This commit is contained in:
linjiez 2021-06-14 14:47:51 +02:00
parent 73fa1ecee2
commit b66f2de0d1
26 changed files with 574 additions and 549 deletions

View File

@ -18,6 +18,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -19,6 +19,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -19,6 +19,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -18,6 +18,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -25,7 +25,7 @@
\citation{Berden1996,Buck2000}
\citation{Rapacioli2005stacked,Zhen2018}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:general_intro}{{1}{1}{General Introduction}{chapter.1}{}}
@ -115,7 +115,7 @@
\citation{Korchagina2017}
\citation{Hada2003,Chakraborty2020,Zamith2020threshold,Zheng2021}
\citation{Tibshirani2005}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Transition temperature of (H$_{2}$O)$_{n}$H$^{+}$ clusters (red squares) and (H$_{2}$O)$_{n-1}$OH$^{-}$ (blue circles) as a function of $n$. The results obtained by M. Schmidt \textit {et al.} on (H$_{2}$O)$_{n}$H$^{+}$ are also presented (black circles)\cite {Schmidt2012} as well as those by C. Hock \textit {et al.} on (H$_{2}$O)$_{n}^{-}$ clusters (black stars).\cite {Hock2009} Figure extracted from reference~\cite {Boulon2014}.\relax }}{4}{figure.caption.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Transition temperature of (H$_{2}$O)$_{n}$H$^{+}$ clusters (red squares) and (H$_{2}$O)$_{n-1}$OH$^{-}$ (blue circles) as a function of $n$. The results obtained by M. Schmidt \textit {et al.} on (H$_{2}$O)$_{n}$H$^{+}$ are also presented (black circles)\cite {Schmidt2012} as well as those by C. Hock \textit {et al.} on (H$_{2}$O)$_{n}^{-}$ clusters (black stars).\cite {Hock2009} Figure extracted from reference~\cite {Boulon2014}.\relax }}{4}{figure.caption.3}\protected@file@percent }
\@writefile{brf}{\backcite{Schmidt2012}{{4}{1.1}{figure.caption.3}}}
\@writefile{brf}{\backcite{Hock2009}{{4}{1.1}{figure.caption.3}}}
\@writefile{brf}{\backcite{Boulon2014}{{4}{1.1}{figure.caption.3}}}
@ -246,7 +246,7 @@
\citation{Scholz2013,Darghouth2015}
\citation{Rapacioli2006,Holm2010,Simon2017formation,Zhen2018,Chen2018,Zamith2020threshold}
\citation{Schmidt2006,Holm2010,Gatchell2015,Joblin2017,Gatchell2017,Zamith2019thermal}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Examples of several PAH molecules.\relax }}{8}{figure.caption.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Examples of several PAH molecules.\relax }}{8}{figure.caption.4}\protected@file@percent }
\newlabel{PAHs_sample}{{1.2}{8}{Examples of several PAH molecules.\relax }{figure.caption.4}{}}
\@writefile{brf}{\backcite{Leger1984}{{8}{1}{figure.caption.4}}}
\@writefile{brf}{\backcite{Allamandola1985}{{8}{1}{figure.caption.4}}}
@ -322,6 +322,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{2}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -2,24 +2,24 @@
\providecommand\hyper@newdestlabel[2]{}
\FN@pp@footnotehinttrue
\citation{Brown2009}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:comput_method}{{2}{13}{Computational Methods}{chapter.2}{}}
\@writefile{brf}{\backcite{Brown2009}{{13}{2}{chapter.2}}}
\citation{MCTDH}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Comparison of the computational efficiency, \textit {i.e.} system sizes and simulation times, of various computational chemistry methods. The \textit {y}-axis indicates the length of time accessible from classical molecular simulations for average system sizes tackle by each method. The \textit {x}-axis indicates the approximative maximum system size tractable by each method in a single-point energy calculation.\relax }}{14}{figure.caption.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Comparison of the computational efficiency, \textit {i.e.} system sizes and simulation times, of various computational chemistry methods. The \textit {y}-axis indicates the length of time accessible from classical molecular simulations for average system sizes tackle by each method. The \textit {x}-axis indicates the approximative maximum system size tractable by each method in a single-point energy calculation.\relax }}{14}{figure.caption.5}\protected@file@percent }
\newlabel{methods}{{2.1}{14}{Comparison of the computational efficiency, \textit {i.e.} system sizes and simulation times, of various computational chemistry methods. The \textit {y}-axis indicates the length of time accessible from classical molecular simulations for average system sizes tackle by each method. The \textit {x}-axis indicates the approximative maximum system size tractable by each method in a single-point energy calculation.\relax }{figure.caption.5}{}}
\@writefile{brf}{\backcite{MCTDH}{{14}{2}{figure.caption.5}}}
\citation{Griffiths2018}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}\protected@file@percent }
\@writefile{brf}{\backcite{Griffiths2018}{{15}{2.1}{section.2.1}}}
\newlabel{TDSE}{{2.1}{15}{Schr{\"o}dinger Equation}{equation.2.1.1}{}}
\newlabel{TISE}{{2.2}{15}{Schr{\"o}dinger Equation}{equation.2.1.2}{}}
\newlabel{waveFunc}{{2.3}{15}{Schr{\"o}dinger Equation}{equation.2.1.3}{}}
\newlabel{operatorH}{{2.4}{16}{Schr{\"o}dinger Equation}{equation.2.1.4}{}}
\newlabel{laplace}{{2.5}{16}{Schr{\"o}dinger Equation}{equation.2.1.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}\protected@file@percent }
\newlabel{BO_approx}{{2.2}{16}{Born-Oppenheimer Approximation}{section.2.2}{}}
\citation{Born1927}
\@writefile{brf}{\backcite{Born1927}{{17}{2.2}{section.2.2}}}
@ -35,7 +35,7 @@
\newlabel{classical}{{2.11}{18}{Born-Oppenheimer Approximation}{equation.2.2.11}{}}
\@writefile{brf}{\backcite{Epstein1966}{{18}{2.2}{equation.2.2.11}}}
\@writefile{brf}{\backcite{Butler1998}{{18}{2.2}{equation.2.2.11}}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}\protected@file@percent }
\newlabel{electronicEnergy}{{2.3}{18}{Computation of Electronic Energy}{section.2.3}{}}
\citation{Jensen2017}
\citation{dftb1,dftb2,Elstner1998,Elstner2014}
@ -57,7 +57,7 @@
\@writefile{brf}{\backcite{Singh1986}{{19}{2.3}{section.2.3}}}
\@writefile{brf}{\backcite{Gao1996}{{19}{2.3}{section.2.3}}}
\@writefile{brf}{\backcite{Mordasini1998}{{19}{2.3}{section.2.3}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}\protected@file@percent }
\@writefile{brf}{\backcite{Hartree1928}{{19}{2.3.1}{subsection.2.3.1}}}
\@writefile{brf}{\backcite{Hartree1947}{{19}{2.3.1}{subsection.2.3.1}}}
\@writefile{brf}{\backcite{Slater1968}{{19}{2.3.1}{subsection.2.3.1}}}
@ -104,7 +104,7 @@
\@writefile{brf}{\backcite{Head1994}{{21}{2.3.1}{equation.2.3.15}}}
\@writefile{brf}{\backcite{Magnasco2009}{{21}{2.3.1}{equation.2.3.15}}}
\@writefile{brf}{\backcite{Dacosta2011}{{21}{2.3.1}{equation.2.3.15}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}\protected@file@percent }
\citation{Thomas1927}
\citation{Fermi1928}
\citation{Hohenberg1964}
@ -120,7 +120,7 @@
\@writefile{brf}{\backcite{Kohn1965}{{22}{2.3.2}{equation.2.3.16}}}
\citation{Kohn1965}
\newlabel{N}{{2.17}{23}{Density Functional Theory}{equation.2.3.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Interdependence of basic variables in the Hohenberg-Kohn theorem.}}{23}{figure.caption.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Interdependence of basic variables in the Hohenberg-Kohn theorem.}}{23}{figure.caption.6}\protected@file@percent }
\newlabel{variables}{{2.2}{23}{Interdependence of basic variables in the Hohenberg-Kohn theorem}{figure.caption.6}{}}
\newlabel{HK}{{2.18}{23}{Density Functional Theory}{equation.2.3.18}{}}
\@writefile{brf}{\backcite{Kohn1965}{{23}{2.3.2}{equation.2.3.18}}}
@ -159,7 +159,7 @@
\@writefile{brf}{\backcite{Krukau2006}{{26}{2.3.2}{equation.2.3.29}}}
\@writefile{brf}{\backcite{Zhao2008}{{26}{2.3.2}{equation.2.3.29}}}
\@writefile{brf}{\backcite{Li2018}{{26}{2.3.2}{equation.2.3.29}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}\protected@file@percent }
\newlabel{sec:DFTB}{{2.3.3}{26}{Density Functional based Tight-Binding Theory}{subsection.2.3.3}{}}
\citation{Elstner1998,Porezag1995,Seifert1996,Elstner1998,Elstne2007,Oliveira2009}
\citation{Gaus2011}
@ -233,7 +233,7 @@
\citation{Morse1929,Girifalco1959}
\citation{Jones1924,Lennard1924}
\citation{Lennard1931}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{34}{subsection.2.3.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{34}{subsection.2.3.4}\protected@file@percent }
\@writefile{brf}{\backcite{Frenkel2001}{{34}{2.3.4}{subsection.2.3.4}}}
\@writefile{brf}{\backcite{Jones1924}{{34}{2.3.4}{subsection.2.3.4}}}
\@writefile{brf}{\backcite{Lennard1924}{{34}{2.3.4}{subsection.2.3.4}}}
@ -253,14 +253,14 @@
\newlabel{LennarsJones}{{2.58}{35}{Force Field Methods}{equation.2.3.58}{}}
\@writefile{brf}{\backcite{Monticelli2013}{{35}{2.3.4}{equation.2.3.58}}}
\newlabel{potential}{{2.59}{35}{Force Field Methods}{equation.2.3.59}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Exploration of PES}{36}{section.2.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Schematic representation of some key points on a model potential energy surface.}}{36}{figure.caption.7}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Exploration of PES}{36}{section.2.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Schematic representation of some key points on a model potential energy surface.}}{36}{figure.caption.7}\protected@file@percent }
\newlabel{PES}{{2.3}{36}{Schematic representation of some key points on a model potential energy surface}{figure.caption.7}{}}
\citation{Metropolis1987}
\citation{Metropolis1949}
\citation{Kroese2014}
\citation{Rosenbluth1955,Binder1993,Baeurle2009}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{37}{subsection.2.4.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{37}{subsection.2.4.1}\protected@file@percent }
\@writefile{brf}{\backcite{Metropolis1987}{{37}{2.4.1}{subsection.2.4.1}}}
\@writefile{brf}{\backcite{Metropolis1949}{{37}{2.4.1}{subsection.2.4.1}}}
\@writefile{brf}{\backcite{Kroese2014}{{37}{2.4.1}{subsection.2.4.1}}}
@ -286,7 +286,7 @@
\newlabel{Markov2}{{2.68}{40}{Monte Carlo Simulations}{equation.2.4.68}{}}
\newlabel{balanceEq}{{2.69}{40}{Monte Carlo Simulations}{equation.2.4.69}{}}
\newlabel{assess}{{2.70}{40}{Monte Carlo Simulations}{equation.2.4.70}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{40}{subsection.2.4.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{40}{subsection.2.4.2}\protected@file@percent }
\citation{Beck2000,Wang2003}
\citation{Wei1994,Light2000}
\@writefile{brf}{\backcite{Alder1957}{{41}{2.4.2}{subsection.2.4.2}}}
@ -371,7 +371,7 @@
\citation{Falcioni1999}
\citation{Earl2005}
\citation{Sugita1999}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{45}{subsection.2.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{45}{subsection.2.4.3}\protected@file@percent }
\newlabel{sec:PTMD}{{2.4.3}{45}{Parallel-Tempering Molecular Dynamics}{subsection.2.4.3}{}}
\@writefile{brf}{\backcite{Torrie1977}{{45}{2.4.3}{subsection.2.4.3}}}
\@writefile{brf}{\backcite{Hansmann1993}{{45}{2.4.3}{subsection.2.4.3}}}
@ -389,13 +389,13 @@
\@writefile{brf}{\backcite{Falcioni1999}{{45}{2.4.3}{subsection.2.4.3}}}
\@writefile{brf}{\backcite{Earl2005}{{45}{2.4.3}{subsection.2.4.3}}}
\@writefile{brf}{\backcite{Sugita1999}{{45}{2.4.3}{subsection.2.4.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Schematics of the PTMD algorithm in its synchronous version. Replicas of the same system, numbered from $C_1$ to $C_N$, are simulated subject to different temperatures (from T$_1$ to T$_N$). Once $X$ MD steps (straight solid arrows) have been performed by each replica, configuration exchanges are attempted between neighbouring simulations according to the Metropolis criterion. Some of them undergo successful swapping (solid curved arrows) while other not (dashed curved arrows). MD simulations then proceed for $X$ additional MD steps before new attempts of exchange.\relax }}{46}{figure.caption.8}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Schematics of the PTMD algorithm in its synchronous version. Replicas of the same system, numbered from $C_1$ to $C_N$, are simulated subject to different temperatures (from T$_1$ to T$_N$). Once $X$ MD steps (straight solid arrows) have been performed by each replica, configuration exchanges are attempted between neighbouring simulations according to the Metropolis criterion. Some of them undergo successful swapping (solid curved arrows) while other not (dashed curved arrows). MD simulations then proceed for $X$ additional MD steps before new attempts of exchange.\relax }}{46}{figure.caption.8}\protected@file@percent }
\newlabel{ptmd_s}{{2.4}{46}{Schematics of the PTMD algorithm in its synchronous version. Replicas of the same system, numbered from $C_1$ to $C_N$, are simulated subject to different temperatures (from T$_1$ to T$_N$). Once $X$ MD steps (straight solid arrows) have been performed by each replica, configuration exchanges are attempted between neighbouring simulations according to the Metropolis criterion. Some of them undergo successful swapping (solid curved arrows) while other not (dashed curved arrows). MD simulations then proceed for $X$ additional MD steps before new attempts of exchange.\relax }{figure.caption.8}{}}
\citation{Wales1997,Wales1999}
\citation{Hartke1993,Unger1993,Sivanandam2008,Toledo2014}
\newlabel{Metropolis}{{2.82}{47}{Parallel-Tempering Molecular Dynamics}{equation.2.4.82}{}}
\newlabel{newVelo}{{2.83}{47}{Parallel-Tempering Molecular Dynamics}{equation.2.4.83}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{47}{subsection.2.4.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{47}{subsection.2.4.4}\protected@file@percent }
\@writefile{brf}{\backcite{Wales1997}{{47}{2.4.4}{subsection.2.4.4}}}
\@writefile{brf}{\backcite{Wales1999}{{47}{2.4.4}{subsection.2.4.4}}}
\@writefile{brf}{\backcite{Hartke1993}{{47}{2.4.4}{subsection.2.4.4}}}
@ -421,6 +421,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{4}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

