of font info for 177 fonts, out of 8000000 for 9000 1141 hyphenation exceptions out of 8191 - 43i,20n,51p,2185b,2512s stack positions out of 5000i,500n,10000p,200000b,80000s + 43i,20n,51p,2185b,2516s stack positions out of 5000i,500n,10000p,200000b,80000s {/usr/local/texlive/2018/texmf-dist/fonts/enc/dvips/base/8r.enc} -Output written on thesis.pdf (193 pages, 31312211 bytes). +Output written on thesis.pdf (195 pages, 31440864 bytes). PDF statistics: - 4470 PDF objects out of 5155 (max. 8388607) - 3933 compressed objects within 40 object streams - 921 named destinations out of 1000 (max. 500000) - 876 words of extra memory for PDF output out of 10000 (max. 10000000) + 4504 PDF objects out of 5155 (max. 8388607) + 3963 compressed objects within 40 object streams + 927 named destinations out of 1000 (max. 500000) + 881 words of extra memory for PDF output out of 10000 (max. 10000000) diff --git a/thesis/thesis.out b/thesis/thesis.out index bb90113..cbfbdbe 100644 --- a/thesis/thesis.out +++ b/thesis/thesis.out @@ -13,7 +13,7 @@ \BOOKMARK [2][]{subsection.2.4.2}{2.4.2 Classical Molecular Dynamics}{section.2.4}% 13 \BOOKMARK [2][]{subsection.2.4.3}{2.4.3 Parallel-Tempering Molecular Dynamics}{section.2.4}% 14 \BOOKMARK [2][]{subsection.2.4.4}{2.4.4 Global Optimization}{section.2.4}% 15 -\BOOKMARK [0][]{chapter.3}{3 Exploration of Structural and Energetic Properties}{}% 16 +\BOOKMARK [0][]{chapter.3}{3 Investigation of Structural and Energetic Properties}{}% 16 \BOOKMARK [1][]{section.3.1}{3.1 Computational Details}{chapter.3}% 17 \BOOKMARK [2][]{subsection.3.1.1}{3.1.1 SCC-DFTB Potential}{section.3.1}% 18 \BOOKMARK [2][]{subsection.3.1.2}{3.1.2 SCC-DFTB Exploration of PES}{section.3.1}% 19 @@ -62,4 +62,4 @@ \BOOKMARK [0][]{chapter.5}{5 General Conclusions and Perspectives}{}% 62 \BOOKMARK [1][]{section.5.1}{5.1 General Conclusions}{chapter.5}% 63 \BOOKMARK [1][]{section.5.2}{5.2 Perspectives}{chapter.5}% 64 -\BOOKMARK [0][]{chapter*.82}{References}{}% 65 +\BOOKMARK [0][]{chapter*.83}{References}{}% 65 diff --git a/thesis/thesis.pdf b/thesis/thesis.pdf index 130d530..ac9d21c 100644 Binary files a/thesis/thesis.pdf and b/thesis/thesis.pdf differ diff --git a/thesis/thesis.synctex.gz b/thesis/thesis.synctex.gz index 80b1f99..b6f8c56 100644 Binary files a/thesis/thesis.synctex.gz and b/thesis/thesis.synctex.gz differ diff --git a/thesis/thesis.toc b/thesis/thesis.toc index c13e1cf..3082696 100644 --- a/thesis/thesis.toc +++ b/thesis/thesis.toc @@ -14,7 +14,7 @@ \contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{39}{subsection.2.4.2} \contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{44}{subsection.2.4.3} \contentsline {subsection}{\numberline {2.4.4}Global Optimization}{46}{subsection.2.4.4} -\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3} +\contentsline {chapter}{\numberline {3}Investigation of Structural and Energetic Properties}{49}{chapter.3} \contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1} \contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1} \contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2} @@ -28,39 +28,39 @@ \contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3} \contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4} \contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{73}{subsubsection.3.2.2.5} -\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3} -\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3} -\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1} -\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2} -\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1} -\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2} -\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3} -\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4} -\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1} -\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1} -\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2} -\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2} -\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1} -\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2} -\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3} -\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3} -\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1} -\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2} -\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1} -\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3} -\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4} -\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5} -\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6} -\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7} -\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4} -\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1} -\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2} -\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3} -\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4} -\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1} -\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2} -\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5} -\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5} -\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1} -\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2} -\contentsline {chapter}{References}{163}{chapter*.82} +\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{75}{subsection.3.2.3} +\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{76}{section.3.3} +\contentsline {subsection}{\numberline {3.3.1}General introduction}{76}{subsection.3.3.1} +\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{78}{subsection.3.3.2} +\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1} +\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{84}{subsubsection.3.3.2.2} +\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3} +\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4} +\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1} +\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1} +\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2} +\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2} +\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1} +\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2} +\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3} +\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3} +\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1} +\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2} +\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1} +\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3} +\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4} +\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5} +\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6} +\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7} +\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4} +\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1} +\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2} +\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3} +\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4} +\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1} +\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2} +\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5} +\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5} +\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1} +\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2} +\contentsline {chapter}{References}{165}{chapter*.83}