BIN
thesis/3/.DS_Store vendored

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 352 KiB

After

Width:  |  Height:  |  Size: 314 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 320 KiB

After

Width:  |  Height:  |  Size: 302 KiB

BIN
thesis/3/figures/nh4-20.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

View File

@ -7,7 +7,7 @@
\citation{Li1998,Thompson2003,Rapacioli2009corr}
\citation{Rapacioli2009corr,Elstner2001,Zhechkov2005}
\citation{Simon2012,Odutola1980}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{51}{chapter.3}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{51}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:structure}{{3}{51}{Exploration of Structural and Energetic Properties}{chapter.3}{}}
@ -15,9 +15,9 @@
\citation{Elstner1998}
\citation{Nose1984M,Hoover1985}
\citation{Douady2009}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{52}{section.3.1}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{52}{section.3.1}\protected@file@percent }
\newlabel{sec:structure-methods}{{3.1}{52}{Computational Details}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{52}{subsection.3.1.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{52}{subsection.3.1.1}\protected@file@percent }
\@writefile{brf}{\backcite{deMonNano2009}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{52}{3.1.1}{subsection.3.1.1}}}
@ -29,7 +29,7 @@
\@writefile{brf}{\backcite{Zhechkov2005}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Simon2012}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Odutola1980}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{52}{subsection.3.1.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{52}{subsection.3.1.2}\protected@file@percent }
\@writefile{brf}{\backcite{Earl2005}{{52}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita1999}{{52}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita2000}{{52}{3.1.2}{subsection.3.1.2}}}
@ -46,14 +46,14 @@
\@writefile{brf}{\backcite{Hoover1985}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Wolken2000}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Pedersen2014}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{53}{subsection.3.1.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{53}{subsection.3.1.3}\protected@file@percent }
\@writefile{brf}{\backcite{Weigend2005}{{53}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Weigend2006}{{53}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{GaussianCode}{{53}{3.1.3}{subsection.3.1.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{54}{figure.caption.9}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{54}{figure.caption.9}\protected@file@percent }
\newlabel{uracil_s}{{3.1}{54}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }{figure.caption.9}{}}
\@writefile{brf}{\backcite{Boys2002}{{54}{3.1.3}{subsection.3.1.3}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{54}{subsection.3.1.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{54}{subsection.3.1.4}\protected@file@percent }
\citation{Keesee1989,Gilligan2000,Sennikov2005,Cabellos2016,Orabi2013,Bommer2016,Rodgers2003,Van2004,Gibb2004,Tielens2005,Parise2005,Boogert2015,Dulieu2010,Michoulier2018}
\citation{Kulmala2004}
\citation{Ziereis1986}
@ -71,9 +71,9 @@
\citation{Morrell2010}
\citation{Pei2015}
\citation{Walters2018}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{55}{section.3.2}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{55}{section.3.2}\protected@file@percent }
\newlabel{sec:ammoniumwater}{{3.2}{55}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{55}{subsection.3.2.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{55}{subsection.3.2.1}\protected@file@percent }
\@writefile{brf}{\backcite{Tielens2005}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Keesee1989}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gilligan2000}{{55}{3.2.1}{subsection.3.2.1}}}
@ -147,33 +147,33 @@
\@writefile{brf}{\backcite{Rapacioli2009}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{57}{subsection.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{57}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{58}{figure.caption.10}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{57}{subsection.3.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{57}{subsubsection.3.2.2.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{58}{figure.caption.10}\protected@file@percent }
\newlabel{fig:E_nh4}{{3.2}{58}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}}
\citation{Winget2003,Gaus2013para}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{59}{figure.caption.11}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{59}{figure.caption.11}\protected@file@percent }
\newlabel{fig:E_nh3}{{3.3}{59}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}}
\citation{Wang1998,Jiang1999}
\citation{Wang1998,Jiang1999}
\citation{Douady2008}
\@writefile{brf}{\backcite{Gaus2013para}{{60}{3.2.2.1}{figure.caption.11}}}
\@writefile{brf}{\backcite{Winget2003}{{60}{3.2.2.1}{figure.caption.11}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{60}{figure.caption.12}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{60}{figure.caption.12}\protected@file@percent }
\newlabel{dimers}{{3.4}{60}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{60}{subsubsection.3.2.2.2}}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{60}{subsubsection.3.2.2.2}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}\protected@file@percent }
\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{61}{figure.caption.13}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{61}{figure.caption.13}\protected@file@percent }
\newlabel{fig:nh3-nh4-1w}{{3.5}{61}{Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{62}{figure.caption.14}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{62}{figure.caption.14}\protected@file@percent }
\newlabel{fig:nh3-nh4-2-3w}{{3.6}{62}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{62}{figure.caption.15}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{62}{figure.caption.15}\protected@file@percent }
\newlabel{fig:nh3-nh4-3w}{{3.7}{62}{Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.15}{}}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Douady2009,Morrell2010}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Pickard2005}
@ -185,7 +185,7 @@
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Morrell2010}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Lee2004}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{63}{subsubsection.3.2.2.3}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{63}{subsubsection.3.2.2.3}\protected@file@percent }
\@writefile{brf}{\backcite{Wang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
@ -194,11 +194,11 @@
\@writefile{brf}{\backcite{Wang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Chang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{64}{table.caption.18}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{64}{table.caption.18}\protected@file@percent }
\newlabel{reBindE}{{3.2}{64}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal·mol\textsuperscript {-1}.\relax }{table.caption.18}{}}
\citation{Douady2008,Morrell2010}
\citation{Jiang1999}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{65}{figure.caption.17}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{65}{figure.caption.17}\protected@file@percent }
\newlabel{fig:nh4-4-6w}{{3.8}{65}{Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal·mol\textsuperscript {-1}.\relax }{figure.caption.17}{}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{65}{3.2.2.3}{table.caption.18}}}
@ -223,7 +223,7 @@
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{68}{figure.caption.19}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{68}{figure.caption.19}\protected@file@percent }
\newlabel{fig:nh4-7-10w}{{3.9}{68}{The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.19}{}}
\@writefile{brf}{\backcite{Douady2008}{{68}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
@ -234,32 +234,32 @@
\citation{Lee1996}
\citation{Bacelo2002}
\citation{Bacelo2002}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{70}{subsubsection.3.2.2.4}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{70}{subsubsection.3.2.2.4}\protected@file@percent }
\@writefile{brf}{\backcite{Lee1996}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{71}{figure.caption.20}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{71}{figure.caption.20}\protected@file@percent }
\newlabel{fig:nh3-4-7w}{{3.10}{71}{The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{74}{figure.caption.21}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{74}{figure.caption.21}\protected@file@percent }
\newlabel{fig:nh3-8-10w}{{3.11}{74}{The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.21}{}}
\citation{Kazimirski2003,Douady2009,Bandow2006}
\citation{Douady2009}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{75}{subsubsection.3.2.2.5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{75}{subsubsection.3.2.2.5}\protected@file@percent }
\@writefile{brf}{\backcite{Douady2009}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Kazimirski2003}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Bandow2006}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Douady2009}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{76}{figure.caption.22}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{76}{figure.caption.22}\protected@file@percent }
\newlabel{fig:nh3-nh4-20w}{{3.12}{76}{The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{76}{subsection.3.2.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{76}{subsection.3.2.3}\protected@file@percent }
\citation{Maclot2011,Domaracka2012,Markush2016,Castrovilli2017}
\citation{Wincel2009}
\citation{Boudaiffa2000}
\citation{Smyth2011,Siefermann2011,Alizadeh2013}
\citation{Rasmussen2010}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{77}{section.3.3}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{77}{section.3.3}\protected@file@percent }
\newlabel{structureUH}{{3.3}{77}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{77}{subsection.3.3.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{77}{subsection.3.3.1}\protected@file@percent }
\@writefile{brf}{\backcite{Castrovilli2017}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Maclot2011}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Domaracka2012}{{77}{3.3.1}{subsection.3.3.1}}}
@ -310,12 +310,12 @@
\citation{Dalleska1993}
\citation{Zamith2012}
\@writefile{brf}{\backcite{Braud2019}{{79}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{79}{subsection.3.3.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{79}{subsection.3.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}\protected@file@percent }
\newlabel{exp_ur}{{3.3.2.1}{79}{Experimental Results}{subsubsection.3.3.2.1}{}}
\citation{Myers2007}
\citation{Zamith2012}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{80}{figure.caption.23}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{80}{figure.caption.23}\protected@file@percent }
\newlabel{mass7w}{{3.13}{80}{Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}}
\@writefile{brf}{\backcite{Dalleska1993}{{80}{3.3.2.1}{figure.caption.23}}}
\@writefile{brf}{\backcite{Zamith2012}{{80}{3.3.2.1}{figure.caption.23}}}
@ -340,10 +340,10 @@
\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{82}{figure.caption.24}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{82}{figure.caption.24}\protected@file@percent }
\@writefile{brf}{\backcite{Dalleska1993}{{82}{3.14}{figure.caption.24}}}
\@writefile{brf}{\backcite{Zamith2012}{{82}{3.14}{figure.caption.24}}}
\newlabel{fragcrosssec}{{3.14}{82}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
\newlabel{fragcrosssec}{{3.14}{82}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
\citation{Kurinovich2002}
\citation{Magnera1991}
\citation{Cheng1998}
@ -355,23 +355,23 @@
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Bakker2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{83}{figure.caption.25}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{83}{figure.caption.25}\protected@file@percent }
\newlabel{Uloss}{{3.15}{83}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}}
\@writefile{brf}{\backcite{Kurinovich2002}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Magnera1991}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Bakker2008}{{83}{3.3.2.1}{figure.caption.26}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{84}{figure.caption.26}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{84}{figure.caption.26}\protected@file@percent }
\@writefile{brf}{\backcite{Magnera1991}{{84}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Cheng1998}{{84}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Kurinovich2002}{{84}{3.16}{figure.caption.26}}}
\newlabel{protonAffinity}{{3.16}{84}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.26}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{85}{table.caption.28}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{85}{table.caption.28}\protected@file@percent }
\newlabel{tab:DNH}{{3.3}{85}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.28}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{85}{subsubsection.3.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{85}{subsubsection.3.3.2.2}\protected@file@percent }
\newlabel{calcul_ur}{{3.3.2.2}{85}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{85}{figure.caption.27}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{85}{figure.caption.27}\protected@file@percent }
\newlabel{uracil_i}{{3.17}{85}{Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }{figure.caption.27}{}}
\citation{Wolken2000}
\citation{Pedersen2014}
@ -381,32 +381,32 @@
\@writefile{brf}{\backcite{Pedersen2014}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Pedersen2014}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Bakker2008}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.29}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.29}\protected@file@percent }
\newlabel{1a-f}{{3.18}{87}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.29}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.30}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.30}\protected@file@percent }
\newlabel{1a-f-b3lyp}{{3.19}{88}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}}
\citation{Zundel1968}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.31}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.31}\protected@file@percent }
\newlabel{2a-f}{{3.20}{89}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.32}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.32}\protected@file@percent }
\newlabel{3a-f}{{3.21}{90}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}}
\@writefile{brf}{\backcite{Zundel1968}{{90}{3.3.2.2}{figure.caption.34}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.33}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.33}\protected@file@percent }
\newlabel{4a-f}{{3.22}{91}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{92}{figure.caption.34}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{92}{figure.caption.34}\protected@file@percent }
\newlabel{5a-f}{{3.23}{92}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.35}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.35}\protected@file@percent }
\newlabel{6a-f}{{3.24}{93}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}}
\citation{Molina2015,Molina2016}
\@writefile{brf}{\backcite{Molina2015}{{94}{3.3.2.2}{figure.caption.38}}}
\@writefile{brf}{\backcite{Molina2016}{{94}{3.3.2.2}{figure.caption.38}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}\protected@file@percent }
\FN@pp@footnotehinttrue
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.36}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.36}\protected@file@percent }
\newlabel{7a-f}{{3.25}{95}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{96}{figure.caption.37}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{96}{figure.caption.37}\protected@file@percent }
\newlabel{11a-f}{{3.26}{96}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{97}{figure.caption.38}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{97}{figure.caption.38}\protected@file@percent }
\newlabel{12a-f}{{3.27}{97}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.38}{}}
\@setckpt{3/structure_stability}{
\setcounter{page}{98}
@ -426,6 +426,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{27}
\setcounter{table}{3}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -592,7 +592,7 @@ at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}
\textbf{Fragmentation cross section.}
The total fragmentation cross sections of clusters
(H$_2$O)$_{n-1}$UH$^+$, pure water clusters \newline (H$_2$O)$_{n=2-6}$H$^+$,\cite{Dalleska1993} and deuterated water clusters (D$_2$O)$_{n=5, 10}$H$^+$ \cite{Zamith2012} are plotted in Figure \ref{fragcrosssec} as a function of the cluster size n. Here n stands for the total number of molecules when the cluster includes uracil molecule. Different target atoms and molecules were used in these experiments: Water molecules or neon atoms in our experiments, xenon atoms in Dalleskas experiments. These experimental data are compared to the geometrical (\textit{i.e.}, hard sphere) cross sections given by:
(H$_2$O)$_{n-1}$UH$^+$, pure water clusters \newline (H$_2$O)$_{2-6}$H$^+$,\cite{Dalleska1993} and deuterated water clusters (D$_2$O)$_{5, 10}$H$^+$ \cite{Zamith2012} are plotted in Figure \ref{fragcrosssec} as a function of the cluster size n. Here n stands for the total number of molecules when the cluster includes uracil molecule. Different target atoms and molecules were used in these experiments: Water molecules or neon atoms in our experiments, xenon atoms in Dalleskas experiments. These experimental data are compared to the geometrical (\textit{i.e.}, hard sphere) cross sections given by:
\begin{align}
\label{cross-section-geo}
\sigma_{geo} = \pi \left(\left[n_w\times r_w^3 + n_Ur_U^3\right]^{1/3} + r_T \right)^2
@ -606,7 +606,7 @@ The cross sections measured for clusters containing uracil colliding with water
The fragmentation cross sections obtained by Dalleska
and coworkers \cite{Dalleska1993} for protonated water clusters are within our error bars for n = 5, 6 and about a factor of 2 lower for n = 3, 4. However their cross section is notably lower for (H$_2$O)$_2$H$^+$ as compared to our measurement for (H$_2$O)UH$^+$. This difference may be explained by the fact that UH$^+$ forms a weaker bond with water than H$_2$OH$^+$ does. Indeed the dissociation energy D[H$_2$OH$^+$H$_2$O] is 1.35 eV \cite{Dalleska1993, Hansen2009} whereas the value for D[UH$^+$H$_2$O] is estimated between 0.54 \cite{Wincel2009} and 0.73 eV. \cite{Bakker2008} The same behavior is observed for n = 3, and the dissociation energy D[(H$_2$O)$_2$H$^+$H$_2$O] = 0.86 eV \cite{Dalleska1993, Hansen2009} is greater than the dissociation energy D[U(H$_2$O)H$^+$H$_2$O] = 0.49 eV.\cite{Wincel2009} Hence the dissociation of water molecules is more favored in the protonated uracil cluster than in the pure water clusters.
\figuremacro{fragcrosssec}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite{Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit{et al.} \cite{Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}
\figuremacro{fragcrosssec}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite{Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit{et al.} \cite{Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}
\textbf{Intermolecular fragmentation.}
Figure \ref{Uloss} displays the percentage of the fragments that have lost a neutral uracil molecule over all the fragments, plotted as a function of the number of water molecules in the parent cluster (H$_2$O)$_{n}$UH$^+$. It shows that for the cluster (H$_2$O)$_{n}$UH$^+$ with a small number of water molecules, almost no neutral uracil is evaporated. From n = 5 and more clearly from n = 6, the loss of neutral uracil molecule increases up to about 20\% for (H$_2$O)$_{9}$UH$^+$.
@ -672,7 +672,7 @@ have used $D_\textrm{NH}$ = 0.12 in the following.
%\figuremacro{a-b}{The structure of isomer a and b of cluster (H$_2$O)U.}
The lowest-energy isomers determined theoretically for
hydrated uracil protonated clusters (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ are shown in Figures \ref{1a-f}-\ref{12a-f}. In the experiments, clusters are produced at a temperature of about 25 K, so only a very few isomers are likely to be populated. Indeed, the clusters are produced in the canonical ensemble at the temperature $T_\mathrm c \approx$ 25 K, so only isomers for which the Boltzmann factor exp(-$\Delta E k_\mathrm{B} T_\mathrm{c}$) is larger than 10$^{-7}$ are considered here. In this formula, $\Delta E$ represents the relative energy of a considered isomer with respect to the lowest-energy one. Thus for each isomer, only the first six lowest-energy structures of U(H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ obtained from the PES exploration will be discussed.
hydrated uracil protonated clusters (H$_2$O)$_{1-7, 11, 12}$UH$^+$ are shown in Figures \ref{1a-f}-\ref{12a-f}. In the experiments, clusters are produced at a temperature of about 25 K, so only a very few isomers are likely to be populated. Indeed, the clusters are produced in the canonical ensemble at the temperature $T_\mathrm c \approx$ 25 K, so only isomers for which the Boltzmann factor exp(-$\Delta E k_\mathrm{B} T_\mathrm{c}$) is larger than 10$^{-7}$ are considered here. In this formula, $\Delta E$ represents the relative energy of a considered isomer with respect to the lowest-energy one. Thus for each isomer, only the first six lowest-energy structures of U(H$_2$O)$_{1-7, 11, 12}$UH$^+$ obtained from the PES exploration will be discussed.
Figure \ref{1a-f} displays the six lowest-energy isomers obtained for (H$_2$O)UH$^+$. Two (1a and 1b) of them contain the u138-like isomer of U (each one with a different orientation of the hydroxyl hydrogen). Three of them (1c, 1d, and 1e) contain the u178 isomer and 1f contains the u137\cite{Wolken2000} isomer with a reverse orientation of the hydroxyl hydrogen. From those isomers, different sites are possible for the water molecule attachment which leads to variety of isomers even for such small size system. To the best of our knowledge, (H$_2$O)UH$^+$ is the most studied protonated uracil water cluster and our results are consistent with previous
published studies. Indeed, Pedersen and co-workers \cite{Pedersen2014} conducted ultraviolet action spectroscopy on (H$_2$O)UH$^+$ and discussed their measurements in the light of theoretical calculations performed on two isomers: ur138w8 (1a in the present study) and ur178w7 (1c).\cite{Pedersen2014} Their energy ordering at 0 K is the same whatever the computational method they used: B3LYP/6-311++G(3df,2p), M06-2X/6-311++G(3df,2p), MP2/6-311++G(3df,2p), CCSD(T)/6-311++G(3df,2p), and CCSD(T)/augcc-pVTZ and is similar to what we obtain. Similarly, Bakker and co-workers\cite{Bakker2008} considered three isomers: U(DK)H$^+_W$ (1a), U(KE)H$^+_{Wa}$ (1c), and U(KE)H$^+_{Wb}$ (1e) at the B3LYP/6-311++G(3df,2p) level of theory and obtained the same energy ordering as we do. Our methodology has thus allowed us to retrieve those isomers and to locate two new low-energy structures (1b and 1d). 1f is too high in energy to be considered in low-temperature experiments that are in the same range of relative energies but have never been discussed. To ensure that they are not artificially favored in our computational method, calculations were also performed at the B3LYP/6-311++G(3df,2p) level of theory. The results are presented in Figure \ref{1a-f-b3lyp}, which are consistent with the MP2/Def2TZVP ones. This makes us confident in the ability of the present methodology to locate meaningful low energy structures. Importantly, no isomer with the proton on the water molecule was obtained, neither at the DFTB or MP2 levels.
@ -695,7 +695,7 @@ The first six lowest-energy isomers obtained for (H$_2$O)$_4$UH$^+$ and (H$_2$O)
Figures \ref{6a-f} and \ref{7a-f} display the first six lowest-energy isomers obtained for (H$_2$O)$_6$UH$^+$ and (H$_2$O)$_7$UH$^+$. Similarly to (H$_2$O)$_5$UH$^+$, the first lowest-energy structure, 6a and 7a, we located for both species (H$_2$O)$_6$UH$^+$ and (H$_2$O)$_7$UH$^+$ has the excess proton on a water molecule that is separated by one water molecule from the uracil. This appears to be common to the clusters with at least 5 water molecules. This is also observed for higher-energy isomers (6c, 6d, 7c, 7e, and 7f). Other characteristics of the proton are also observed: proton in a similar Zundel form \cite{Zundel1968} bounded to the uracil (6b, 6e, and 7d) or H$_2$OH$^+$ still bounded to uracil (6f and 7b).
Finally, due to the neutral uracil loss proportion starts to decrease from n=9 (see Figure \ref{Uloss}), which attracted us to perform the optimization of big cluster (H$_2$O)$_{11, 12}$UH$^+$ as examples to explore why it has this change. The first six low-lying energy isomers obtained for cluster (H$_2$O)$_{11, 12}$UH$^+$ are shown in Figures \ref{11a-f} and \ref{12a-f}.
Finally, due to the neutral uracil loss proportion starts to decrease from $n$=9 (see Figure \ref{Uloss}), which attracted us to perform the optimization of big cluster (H$_2$O)$_{11, 12}$UH$^+$ as examples to explore why it has this change. The first six low-lying energy isomers obtained for cluster (H$_2$O)$_{11, 12}$UH$^+$ are shown in Figures \ref{11a-f} and \ref{12a-f}.
In all isomers (11a to 11f) of cluster (H$_2$O)$_{11}$UH$^+$, the excess is on the water cluster and was separated by water molecule from uracil.
For 12a, 12b, 12c, and 12d, it is obvious that the excess proton is not directly bounded to the uracil. The uracil in 12a and 12d belongs to the di-keto form (there is a hydrogen atom on each nitrogen of uracil), and the excess proton was separated by one water molecule from uracil, additionally, the uracil is surrounded by the water cluster, all of these may lead the excess proton to go to the near oxygen atom of uracil. For 12b, the excess proton is on the water cluster and is very far from the uracil. For 12c, the excess proton was separately by one water molecule from uracil. For isomers 12e and 12f, the excess proton is between the uracil and a water molecule. The uracil is surrounded by the water cluster in 12e but it is not in 12f. Of course, for (H$_2$O)$_{11}$UH$^+$, (H$_2$O)$_{12}$UH$^+$, (H$_2$O)$_6$UH$^+$ and (H$_2$O)$_7$UH$^+$ and also (H$_2$O)$_4$UH$^+$ and (H$_2$O)$_5$UH$^+$, the amount of low-energy isomers is expected to be very large and we do not intended to find them all. Furthermore, due to the limited number of MP2 geometry optimization we performed, there is few chances that we located the global energy minima for (H$_2$O)$_6$UH$^+$, (H$_2$O)$_7$UH$^+$, (H$_2$O)$_{11}$UH$^+$ and (H$_2$O)$_{12}$UH$^+$. However, the general picture we are able to draw from the present discussed structures fully supports the experimental results: from (H$_2$O)$_5$UH$^+$, it exists low-energy structures populated at very low temperature in which the excess proton is not directly bound to the uracil molecule. Upon fragmentation, this allows the proton to remain bounded to the water molecules.
@ -708,7 +708,7 @@ For 12a, 12b, 12c, and 12d, it is obvious that the excess proton is not directly
\figuremacrob{12a-f}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm{rel}$) and binding energies ($E_\textrm{bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA.}
All the aforementioned low-lying energy structures are relevant to describe the \newline (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ species at low temperature and to understand the relation between the parent cluster size and the amount of evaporated neutral uracil in the case of direct dissociation. However, as already stated, one has to keep in mind that upon collision statistical dissociation can also occur. In that case, structural rearrangements are expected to occur which are important to understand each individual mass spectra of the (H$_2$O)$_{n=1-15}$UH$^+$ clusters and the origin of each collision product. For instance, the fragment UH$^+$ is detected for all cluster sizes in experiment. This means that for the largest sizes, for which we have shown from the calculation that the proton is located away from the uracil, proton transfer does occur prior to dissociation. One possible scenario is that after collision, water molecules sequentially evaporates. When the number of water molecules is small enough, the proton affinity of uracil gets larger than the one of the remaining attached water cluster. Proton transfer is then likely and therefore protonated uracil can be obtained at the end.
All the aforementioned low-lying energy structures are relevant to describe the \newline (H$_2$O)$_{1-7, 11, 12}$UH$^+$ species at low temperature and to understand the relation between the parent cluster size and the amount of evaporated neutral uracil in the case of direct dissociation. However, as already stated, one has to keep in mind that upon collision statistical dissociation can also occur. In that case, structural rearrangements are expected to occur which are important to understand each individual mass spectra of the (H$_2$O)$_{1-15}$UH$^+$ clusters and the origin of each collision product. For instance, the fragment UH$^+$ is detected for all cluster sizes in experiment. This means that for the largest sizes, for which we have shown from the calculation that the proton is located away from the uracil, proton transfer does occur prior to dissociation. One possible scenario is that after collision, water molecules sequentially evaporates. When the number of water molecules is small enough, the proton affinity of uracil gets larger than the one of the remaining attached water cluster. Proton transfer is then likely and therefore protonated uracil can be obtained at the end.
If one turns to the neutral uracil evaporation channel, it appears that the smaller clusters H$_2$OH$^+$ and (H$_2$O)$_2$H$^+$ are not present in the time of flight mass spectra. This absence might have two origins. First, the dissociation energies of the protonated water monomers and dimers are substantially higher than larger sizes, and they are therefore less prone to evaporation. Second, as already mentioned, for such small sizes, the proton affinity of uracil gets larger than the one of the water dimer or trimer and proton transfer to the uracil is likely to occur.
@ -717,10 +717,10 @@ and/or evaporation rate calculation would have to be conducted to describe the f
\subsection{Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}
The work in this section presents the collision-induced dissociation of hydrated protonated uracil (H$_2$O)$_{n=1-15}$UH$^+$ clusters and their experimental
The work in this section presents the collision-induced dissociation of hydrated protonated uracil (H$_2$O)$_{1-15}$UH$^+$ clusters and their experimental
absolute fragmentation cross sections. The experiments demonstrate that the evaporation channels evolve with size: Below n = 5, the observed charged fragments
always contain the uracil molecule, whereas from n = 5, the loss of a neutral uracil molecule becomes significant. To understand this transition, I conducted an
exhaustive exploration of the potential energy surface of (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ clusters combining a rough exploration at the SCC-DFTB level with
exhaustive exploration of the potential energy surface of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters combining a rough exploration at the SCC-DFTB level with
fine geometry optimizations at the MP2 level of theory. Those calculations show that below n = 5, the excess proton is either on the uracil or on a water molecule
directly bound to uracil, \textit{i.e.}, forming a strongly bound UH$_2$OH$^+$ complex. From n = 5 and above, clusters contain enough water molecules to allow
for a net separation between uracil and the excess proton: The latter is often found bound to a water molecule which is separated from uracil by at least one other

View File

@ -5,11 +5,11 @@
\citation{Wong2004,Bush2008}
\citation{Holm2010,Gatchell2014,Gatchell2017}
\citation{Boering1992,Wells2005,Zamith2019thermal}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:collision}{{4}{99}{Dynamical Simulation of Collision-Induced Dissociation}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}\protected@file@percent }
\newlabel{exp_cid}{{4.1}{99}{Experimental Methods}{section.4.1}{}}
\@writefile{brf}{\backcite{Brechignac1989}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Brechignac1994}{{99}{4.1}{section.4.1}}}
@ -89,7 +89,7 @@
\@writefile{brf}{\backcite{Armentrout2008}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Braud2019}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{101}{4.1}{section.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}\protected@file@percent }
\newlabel{principleTCID}{{4.1.1}{101}{Principle of TCID}{subsection.4.1.1}{}}
\@writefile{brf}{\backcite{Klippenstein1992}{{101}{4.1.1}{subsection.4.1.1}}}
\@writefile{brf}{\backcite{Baer1996}{{101}{4.1.1}{subsection.4.1.1}}}
@ -99,11 +99,11 @@
\newlabel{CIDcross}{{4.1}{102}{Principle of TCID}{equation.4.1.1}{}}
\@writefile{brf}{\backcite{Rodgers1998}{{102}{4.1.1}{equation.4.1.1}}}
\@writefile{brf}{\backcite{Armentrout2007}{{102}{4.1.1}{equation.4.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}\protected@file@percent }
\newlabel{EXPsetup}{{4.1.2}{102}{Experimental Setup}{subsection.4.1.2}{}}
\@writefile{brf}{\backcite{Braud2017}{{102}{4.1.2}{figure.caption.39}}}
\citation{Chirot2006new}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{103}{figure.caption.39}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{103}{figure.caption.39}\protected@file@percent }
\newlabel{experiment-setup}{{4.1}{103}{Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First WileyMcLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second WileyMcLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector}{figure.caption.39}{}}
\citation{Elstner1998,Porezag1995,Seifert1996,Frenzel2004,Elstner2014,Spiegelman2020}
\citation{Simon2017,Korchagina2017,Rapacioli2018,Simon2018}
@ -114,11 +114,11 @@
\citation{Simon2017}
\citation{Simon2017,Simon2018,Rapacioli2018atomic}
\@writefile{brf}{\backcite{Chirot2006new}{{104}{4.1.2}{figure.caption.39}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{104}{figure.caption.40}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{104}{figure.caption.40}\protected@file@percent }
\newlabel{exp-setup}{{4.2}{104}{Schematic of the simplified experimental setup}{figure.caption.40}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}\protected@file@percent }
\newlabel{Comput_meth}{{4.2}{104}{Computational Details}{section.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}\protected@file@percent }
\newlabel{DFTBpotential}{{4.2.1}{104}{SCC-DFTB Potential}{subsection.4.2.1}{}}
\@writefile{brf}{\backcite{Elstner1998}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Elstner2014}{{104}{4.2.1}{subsection.4.2.1}}}
@ -141,90 +141,90 @@
\@writefile{brf}{\backcite{Simon2017}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2018}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2018atomic}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}\protected@file@percent }
\newlabel{makingtrajectories}{{4.2.2}{105}{Collision Trajectories}{subsection.4.2.2}{}}
\@writefile{brf}{\backcite{Dontot2019}{{105}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Nose1984}{{105}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{105}{4.2.2}{subsection.4.2.2}}}
\newlabel{vectorq}{{4.2}{106}{Collision Trajectories}{equation.4.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{106}{figure.caption.41}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{106}{figure.caption.41}\protected@file@percent }
\newlabel{howinputs}{{4.3}{106}{Schematic of the generation of the initial inputs}{figure.caption.41}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}\protected@file@percent }
\newlabel{trajecanylysis}{{4.2.3}{106}{Trajectory Analysis}{subsection.4.2.3}{}}
\citation{Braud2019}
\newlabel{integ}{{4.3}{107}{Trajectory Analysis}{equation.4.2.3}{}}
\newlabel{sec:collisionwUH}{{4.3}{107}{Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{section.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}\protected@file@percent }
\@writefile{brf}{\backcite{Braud2019}{{107}{4.3.1}{subsection.4.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}\protected@file@percent }
\newlabel{resul_disc}{{4.3.2}{108}{Results and Discussion}{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}\protected@file@percent }
\newlabel{convergence}{{4.3.2.1}{108}{Statistical Convergence}{subsubsection.4.3.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{109}{figure.caption.42}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{109}{figure.caption.42}\protected@file@percent }
\newlabel{3b-sphere}{{4.4}{109}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively}{figure.caption.42}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{110}{figure.caption.43}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{110}{figure.caption.43}\protected@file@percent }
\newlabel{12f-sphere}{{4.5}{110}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively}{figure.caption.43}{}}
\newlabel{PNUL}{{4.4}{110}{Statistical Convergence}{equation.4.3.4}{}}
\citation{Braud2019}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}\protected@file@percent }
\newlabel{time}{{4.3.3}{111}{Time-Dependent Proportion of Fragments}{subsection.4.3.3}{}}
\@writefile{brf}{\backcite{Braud2019}{{111}{4.3.3}{subsection.4.3.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{112}{table.caption.44}}
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{112}{table.caption.44}\protected@file@percent }
\newlabel{tab:converge-1w-5w}{{4.1}{112}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.44}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{113}{table.caption.45}}
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{113}{table.caption.45}\protected@file@percent }
\newlabel{tab:converge-6w-12w}{{4.2}{113}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.45}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{114}{figure.caption.46}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{114}{figure.caption.46}\protected@file@percent }
\newlabel{proporEachFrag-1a2a}{{4.6}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right)}{figure.caption.46}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}\protected@file@percent }
\newlabel{small}{{4.3.4}{114}{Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{subsection.4.3.4}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{115}{figure.caption.47}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{115}{figure.caption.47}\protected@file@percent }
\newlabel{proporEachFrag-3a4a-zoom}{{4.7}{115}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.47}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.48}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.48}\protected@file@percent }
\newlabel{proporEachFrag-5a6a-zoom}{{4.8}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{116}{figure.caption.49}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{116}{figure.caption.49}\protected@file@percent }
\newlabel{proporEachFrag-11a-zoom}{{4.9}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions}{figure.caption.49}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{117}{table.caption.52}}
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{117}{table.caption.52}\protected@file@percent }
\newlabel{tab:full}{{4.3}{117}{Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \AA $^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }{table.caption.52}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{118}{figure.caption.50}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{118}{figure.caption.50}\protected@file@percent }
\newlabel{proporEachFrag-7a12a-zoom}{{4.10}{118}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.50}{}}
\@writefile{brf}{\backcite{Braud2019}{{118}{4.3.4}{table.caption.52}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{119}{figure.caption.51}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{119}{figure.caption.51}\protected@file@percent }
\newlabel{proporEachFrag-7d12c-zoom}{{4.11}{119}{Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.53}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.53}\protected@file@percent }
\newlabel{fig-1a-3b}{{4.12}{120}{Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.53}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.54}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.54}\protected@file@percent }
\newlabel{fig-4a-5d}{{4.13}{121}{Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.54}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{122}{figure.caption.55}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{122}{figure.caption.55}\protected@file@percent }
\newlabel{fig-6a-6f}{{4.14}{122}{Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.55}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{123}{figure.caption.56}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{123}{figure.caption.56}\protected@file@percent }
\newlabel{fig-7a-7d}{{4.15}{123}{Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.56}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{124}{figure.caption.57}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{124}{figure.caption.57}\protected@file@percent }
\newlabel{neutralUloss-Ne-Ar}{{4.16}{124}{Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.57}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}\protected@file@percent }
\newlabel{large}{{4.3.5}{124}{Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{subsection.4.3.5}{}}
\@writefile{brf}{\backcite{Braud2019}{{124}{4.3.5}{subsection.4.3.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{125}{figure.caption.58}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{125}{figure.caption.58}\protected@file@percent }
\newlabel{cross-section-Ne-Ar}{{4.17}{125}{Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.58}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.59}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.59}\protected@file@percent }
\newlabel{fig-11a-f}{{4.18}{127}{Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.59}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.60}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.60}\protected@file@percent }
\newlabel{fig-12a-f}{{4.19}{127}{Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.60}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}\protected@file@percent }
\newlabel{mass-spectra}{{4.3.6}{128}{Mass Spectra of Fragments with Excess Proton}{subsection.4.3.6}{}}
\@writefile{brf}{\backcite{Braud2019}{{128}{4.3.6}{subsection.4.3.6}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{128}{figure.caption.61}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{128}{figure.caption.61}\protected@file@percent }
\newlabel{MS-BR-1w-4w-Ne-Ar-branch}{{4.20}{128}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area)}{figure.caption.61}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{129}{figure.caption.62}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{129}{figure.caption.62}\protected@file@percent }
\newlabel{MS-BR-5w-11w-Ne-Ar-branch}{{4.21}{129}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area)}{figure.caption.62}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{130}{figure.caption.63}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{130}{figure.caption.63}\protected@file@percent }
\newlabel{MS-BR-12w-Ne-branch}{{4.22}{130}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green)}{figure.caption.63}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{131}{table.caption.64}}
\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{131}{table.caption.64}\protected@file@percent }
\newlabel{tab:fragenergy}{{4.4}{131}{Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }{table.caption.64}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}\protected@file@percent }
\newlabel{Concl}{{4.3.7}{131}{Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{subsection.4.3.7}{}}
\citation{Chung2011,Saggese2015,Eaves2015,Mao2017,Wang2018}
\citation{Kyrtopoulos2001,Farmer2003}
@ -240,8 +240,8 @@
\citation{Delaunay2015}
\citation{Zhen2018}
\citation{Chen2018}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}\protected@file@percent }
\@writefile{brf}{\backcite{Eaves2015}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Chung2011}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Saggese2015}{{133}{4.4.1}{subsection.4.4.1}}}
@ -309,7 +309,7 @@
\@writefile{brf}{\backcite{Gatchell2016knockout}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}\protected@file@percent }
\newlabel{Eparti}{{4.5}{135}{Calculation of Energies}{equation.4.4.5}{}}
\newlabel{Eintra}{{4.6}{136}{Calculation of Energies}{equation.4.4.6}{}}
\newlabel{Einter}{{4.7}{136}{Calculation of Energies}{equation.4.4.7}{}}
@ -317,66 +317,66 @@
\citation{Zamith2020threshold}
\citation{Levine1987}
\citation{Zamith2020threshold}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}\protected@file@percent }
\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Levine1987}{{137}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}}
\citation{Dontot2019,Zamith2020threshold}
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{138}{figure.caption.65}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{138}{figure.caption.65}\protected@file@percent }
\newlabel{MDPST}{{4.23}{138}{Principle of MD+PST}{figure.caption.65}{}}
\newlabel{sec:results}{{4.4.4}{139}{Results and Discussion}{subsection.4.4.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}\protected@file@percent }
\@writefile{brf}{\backcite{Zamith2020threshold}{{139}{4.4.4}{subsection.4.4.4}}}
\@writefile{brf}{\backcite{Dontot2019}{{139}{4.4.4}{subsection.4.4.4}}}
\newlabel{sec:MS}{{4.4.4.1}{139}{TOFMS Comparison}{subsubsection.4.4.4.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{139}{figure.caption.66}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{139}{figure.caption.66}\protected@file@percent }
\newlabel{expTOF}{{4.24}{139}{Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model}{figure.caption.66}{}}
\newlabel{sec:MDanalysis}{{4.4.4.2}{140}{Molecular Dynamics Analysis}{subsubsection.4.4.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{141}{figure.caption.67}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{141}{figure.caption.67}\protected@file@percent }
\newlabel{collisions}{{4.25}{141}{Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\AA {} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively)}{figure.caption.67}{}}
\citation{Chen2014,Gatchell2016knockout}
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{143}{figure.caption.68}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{143}{figure.caption.68}\protected@file@percent }
\newlabel{distriPerc-Etf-175eV-d-bin03}{{4.26}{143}{Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model}{figure.caption.68}{}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{143}{4.4.4.2}{figure.caption.69}}}
\@writefile{brf}{\backcite{Chen2014}{{143}{4.4.4.2}{figure.caption.69}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{144}{figure.caption.69}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{144}{figure.caption.69}\protected@file@percent }
\newlabel{fragmentation}{{4.27}{144}{Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\AA {} and a collision energy of 27.5 eV leading to intramolecular fragmentation}{figure.caption.69}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{144}{figure.caption.70}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{144}{figure.caption.70}\protected@file@percent }
\newlabel{opacitycurves}{{4.28}{144}{Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies}{figure.caption.70}{}}
\citation{Zamith2020threshold}
\citation{Dontot2019,Zamith2020threshold}
\@writefile{brf}{\backcite{Zamith2020threshold}{{145}{4.4.4.2}{figure.caption.70}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{145}{4.4.4.2}{equation.4.4.12}}}
\@writefile{brf}{\backcite{Dontot2019}{{145}{4.4.4.2}{equation.4.4.12}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{146}{figure.caption.71}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{146}{figure.caption.71}\protected@file@percent }
\newlabel{cross-section}{{4.29}{146}{Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs}{figure.caption.71}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{147}{figure.caption.72}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{147}{figure.caption.72}\protected@file@percent }
\newlabel{transferredE-Ar-300}{{4.30}{147}{At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted}{figure.caption.72}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{148}{table.caption.73}}
\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{148}{table.caption.73}\protected@file@percent }
\newlabel{tab:table1}{{4.5}{148}{The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }{table.caption.73}{}}
\newlabel{separately}{{4.13}{148}{Molecular Dynamics Analysis}{equation.4.4.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{149}{figure.caption.74}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{149}{figure.caption.74}\protected@file@percent }
\newlabel{Epartition-Ar-300-SP}{{4.31}{149}{Mean kinetic energy partition at the end of the MD simulations}{figure.caption.74}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{150}{table.caption.75}}
\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{150}{table.caption.75}\protected@file@percent }
\newlabel{tab:table2}{{4.6}{150}{The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\AA .\relax }{table.caption.75}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{150}{figure.caption.76}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{150}{figure.caption.76}\protected@file@percent }
\newlabel{Epartition-Ar-300-Tstep-01}{{4.32}{150}{Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles}{figure.caption.76}{}}
\citation{Dontot2020}
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{151}{figure.caption.77}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{151}{figure.caption.77}\protected@file@percent }
\newlabel{prot-Ar-300}{{4.33}{151}{Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy}{figure.caption.77}{}}
\@writefile{brf}{\backcite{Dontot2020}{{151}{4.4.4.2}{figure.caption.78}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{152}{figure.caption.78}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{152}{figure.caption.78}\protected@file@percent }
\newlabel{Epartition-Ar-300-d-ud}{{4.34}{152}{Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy}{figure.caption.78}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{153}{figure.caption.79}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{153}{figure.caption.79}\protected@file@percent }
\newlabel{figuretimescale}{{4.35}{153}{Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue)}{figure.caption.79}{}}
\newlabel{kineticT}{{4.14}{153}{Molecular Dynamics Analysis}{equation.4.4.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{154}{figure.caption.80}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{154}{figure.caption.80}\protected@file@percent }
\newlabel{T-time-zoom_abcdef}{{4.36}{154}{Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\AA {}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel}{figure.caption.80}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{155}{figure.caption.81}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{155}{figure.caption.81}\protected@file@percent }
\newlabel{E-time-abcdef}{{4.37}{155}{Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \AA {}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation}{figure.caption.81}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}\protected@file@percent }
\citation{Chen2014,Gatchell2016knockout}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{157}{4.4.5}{subsection.4.4.5}}}
\@writefile{brf}{\backcite{Chen2014}{{157}{4.4.5}{subsection.4.4.5}}}
@ -399,6 +399,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{37}
\setcounter{table}{6}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -154,14 +154,14 @@ Mean values are computed using the same approach, followed by a division by $\pi
\subsection{Introduction}
Motivated by the recent CID experiments conducted by Braud \textit{et al.} consisting in (H$_2$O)$_{1-15}$UH$^+$ clusters colliding with an impacting atom or molecule M (M = H$_2$O, D$_2$O, neon, and argon) at a constant center of mass collision energy of 7.2~eV,\cite{Braud2019} the dynamical simulations of the collision between the protonated uracil water clusters (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ and an argon atom were performed.
Motivated by the recent CID experiments conducted by Braud \textit{et al.} consisting in (H$_2$O)$_{1-15}$UH$^+$ clusters colliding with an impacting atom or molecule M (M = H$_2$O, D$_2$O, neon, and argon) at a constant center of mass collision energy of 7.2~eV,\cite{Braud2019} the dynamical simulations of the collision between the protonated uracil water clusters (H$_2$O)$_{1-7, 11, 12}$UH$^+$ and an argon atom were performed.
%First, it appears important to understand the interaction of DNA or RNA basis with water seeing
%their relevance in living organisms. They can also be subject to radiation damages which is still a medical challenge and thus
%needs to be further investigated. In that context, a number of studies have been conducted on molecules deriving from uracil
%or on uracil with only a few water molecules. \cite{Rasmussen2010,Imhoff2007,Abdoul2000,Champeaux2010,Delaunay2014,
%Bacchus2009,Kossoski2015} \cite{Maclot2011, Domaracka2012, Markush2016, Castrovilli2017}. Second, a very recent
The low collision energy (7.2~eV) only leads to intermolecular bond breaking, without any electronic excitation, rather than intramolecular bond breaking. The branching ratios for different charged fragments were determined in experiment, which allows to deduce the fragmentation cross section for all
(H$_2$O)$_{n=1-15}$UH$^+$ species and the location of the excess proton after collision: on a uracil containing cluster or on a pure water cluster. This allows to determine the proportion of neutral uracil loss (corresponding to cases where the excess proton is located on pure water clusters) as a function of the number $n$ of water molecules. A sharp increase of neutral uracil loss was observed for $n$ = 5-6 (2.8\% and 25.0\% for n = 4 and 7, respectively).
(H$_2$O)$_{1-15}$UH$^+$ species and the location of the excess proton after collision: on a uracil containing cluster or on a pure water cluster. This allows to determine the proportion of neutral uracil loss (corresponding to cases where the excess proton is located on pure water clusters) as a function of the number $n$ of water molecules. A sharp increase of neutral uracil loss was observed for $n$ = 5-6 (2.8\% and 25.0\% for n = 4 and 7, respectively).
%
Those experiment were complemented by theoretical calculations that aim at characterizing the lowest-energy isomers of (H$_2$O)$_{n}$UH$^+$ ($n$ = 1-7, 11, 12) clusters (see section \ref{structureUH}), which
%They show that (i) For $n$ = 1-2, the uracil is protonated; (ii) For $n$ = 3-4, the excess proton is still on the uracil but has a tendency to be displaced towards adjacent water molecules; (iii) When $n$ is larger than 4, the excess proton is transferred to the water molecules.
@ -172,7 +172,7 @@ shows that the location of the proton after collision recorded in the CID experi
(iv) Is the proportion of neutral uracil molecules loss only determined by the nature of the lowest-energy isomers?
%(v) What is the impact of nuclear quantum effects (NQE) for such process that occurs at very low temperature?
To answer these questions, this simulations present a complete MD study of the fragmentation process for (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ aggregates colliding with an argon atom. Section~\ref{resul_disc} discusses the statistical convergence of collision trajectories, theoretical time-dependent proportion of fragments, proportion of neutral uracil loss, total fragmentation cross sections and mass spectra of fragments bearing the excess proton. These data are compared to
To answer these questions, this simulations present a complete MD study of the fragmentation process for (H$_2$O)$_{1-7, 11, 12}$UH$^+$ aggregates colliding with an argon atom. Section~\ref{resul_disc} discusses the statistical convergence of collision trajectories, theoretical time-dependent proportion of fragments, proportion of neutral uracil loss, total fragmentation cross sections and mass spectra of fragments bearing the excess proton. These data are compared to
available experimental results in order to discuss in details dissociation mechanism as a function of $n$. The main outcomes are summarized in section~\ref{Concl}.
@ -197,7 +197,7 @@ In addition, to confirm that statistical convergence is reached for the properti
\frac{\sum\limits_{i=0}^{b_{max}}\frac{1}{2}(N_{NUL}(b_i,E_{col})+N_{NUL}(b_{i+1},E_{col}))\pi(b_{i+1}^2-b_{i}^2)}
{\sum\limits_{i=0}^{b_{max}}\frac{1}{2}(N_{frag}(b_i,E_{col})+N_{frag}(b_{i+1},E_{col}))\pi(b_{i+1}^2-b_{i}^2)} \nonumber \\
\end{eqnarray}
and $\sigma_{frag}$ of two isomers (the first lowest energy isomer and the one whose $P_{NUL}$ fits best to the experiment results (in bold)) of each cluster (H$_2$O)$_{n=1-7, 11, 12}$UH$^+$ obtained from 200, 400, and 600 random argon orientations per impact parameter value.
and $\sigma_{frag}$ of two isomers (the first lowest energy isomer and the one whose $P_{NUL}$ fits best to the experiment results (in bold)) of each cluster (H$_2$O)$_{1-7, 11, 12}$UH$^+$ obtained from 200, 400, and 600 random argon orientations per impact parameter value.
Whatever the considered isomer, the three $P_{NUL}$ and $\sigma_{frag}$ values from 200, 400, and 600 random argon orientations are very close. Indeed, the largest difference is observed for isomer 7a which has $P_{NUL}$ values of 29.5 and 31.3~\% for 200 and 600 random orientations, respectively. This demonstrate that even for 200 initial random orientations, simulation are close to statistical convergence. In the present study,
all results discussed in the main text were obtained with 600 initial random argon orientations per impact parameter value which ensures statistical convergence of the results independently of cluster size.
@ -564,7 +564,7 @@ In the analysis, we will discuss the kinetic energy contributors, applying the f
\end{align}
In these equations and in the following, $Py_2$ refers to the pyrene dimer (possibly dissociated) whereas $Py^1$ and $Py^2$ refer to the first and second monomers, respectively. $E^k_{tot}$ can be also calculated from the masses $m_i^n$ and velocities $\Vec{v}_i$ of its atoms. $E^k_{Ar}$ refers to the kinetic energy of the argon (with mass $m_{Ar}$ and velocity $\Vec{v}_{Ar}$).
$E^k_{td}$ is the translation kinetic energy of the dimer (with mass $m_{Py_2}$ and velocity $\Vec{v}_t(Py_2)$).
$E^k_{Re}$ is the relative kinetic energy of the two pyrene monomers, computed from their masses of $m_{Py^1}=m_{Py^2}$ and monomer global translation velocities $\Vec{v}_t(Py^{n=1,2})$.
$E^k_{Re}$ is the relative kinetic energy of the two pyrene monomers, computed from their masses of $m_{Py^1}=m_{Py^2}$ and monomer global translation velocities $\Vec{v}_t(Py^{1,2})$.
$E^k_{Py^{n}}$ is the rovibrational kinetic energy of the monomer $n$ computed from the masses and velocities of its atoms ($m_i^n$ and $\Vec{v}_i^n$, respectively).
The intramolecular vibrational kinetic energy ($E^k_{intra^{n}}$) of monomer $n$ obtained after removing the contributions associated to the monomer translation and rotation modes is calculated as follows:

View File

@ -1,11 +1,11 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}\protected@file@percent }
\FN@pp@footnotehinttrue
\@setckpt{5/general_conclusion}{
\setcounter{page}{163}
@ -25,6 +25,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -18,6 +18,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -18,6 +18,7 @@
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{caption@flags}{0}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}

View File

@ -31,7 +31,7 @@
\FN@pp@footnotehinttrue
\@input{0_frontmatter/glossary.aux}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{Glossary}{xi}{chapter*.2}}
\@writefile{toc}{\contentsline {chapter}{\nonumberline Glossary}{xi}{chapter*.2}\protected@file@percent }
\FN@pp@footnotehinttrue
\@input{1_GeneIntro/GeneIntro.aux}
\FN@pp@footnotehinttrue
@ -79,7 +79,7 @@
\bibcite{Faraday1857}{{32}{}{{}}{{}}}
\bibcite{Kulmala2000}{{33}{}{{}}{{}}}
\bibcite{Wang2008}{{34}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{References}{163}{chapter*.82}}
\@writefile{toc}{\contentsline {chapter}{References}{163}{chapter*.82}\protected@file@percent }
\bibcite{Depalma2014}{{35}{}{{}}{{}}}
\bibcite{Katakuse1985}{{36}{}{{}}{{}}}
\bibcite{Posthumus2009}{{37}{}{{}}{{}}}

View File

@ -1,17 +1,16 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex 2018.9.24) 14 JUN 2021 04:41
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019) (preloaded format=pdflatex 2019.10.4) 14 JUN 2021 14:46
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**thesis.tex
(./thesis.tex
LaTeX2e <2018-04-01> patch level 2
Babel <3.18> and hyphenation patterns for 84 language(s) loaded.
LaTeX2e <2018-12-01>
(./Latex/Classes/PhDthesisPSnPDF.cls
Document Class: Latex/Classes/PhDthesisPSnPDF 2007/09/06 v2 PhD thesis class
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/book.cls
Document Class: book 2014/09/29 v1.4h Standard LaTeX document class
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/bk11.clo
File: bk11.clo 2014/09/29 v1.4h Standard LaTeX file (size option)
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/book.cls
Document Class: book 2018/09/03 v1.4i Standard LaTeX document class
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/bk11.clo
File: bk11.clo 2018/09/03 v1.4i Standard LaTeX file (size option)
)
\c@part=\count80
\c@chapter=\count81
@ -26,10 +25,10 @@ File: bk11.clo 2014/09/29 v1.4h Standard LaTeX file (size option)
\belowcaptionskip=\skip42
\bibindent=\dimen102
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/amssymb.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2013/01/14 v3.01 AMS font symbols
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/amsfonts.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
\@emptytoks=\toks14
\symAMSa=\mathgroup4
@ -37,28 +36,28 @@ Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
))
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/graphics.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2017/06/25 v1.2c Standard LaTeX Graphics (DPC,SPQR)
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/trig.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 99.
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-def/pdftex.def
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-def/pdftex.def
File: pdftex.def 2018/01/08 v1.0l Graphics/color driver for pdftex
))
(/usr/local/texlive/2018/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2016/02/21 v3.3-144 Customizing captions (AR)
(/usr/local/texlive/2019/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2018/10/06 v3.3-154 Customizing captions (AR)
(/usr/local/texlive/2018/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2016/05/22 v1.7-166 caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 67.
(/usr/local/texlive/2019/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2018/09/12 v1.8c caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 64.
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/keyval.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\KV@toks@=\toks15
)
@ -70,10 +69,11 @@ Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\caption@parindent=\dimen108
\caption@hangindent=\dimen109
)
\c@ContinuedFloat=\count89
\c@caption@flags=\count89
\c@ContinuedFloat=\count90
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
Package: fancyhdr 2017/06/30 v3.9a Extensive control of page headers and footer
(/usr/local/texlive/2019/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
Package: fancyhdr 2019/01/31 v3.10 Extensive control of page headers and footer
s
\f@nch@headwidth=\skip43
\f@nch@O@elh=\skip44
@ -85,49 +85,49 @@ s
\f@nch@O@olf=\skip50
\f@nch@O@orf=\skip51
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/eucal.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/eucal.sty
Package: eucal 2009/06/22 v3.00 Euler Script fonts
LaTeX Font Info: Overwriting math alphabet `\EuScript' in version `bold'
(Font) U/eus/m/n --> U/eus/b/n on input line 33.
)
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/babel.sty
Package: babel 2018/02/14 3.18 The Babel package
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.sty
Package: babel 2019/05/04 3.31 The Babel package
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/switch.def
File: switch.def 2018/02/14 3.18 Babel switching mechanism
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/switch.def
File: switch.def 2019/05/04 3.31 Babel switching mechanism
)
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel-english/english.ldf
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel-english/english.ldf
Language: english 2017/06/06 v3.3r English support from the babel system
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2018/02/14 3.18 Babel common definitions
\babel@savecnt=\count90
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2019/05/04 3.31 Babel common definitions
\babel@savecnt=\count91
\U@D=\dimen110
(/usr/local/texlive/2018/texmf-dist/tex/generic/babel/txtbabel.def)
\bbl@dirlevel=\count91
(/usr/local/texlive/2019/texmf-dist/tex/generic/babel/txtbabel.def)
\bbl@dirlevel=\count92
)
\l@canadian = a dialect from \language\l@american
\l@australian = a dialect from \language\l@british
\l@newzealand = a dialect from \language\l@british
))
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/color.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/color.sty
Package: color 2016/07/10 v1.1e Standard LaTeX Color (DPC)
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-cfg/color.cfg
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package color Info: Driver file: pdftex.def on input line 147.
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/dvipsnam.def
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/dvipsnam.def
File: dvipsnam.def 2016/06/17 v3.0m Driver-dependent file (DPC,SPQR)
))
(/usr/local/texlive/2018/texmf-dist/tex/latex/footmisc/footmisc.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/footmisc/footmisc.sty
Package: footmisc 2011/06/06 v5.5b a miscellany of footnote facilities
\FN@temptoken=\toks16
\footnotemargin=\dimen111
\c@pp@next@reset=\count92
\c@@fnserial=\count93
\c@pp@next@reset=\count93
\c@@fnserial=\count94
Package footmisc Info: Declaring symbol style bringhurst on input line 855.
Package footmisc Info: Declaring symbol style chicago on input line 863.
Package footmisc Info: Declaring symbol style wiley on input line 872.
@ -137,40 +137,39 @@ Package footmisc Info: Declaring symbol style lamport* on input line 903.
Package footmisc Info: Declaring symbol style lamport*-robust on input line 924
.
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/natbib/natbib.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/natbib/natbib.sty
Package: natbib 2010/09/13 8.31b (PWD, AO)
\bibhang=\skip52
\bibsep=\skip53
LaTeX Info: Redefining \cite on input line 694.
\c@NAT@ctr=\count94
\c@NAT@ctr=\count95
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ifthen.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ifthen.sty
Package: ifthen 2014/09/29 v1.1c Standard LaTeX ifthen package (DPC)
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2018/04/01 v1.8r multicolumn formatting (FMi)
\c@tracingmulticols=\count95
\mult@box=\box26
(/usr/local/texlive/2019/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2018/12/27 v1.8v multicolumn formatting (FMi)
\c@tracingmulticols=\count96
\mult@box=\box27
\multicol@leftmargin=\dimen112
\c@unbalance=\count96
\c@collectmore=\count97
\doublecol@number=\count98
\multicoltolerance=\count99
\multicolpretolerance=\count100
\c@unbalance=\count97
\c@collectmore=\count98
\doublecol@number=\count99
\multicoltolerance=\count100
\multicolpretolerance=\count101
\full@width=\dimen113
\page@free=\dimen114
\premulticols=\dimen115
\postmulticols=\dimen116
\multicolsep=\skip54
\multicolbaselineskip=\skip55
\partial@page=\box27
\last@line=\box28
\partial@page=\box28
\last@line=\box29
\maxbalancingoverflow=\dimen117
\mult@rightbox=\box29
\mult@grightbox=\box30
\mult@gfirstbox=\box31
\mult@firstbox=\box32
\@tempa=\box33
\mult@rightbox=\box30
\mult@grightbox=\box31
\mult@gfirstbox=\box32
\mult@firstbox=\box33
\@tempa=\box34
\@tempa=\box35
\@tempa=\box36
@ -187,44 +186,72 @@ Package: multicol 2018/04/01 v1.8r multicolumn formatting (FMi)
\@tempa=\box47
\@tempa=\box48
\@tempa=\box49
\c@columnbadness=\count101
\c@finalcolumnbadness=\count102
\@tempa=\box50
\c@columnbadness=\count102
\c@finalcolumnbadness=\count103
\last@try=\dimen118
\multicolovershoot=\dimen119
\multicolundershoot=\dimen120
\mult@nat@firstbox=\box50
\colbreak@box=\box51
\mc@col@check@num=\count103
\mult@nat@firstbox=\box51
\colbreak@box=\box52
\mc@col@check@num=\count104
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/tocbibind/tocbibind.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/tocbibind/tocbibind.sty
Package: tocbibind 2010/10/13 v1.5k extra ToC listings
Package tocbibind Info: The document has chapter divisions on input line 50.
Package tocbibind Note: Using chapter style headings, unless overridden.
) (/usr/local/texlive/2018/texmf-dist/tex/latex/nomencl/nomencl.sty
Package: nomencl 2005/09/22 v4.2 Nomenclature package (LN)
) (/usr/local/texlive/2019/texmf-dist/tex/latex/nomencl/nomencl.sty
Package: nomencl 2019/05/05 v5.2 Nomenclature package
(/usr/local/texlive/2019/texmf-dist/tex/latex/xkeyval/xkeyval.sty
Package: xkeyval 2014/12/03 v2.7a package option processing (HA)
(/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkeyval.tex
(/usr/local/texlive/2019/texmf-dist/tex/generic/xkeyval/xkvutils.tex
\XKV@toks=\toks17
\XKV@tempa@toks=\toks18
)
\XKV@depth=\count105
File: xkeyval.tex 2014/12/03 v2.7a key=value parser (HA)
))
(/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/tocbasic.sty
Package: tocbasic 2019/02/01 v3.26b KOMA-Script package (handling toc-files)
(/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrbase.sty
Package: scrbase 2019/02/01 v3.26b KOMA-Script package (KOMA-Script-independent
basics and keyval usage)
(/usr/local/texlive/2019/texmf-dist/tex/latex/koma-script/scrlfile.sty
Package: scrlfile 2019/02/01 v3.26b KOMA-Script package (loading files)
))
\scr@dte@tocline@numberwidth=\skip56
\scr@dte@tocline@numbox=\box53
)
Package tocbasic Info: setting babel extension for `nlo' on input line 155.
Package tocbasic Info: setting babel extension for `nls' on input line 156.
\nomlabelwidth=\dimen121
\nom@tempdim=\dimen122
\nomitemsep=\skip56
\nomitemsep=\skip57
)
\@nomenclaturefile=\write3
\openout3 = `thesis.nlo'.
Package nomencl Info: Writing nomenclature file thesis.nlo on input line 64.
Writing nomenclature file thesis.nlo
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2017/03/15 v3.2 Provides the ifpdf switch
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2018/09/07 v3.3 Provides the ifpdf switch
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2018/02/06 v6.86b Hypertext links for LaTeX
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2018/11/30 v6.88e Hypertext links for LaTeX
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
Package: hobsub-hyperref 2016/05/16 v1.14 Bundle oberdiek, subset hyperref (HO)
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
Package: hobsub-generic 2016/05/16 v1.14 Bundle oberdiek, subset generic (HO)
Package: hobsub 2016/05/16 v1.14 Construct package bundles (HO)
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
@ -236,13 +263,9 @@ Package ifvtex Info: VTeX not detected.
Package: intcalc 2016/05/16 v1.2 Expandable calculations with integers (HO)
Package hobsub Info: Skipping package `ifpdf' (already loaded).
Package: etexcmds 2016/05/16 v1.6 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
(etexcmds) that some package has redefined \expanded.
(etexcmds) In the latter case, load this package earlier.
Package: kvsetkeys 2016/05/16 v1.17 Key value parser (HO)
Package: kvdefinekeys 2016/05/16 v1.4 Define keys (HO)
Package: pdftexcmds 2018/01/30 v0.27 Utility functions of pdfTeX for LuaTeX (HO
Package: pdftexcmds 2018/09/10 v0.29 Utility functions of pdfTeX for LuaTeX (HO
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
@ -264,31 +287,31 @@ Package: atbegshi 2016/06/09 v1.18 At begin shipout hook (HO)
Package: refcount 2016/05/16 v3.5 Data extraction from label references (HO)
Package: hycolor 2016/05/16 v1.8 Color options for hyperref/bookmark (HO)
)
(/usr/local/texlive/2018/texmf-dist/tex/generic/ifxetex/ifxetex.sty
(/usr/local/texlive/2019/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/auxhook.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/auxhook.sty
Package: auxhook 2016/05/16 v1.4 Hooks for auxiliary files (HO)
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/kvoptions.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2016/05/16 v3.12 Key value format for package options (HO)
)
\@linkdim=\dimen123
\Hy@linkcounter=\count104
\Hy@pagecounter=\count105
\Hy@linkcounter=\count106
\Hy@pagecounter=\count107
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2018/02/06 v6.86b Hyperref: PDFDocEncoding definition (HO)
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2018/11/30 v6.88e Hyperref: PDFDocEncoding definition (HO)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
)
\Hy@SavedSpaceFactor=\count106
\Hy@SavedSpaceFactor=\count108
(/usr/local/texlive/2018/texmf-dist/tex/latex/latexconfig/hyperref.cfg
(/usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/hyperref.cfg
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
)
Package hyperref Info: Option `plainpages' set `false' on input line 4383.
Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4383.
Package hyperref Info: Option `plainpages' set `false' on input line 4393.
Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4393.
Package hyperref Warning: Values of option `pdfpagelayout':
@ -299,170 +322,170 @@ Package hyperref Warning: Values of option `pdfpagelayout':
(hyperref) * `TwoPageLeft' (PDF 1.5)
(hyperref) * `TwoPageRight' (PDF 1.5)
(hyperref) * An empty value disables the option.
(hyperref) Unknown value `useoutlines' on input line 4383.
(hyperref) Unknown value `useoutlines' on input line 4393.
Package hyperref Info: Option `bookmarks' set `true' on input line 4383.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 4383.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 4383
Package hyperref Info: Option `bookmarks' set `true' on input line 4393.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 4393.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 4393
.
Package hyperref Info: Option `breaklinks' set `true' on input line 4383.
Package hyperref Info: Option `linktocpage' set `true' on input line 4383.
Package hyperref Info: Option `colorlinks' set `false' on input line 4383.
Package hyperref Info: Option `hyperindex' set `true' on input line 4383.
Package hyperref Info: Option `hyperfigures' set `true' on input line 4383.
Package hyperref Info: Hyper figures ON on input line 4507.
Package hyperref Info: Link nesting OFF on input line 4514.
Package hyperref Info: Hyper index ON on input line 4517.
Package hyperref Info: Plain pages OFF on input line 4524.
Package hyperref Info: Backreferencing ON on input line 4527.
Package hyperref Info: Option `breaklinks' set `true' on input line 4393.
Package hyperref Info: Option `linktocpage' set `true' on input line 4393.
Package hyperref Info: Option `colorlinks' set `false' on input line 4393.
Package hyperref Info: Option `hyperindex' set `true' on input line 4393.
Package hyperref Info: Option `hyperfigures' set `true' on input line 4393.
Package hyperref Info: Hyper figures ON on input line 4517.
Package hyperref Info: Link nesting OFF on input line 4524.
Package hyperref Info: Hyper index ON on input line 4527.
Package hyperref Info: Plain pages OFF on input line 4534.
Package hyperref Info: Backreferencing ON on input line 4537.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4762.
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/backref.sty
Package hyperref Info: Bookmarks ON on input line 4772.
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/backref.sty
Package: backref 2016/05/21 v1.39 Bibliographical back referencing
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
Package: rerunfilecheck 2016/05/16 v1.8 Rerun checks for auxiliary files (HO)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
82.
))
\c@Hy@tempcnt=\count107
\c@Hy@tempcnt=\count109
(/usr/local/texlive/2018/texmf-dist/tex/latex/url/url.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/url/url.sty
\Urlmuskip=\muskip10
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 5115.
LaTeX Info: Redefining \url on input line 5125.
\XeTeXLinkMargin=\dimen124
\Fld@menulength=\count108
\Fld@menulength=\count110
\Field@Width=\dimen125
\Fld@charsize=\dimen126
Package hyperref Info: Hyper figures ON on input line 6367.
Package hyperref Info: Link nesting OFF on input line 6374.
Package hyperref Info: Hyper index ON on input line 6377.
Package hyperref Info: backreferencing ON on input line 6382.
Package hyperref Info: Link coloring OFF on input line 6389.
Package hyperref Info: Link coloring with OCG OFF on input line 6394.
Package hyperref Info: PDF/A mode OFF on input line 6399.
LaTeX Info: Redefining \ref on input line 6439.
LaTeX Info: Redefining \pageref on input line 6443.
\Hy@abspage=\count109
\c@Item=\count110
\c@Hfootnote=\count111
Package hyperref Info: Hyper figures ON on input line 6378.
Package hyperref Info: Link nesting OFF on input line 6385.
Package hyperref Info: Hyper index ON on input line 6388.
Package hyperref Info: backreferencing ON on input line 6393.
Package hyperref Info: Link coloring OFF on input line 6400.
Package hyperref Info: Link coloring with OCG OFF on input line 6405.
Package hyperref Info: PDF/A mode OFF on input line 6410.
LaTeX Info: Redefining \ref on input line 6450.
LaTeX Info: Redefining \pageref on input line 6454.
\Hy@abspage=\count111
\c@Item=\count112
\c@Hfootnote=\count113
)
Package hyperref Info: Driver: hpdftex.
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2018/02/06 v6.86b Hyperref driver for pdfTeX
\Fld@listcount=\count112
\c@bookmark@seq@number=\count113
\Hy@SectionHShift=\skip57
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2018/11/30 v6.88e Hyperref driver for pdfTeX
\Fld@listcount=\count114
\c@bookmark@seq@number=\count115
\Hy@SectionHShift=\skip58
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/graphicx.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 2017/06/01 v1.1a Enhanced LaTeX Graphics (DPC,SPQR)
\Gin@req@height=\dimen127
\Gin@req@width=\dimen128
))
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2017/09/02 v2.17a AMS math features
\@mathmargin=\skip58
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2018/12/01 v2.17b AMS math features
\@mathmargin=\skip59
For additional information on amsmath, use the `?' option.
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amstext.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amstext.sty
Package: amstext 2000/06/29 v2.01 AMS text
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsgen.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0 generic functions
\@emptytoks=\toks17
\@emptytoks=\toks19
\ex@=\dimen129
))
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsbsy.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
\pmbraise@=\dimen130
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsmath/amsopn.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 2016/03/08 v2.02 operator names
)
\inf@bad=\count114
LaTeX Info: Redefining \frac on input line 213.
\uproot@=\count115
\leftroot@=\count116
LaTeX Info: Redefining \overline on input line 375.
\classnum@=\count117
\DOTSCASE@=\count118
LaTeX Info: Redefining \ldots on input line 472.
LaTeX Info: Redefining \dots on input line 475.
LaTeX Info: Redefining \cdots on input line 596.
\Mathstrutbox@=\box52
\strutbox@=\box53
\inf@bad=\count116
LaTeX Info: Redefining \frac on input line 223.
\uproot@=\count117
\leftroot@=\count118
LaTeX Info: Redefining \overline on input line 385.
\classnum@=\count119
\DOTSCASE@=\count120
LaTeX Info: Redefining \ldots on input line 482.
LaTeX Info: Redefining \dots on input line 485.
LaTeX Info: Redefining \cdots on input line 606.
\Mathstrutbox@=\box54
\strutbox@=\box55
\big@size=\dimen131
LaTeX Font Info: Redeclaring font encoding OML on input line 712.
LaTeX Font Info: Redeclaring font encoding OMS on input line 713.
\macc@depth=\count119
\c@MaxMatrixCols=\count120
LaTeX Font Info: Redeclaring font encoding OML on input line 729.
LaTeX Font Info: Redeclaring font encoding OMS on input line 730.
\macc@depth=\count121
\c@MaxMatrixCols=\count122
\dotsspace@=\muskip11
\c@parentequation=\count121
\dspbrk@lvl=\count122
\tag@help=\toks18
\row@=\count123
\column@=\count124
\maxfields@=\count125
\andhelp@=\toks19
\c@parentequation=\count123
\dspbrk@lvl=\count124
\tag@help=\toks20
\row@=\count125
\column@=\count126
\maxfields@=\count127
\andhelp@=\toks21
\eqnshift@=\dimen132
\alignsep@=\dimen133
\tagshift@=\dimen134
\tagwidth@=\dimen135
\totwidth@=\dimen136
\lineht@=\dimen137
\@envbody=\toks20
\multlinegap=\skip59
\multlinetaggap=\skip60
\mathdisplay@stack=\toks21
LaTeX Info: Redefining \[ on input line 2817.
LaTeX Info: Redefining \] on input line 2818.
\@envbody=\toks22
\multlinegap=\skip60
\multlinetaggap=\skip61
\mathdisplay@stack=\toks23
LaTeX Info: Redefining \[ on input line 2844.
LaTeX Info: Redefining \] on input line 2845.
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/multirow/multirow.sty
Package: multirow 2016/11/25 v2.2 Span multiple rows of a table
\multirow@colwidth=\skip61
\multirow@cntb=\count126
\multirow@dima=\skip62
(/usr/local/texlive/2019/texmf-dist/tex/latex/multirow/multirow.sty
Package: multirow 2019/01/01 v2.4 Span multiple rows of a table
\multirow@colwidth=\skip62
\multirow@cntb=\count128
\multirow@dima=\skip63
\bigstrutjot=\dimen138
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/tools/array.sty
Package: array 2018/04/07 v2.4g Tabular extension package (FMi)
(/usr/local/texlive/2019/texmf-dist/tex/latex/tools/array.sty
Package: array 2018/12/30 v2.4k Tabular extension package (FMi)
\col@sep=\dimen139
\ar@mcellbox=\box54
\ar@mcellbox=\box56
\extrarowheight=\dimen140
\NC@list=\toks22
\extratabsurround=\skip63
\backup@length=\skip64
\ar@cellbox=\box55
\NC@list=\toks24
\extratabsurround=\skip64
\backup@length=\skip65
\ar@cellbox=\box57
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/tools/tabularx.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/tools/tabularx.sty
Package: tabularx 2016/02/03 v2.11b `tabularx' package (DPC)
\TX@col@width=\dimen141
\TX@old@table=\dimen142
\TX@old@col=\dimen143
\TX@target=\dimen144
\TX@delta=\dimen145
\TX@cols=\count127
\TX@ftn=\toks23
\TX@cols=\count129
\TX@ftn=\toks25
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/xcolor/xcolor.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics-cfg/color.cfg
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package xcolor Info: Package option `usenames' ignored on input line 216.
Package xcolor Info: Driver file: pdftex.def on input line 225.
(/usr/local/texlive/2018/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2012/02/13 v1.0a Color table columns (DPC)
\everycr=\toks24
\minrowclearance=\skip65
(/usr/local/texlive/2019/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2018/12/12 v1.0d Color table columns (DPC)
\everycr=\toks26
\minrowclearance=\skip66
)
LaTeX Info: Redefining \color on input line 709.
\rownum=\count128
\rownum=\count130
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
Package xcolor Info: Model `RGB' extended on input line 1364.
@ -473,22 +496,22 @@ Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
(/usr/local/texlive/2018/texmf-dist/tex/latex/graphics/dvipsnam.def
(/usr/local/texlive/2019/texmf-dist/tex/latex/graphics/dvipsnam.def
File: dvipsnam.def 2016/06/17 v3.0m Driver-dependent file (DPC,SPQR)
))
(/usr/local/texlive/2018/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box56
\UL@hyphenbox=\box57
\UL@skip=\skip66
\UL@hook=\toks25
(/usr/local/texlive/2019/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box58
\UL@hyphenbox=\box59
\UL@skip=\skip67
\UL@hook=\toks27
\UL@height=\dimen146
\UL@pe=\count129
\UL@pe=\count131
\UL@pixel=\dimen147
\ULC@box=\box58
\ULC@box=\box60
Package: ulem 2012/05/18
\ULdepth=\dimen148
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/mathptmx.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/mathptmx.sty
Package: mathptmx 2005/04/12 PSNFSS-v9.2a Times w/ Math, improved (SPQR, WaS)
LaTeX Font Info: Redeclaring symbol font `operators' on input line 28.
LaTeX Font Info: Overwriting symbol font `operators' in version `normal'
@ -524,21 +547,21 @@ LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold'
(Font) OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35.
LaTeX Info: Redefining \hbar on input line 50.
)
(/usr/local/texlive/2018/texmf-dist/tex/latex/moresize/moresize.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/moresize/moresize.sty
Package: moresize 1999/07/26 v1.9 (more font sizes)
)
\@input{Latex/Macros/MacroFile1.aux}
\openout2 = `Latex/Macros/MacroFile1.aux'.
(./Latex/Macros/MacroFile1.tex)
(/usr/local/texlive/2018/texmf-dist/tex/latex/emptypage/emptypage.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/emptypage/emptypage.sty
Package: emptypage 2010/05/30 v1.2 Suppress page numbers and headings on empty
pages
)
defining Unicode char U+2009 (decimal 8201)
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2017/04/05 v2.0i Standard LaTeX package
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2018/08/11 v2.0j Standard LaTeX package
Package textcomp Info: Sub-encoding information:
(textcomp) 5 = only ISO-Adobe without \textcurrency
(textcomp) 4 = 5 + \texteuro
@ -552,13 +575,13 @@ Package textcomp Info: Sub-encoding information:
(textcomp) See the documentation for details.
Package textcomp Info: Setting ? sub-encoding to TS1/1 on input line 79.
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ts1enc.def
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.def
File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file
Now handling font encoding TS1 ...
... processing UTF-8 mapping file for font encoding TS1
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2018/04/05 v1.2c UTF-8 support for inputenc
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2018/10/05 v1.2f UTF-8 support for inputenc
defining Unicode char U+00A2 (decimal 162)
defining Unicode char U+00A3 (decimal 163)
defining Unicode char U+00A4 (decimal 164)
@ -719,33 +742,33 @@ LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 128.
LaTeX Font Info: Try loading font information for TS1+cmr on input line 128.
(/usr/local/texlive/2018/texmf-dist/tex/latex/base/ts1cmr.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/base/ts1cmr.fd
File: ts1cmr.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: ... okay on input line 128.
LaTeX Font Info: Try loading font information for OT1+ptm on input line 128.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/ot1ptm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/ot1ptm.fd
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
)
(/usr/local/texlive/2018/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
(/usr/local/texlive/2019/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count130
\scratchcounter=\count132
\scratchdimen=\dimen149
\scratchbox=\box59
\nofMPsegments=\count131
\nofMParguments=\count132
\everyMPshowfont=\toks26
\MPscratchCnt=\count133
\scratchbox=\box61
\nofMPsegments=\count133
\nofMParguments=\count134
\everyMPshowfont=\toks28
\MPscratchCnt=\count135
\MPscratchDim=\dimen150
\MPnumerator=\count134
\makeMPintoPDFobject=\count135
\everyMPtoPDFconversion=\toks27
) (/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
\MPnumerator=\count136
\makeMPintoPDFobject=\count137
\everyMPtoPDFconversion=\toks29
) (/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf
(/usr/local/texlive/2018/texmf-dist/tex/latex/oberdiek/grfext.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2016/05/16 v1.2 Manage graphics extensions (HO)
)
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
@ -754,24 +777,24 @@ Package grfext Info: Graphics extension search list:
(grfext) [.png,.jpg,.jpeg,.pdf,.gif,.eps]
(grfext) \AppendGraphicsExtensions on input line 456.
(/usr/local/texlive/2018/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
(/usr/local/texlive/2019/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))
Package caption Info: Begin \AtBeginDocument code.
Package caption Info: hyperref package is loaded.
Package caption Info: End \AtBeginDocument code.
\AtBeginShipoutBox=\box60
\AtBeginShipoutBox=\box62
Package backref Info: ** backref set up for natbib ** on input line 128.
Package hyperref Info: Link coloring OFF on input line 128.
(/usr/local/texlive/2018/texmf-dist/tex/latex/hyperref/nameref.sty
(/usr/local/texlive/2019/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2016/05/21 v2.44 Cross-referencing by name of section
(/usr/local/texlive/2018/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
(/usr/local/texlive/2019/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO)
)
\c@section@level=\count136
\c@section@level=\count138
)
LaTeX Info: Redefining \ref on input line 128.
LaTeX Info: Redefining \pageref on input line 128.
@ -795,12 +818,12 @@ Package pdftex.def Info: 0_frontmatter/figures/upc-logo.png used on input line
\FN@pp@footnotehinttrue
{/usr/local/texlive/2018/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./0_fro
{/usr/local/texlive/2019/texmf-var/fonts/map/pdftex/updmap/pdftex.map} <./0_fro
ntmatter/figures/upc-logo.png>]
LaTeX Font Info: Try loading font information for TS1+ptm on input line 163.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/ts1ptm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/ts1ptm.fd
File: ts1ptm.fd 2001/06/04 font definitions for TS1/ptm.
)
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10.95> not available
@ -815,25 +838,25 @@ LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <14.4> not available
LaTeX Font Info: Try loading font information for OT1+ztmcm on input line 10
.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/ot1ztmcm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/ot1ztmcm.fd
File: ot1ztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OT1/ztmcm.
)
LaTeX Font Info: Try loading font information for OML+ztmcm on input line 10
.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omlztmcm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omlztmcm.fd
File: omlztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OML/ztmcm.
)
LaTeX Font Info: Try loading font information for OMS+ztmcm on input line 10
.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omsztmcm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omsztmcm.fd
File: omsztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMS/ztmcm.
)
LaTeX Font Info: Try loading font information for OMX+ztmcm on input line 10
.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omxztmcm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omxztmcm.fd
File: omxztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMX/ztmcm.
)
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
@ -949,7 +972,7 @@ ne 414.
[23 <./2_Introduction/figures/variables.png>]
LaTeX Font Info: Try loading font information for U+eus on input line 473.
(/usr/local/texlive/2018/texmf-dist/tex/latex/amsfonts/ueus.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/amsfonts/ueus.fd
File: ueus.fd 2013/01/14 v3.01 Euler Script
) [24] [25]
[26] [27] [28] [29] [30] [31] [32] [33] [34] [35]
@ -993,22 +1016,22 @@ Package pdftex.def Info: 3/figures/uracil.pdf used on input line 86.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[53] [54 <./3/figures/uracil.pdf>] [55] [56]
<3/figures/E-distance-nh4-w.png, id=1700, 738.76pt x 767.86874pt>
<3/figures/E-distance-nh4-w.png, id=1700, 735.74875pt x 766.865pt>
File: 3/figures/E-distance-nh4-w.png Graphic file (type png)
<use 3/figures/E-distance-nh4-w.png>
Package pdftex.def Info: 3/figures/E-distance-nh4-w.png used on input line 209
.
(pdftex.def) Requested size: 247.54149pt x 257.28741pt.
(pdftex.def) Requested size: 247.54149pt x 258.00423pt.
LaTeX Warning: `!h' float specifier changed to `!ht'.
<3/figures/E-distance-nh3-w.png, id=1701, 764.8575pt x 768.8725pt>
<3/figures/E-distance-nh3-w.png, id=1701, 758.835pt x 763.85374pt>
File: 3/figures/E-distance-nh3-w.png Graphic file (type png)
<use 3/figures/E-distance-nh3-w.png>
Package pdftex.def Info: 3/figures/E-distance-nh3-w.png used on input line 217
.
(pdftex.def) Requested size: 247.54149pt x 248.83644pt.
(pdftex.def) Requested size: 247.54149pt x 249.1703pt.
LaTeX Warning: `!h' float specifier changed to `!ht'.
@ -1314,7 +1337,7 @@ LaTeX Warning: `!h' float specifier changed to `!ht'.
LaTeX Font Info: Try loading font information for OML+ptm on input line 558.
(/usr/local/texlive/2018/texmf-dist/tex/latex/psnfss/omlptm.fd
(/usr/local/texlive/2019/texmf-dist/tex/latex/psnfss/omlptm.fd
File: omlptm.fd
)
LaTeX Font Info: Font shape `OML/ptm/m/n' in size <10.95> not available
@ -1892,30 +1915,34 @@ Package rerunfilecheck Info: File `thesis.out' has not changed.
(rerunfilecheck) Checksum: 54B844088F193135A8E4AE44D25629B8;5769.
Package rerunfilecheck Info: File `thesis.brf' has not changed.
(rerunfilecheck) Checksum: AE80D8E3642E12035FBDF63BFABAC93A;39206.
LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 307.
)
Here is how much of TeX's memory you used:
14740 strings out of 492649
226541 string characters out of 6129622
343606 words of memory out of 5000000
17268 multiletter control sequences out of 15000+600000
15745 strings out of 492616
245234 string characters out of 6129481
395334 words of memory out of 5000000
18290 multiletter control sequences out of 15000+600000
86085 words of font info for 186 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
43i,20n,51p,2185b,2464s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/local/texlive/2018/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/local/t
exlive/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/local/te
xlive/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/local/tex
live/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/local/texli
ve/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/local/texliv
e/2018/texmf-dist/fonts/type1/public/amsfonts/euler/eusm10.pfb></usr/local/texl
ive/2018/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb></usr/local/
texlive/2018/texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/201
8/texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/2018/texmf-dis
t/fonts/type1/urw/times/utmb8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/ty
pe1/urw/times/utmbi8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type1/urw/t
imes/utmr8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type1/urw/times/utmri
47i,20n,82p,2185b,2468s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/local/texlive/2019/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/local/t
exlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/local/te
xlive/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/local/tex
live/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/local/texli
ve/2019/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/local/texliv
e/2019/texmf-dist/fonts/type1/public/amsfonts/euler/eusm10.pfb></usr/local/texl
ive/2019/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb></usr/local/
texlive/2019/texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/201
9/texmf-dist/fonts/type1/urw/symbol/usyr.pfb></usr/local/texlive/2019/texmf-dis
t/fonts/type1/urw/times/utmb8a.pfb></usr/local/texlive/2019/texmf-dist/fonts/ty
pe1/urw/times/utmbi8a.pfb></usr/local/texlive/2019/texmf-dist/fonts/type1/urw/t
imes/utmr8a.pfb></usr/local/texlive/2019/texmf-dist/fonts/type1/urw/times/utmri
8a.pfb>
Output written on thesis.pdf (193 pages, 31357928 bytes).
Output written on thesis.pdf (193 pages, 31316303 bytes).
PDF statistics:
4475 PDF objects out of 5155 (max. 8388607)
3937 compressed objects within 40 object streams

View File

@ -3,100 +3,87 @@
\nomgroup{A}
\item [{SCC-DFTB}]\begingroup self-consistent charge density functional based tight-binding \nomeqref {0}
\nompageref{viii}
\item [{PAH}]\begingroup polycyclic aromatic hydrocarbons \nomeqref {0}
\nompageref{viii}
\item [{DFT}]\begingroup densituy functional theory \nomeqref {0}
\item [{BIRD}]\begingroup blackbody infrared radiative dissociation \nomeqref {0}
\nompageref{viii}
\item [{PES}]\begingroup potential energy surface \nomeqref {0}
\item [{BO}]\begingroup Born-Op­pen­heimer \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\nompageref{viii}
\item [{CAD}]\begingroup collisionally activated dissociation \nomeqref {0}
\nompageref{viii}
\item [{FF}]\begingroup force field \nomeqref {0}
\nompageref{viii}
\item [{MM}]\begingroup molecular mechanics \nomeqref {0}
\nompageref{viii}
\item [{MCTDH}]\begingroup multi-configuration time-dependent Hartree \nomeqref {0}
\nompageref{viii}
\item [{MD}]\begingroup molecular dynamics \nomeqref {0}
\nompageref{viii}
\item [{BO}]\begingroup Born-Op­pen­heimer \nomeqref {0}
\nompageref{viii}
\item [{HF}]\begingroup Hartree-Fock \nomeqref {0}
\nompageref{viii}
\item [{KS}]\begingroup Kohn-Sham \nomeqref {0}
\nompageref{viii}
\item [{DFTB}]\begingroup density functional based tight-binding \nomeqref {0}
\nompageref{viii}
\item [{LCAO}]\begingroup linear combination of atomic orbitals \nomeqref {0}
\nompageref{viii}
\item [{CC}]\begingroup coupled cluster \nomeqref {0}
\nompageref{viii}
\item [{CI}]\begingroup configuration interaction \nomeqref {0}
\nompageref{viii}
\nompageref{viii}
\item [{CID}]\begingroup collisioninduced dissociation \nomeqref {0}
\nompageref{viii}
\item [{CM3}]\begingroup class IV - charge model 3 \nomeqref {0}
\nompageref{viii}
\item [{CSF}]\begingroup configuration state function \nomeqref {0}
\nompageref{viii}
\item [{MP2}]\begingroup Møller-Plesset perturbation theory at second-order \nomeqref {0}
\nompageref{viii}
\nompageref{viii}
\item [{DFT}]\begingroup density functional theory \nomeqref {0}
\nompageref{viii}
\item [{DFTB}]\begingroup density-functional based tight-binding \nomeqref {0}
\nompageref{viii}
\item [{DFTB3}]\begingroup third-order extension of DFTB \nomeqref {0}
\nompageref{viii}
\item [{FF}]\begingroup force field \nomeqref {0}
\nompageref{viii}
\item [{GGA}]\begingroup generalized gradient approximation \nomeqref {0}
\nompageref{viii}
\item [{HF}]\begingroup Hartree-Fock \nomeqref {0}
\nompageref{viii}
\item [{HK}]\begingroup HohenbergKohn \nomeqref {0}
\nompageref{viii}
\item [{KS}]\begingroup Kohn-Sham \nomeqref {0}
\nompageref{viii}
\item [{LCAO}]\begingroup linear combination of atomic orbitals \nomeqref {0}
\nompageref{viii}
\item [{LDA}]\begingroup local density approximation \nomeqref {0}
\nompageref{viii}
\item [{GGA}]\begingroup generalized gradient approximation \nomeqref {0}
\nompageref{viii}
\item [{NBO}]\begingroup natural bond order \nomeqref {0}
\nompageref{viii}
\item [{CM3}]\begingroup class IV - charge model 3 \nomeqref {0}
\nompageref{viii}
\item [{PTMD}]\begingroup parallel-tempering molecular dynamics \nomeqref {0}
\nompageref{viii}
\item [{VV}]\begingroup Velocity Verlet algorithm \nomeqref {0}
\nompageref{viii}
\item [{QM}]\begingroup quantum chemical \nomeqref {0}
\nompageref{viii}
\item [{CAD}]\begingroup collisionally activated dissociation \nomeqref {0}
\item [{LEP}]\begingroup location of excess proton \nomeqref {0}
\nompageref{viii}
\item [{CID}]\begingroup collisioninduced dissociation \nomeqref {0}
\item [{LOC}]\begingroup line of center model \nomeqref {0}
\nompageref{viii}
\item [{MCPs}]\begingroup micro-channel plates \nomeqref {0}
\nompageref{viii}
\item [{MCTDH}]\begingroup multi-configuration time-dependent Hartree \nomeqref {0}
\nompageref{viii}
\item [{MD}]\begingroup molecular dynamics \nomeqref {0}
\nompageref{viii}
\item [{SCF}]\begingroup self-consistent field \nomeqref {0}
\nompageref{viii}
\item [{ZPVE}]\begingroup zero-point vibrational energy \nomeqref {0}
\item [{MM}]\begingroup molecular mechanics \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\item [{MP2}]\begingroup Møller-Plesset perturbation theory at second-order \nomeqref {0}
\nompageref{viii}
\item [{NBO}]\begingroup natural bond order \nomeqref {0}
\nompageref{viii}
\item [{NUL}]\begingroup neutral uracil loss \nomeqref {0}
\nompageref{viii}
\item [{PAH}]\begingroup polycyclic aromatic hydrocarbons \nomeqref {0}
\nompageref{viii}
\item [{PES}]\begingroup potential energy surface \nomeqref {0}
\nompageref{viii}
\item [{PST}]\begingroup phase space theory \nomeqref {0}
\nompageref{viii}
\item [{PTMD}]\begingroup parallel-tempering molecular dynamics \nomeqref {0}
\nompageref{viii}
\item [{TOFMS}]\begingroup Time of flight of mass spectrum \nomeqref {0}
\item [{QM}]\begingroup quantum mechanics \nomeqref {0}
\nompageref{viii}
\item [{BIRD}]\begingroup blackbody infrared radiative dissociation \nomeqref {0}
\nompageref{viii}
\item [{TCID}]\begingroup Threshold collision-induced dissociation \nomeqref {0}
\nompageref{viii}
\item [{ICID}]\begingroup basis set superposition errors \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\item [{SCC-DFTB}]\begingroup self-consistent-charge density-functional based tight-binding \nomeqref {0}
\nompageref{viii}
\item [{SCF}]\begingroup self-consistent field \nomeqref {0}
\nompageref{viii}
\item [{TCID}]\begingroup threshold collision-induced dissociation \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\item [{TOF}]\begingroup time-of-flight \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\item [{TOFMS}]\begingroup time-of-flight mass spectrometry \nomeqref {0}
\nompageref{viii}
\item [{VV}]\begingroup velocity Verlet algorithm \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors p. \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors p. \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors p. \nomeqref {0}
\nompageref{viii}
\item [{BSSE}]\begingroup basis set superposition errors p. \nomeqref {0}
\item [{WF}]\begingroup wavefunction \nomeqref {0}
\nompageref{viii}
\item [{ZPVE}]\begingroup zero-point vibrational energy \nomeqref {0}
\nompageref{viii}

Binary file not shown.

Binary file not shown.

View File

@ -1,66 +1,66 @@
\babel@toc {english}{}
\contentsline {chapter}{Glossary}{xi}{chapter*.2}
\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}
\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}
\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}
\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}
\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}
\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}
\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}
\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}
\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{34}{subsection.2.3.4}
\contentsline {section}{\numberline {2.4}Exploration of PES}{36}{section.2.4}
\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{37}{subsection.2.4.1}
\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{40}{subsection.2.4.2}
\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{45}{subsection.2.4.3}
\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{47}{subsection.2.4.4}
\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{51}{chapter.3}
\contentsline {section}{\numberline {3.1}Computational Details}{52}{section.3.1}
\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{52}{subsection.3.1.1}
\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{52}{subsection.3.1.2}
\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{53}{subsection.3.1.3}
\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{54}{subsection.3.1.4}
\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{55}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}General introduction}{55}{subsection.3.2.1}
\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{57}{subsection.3.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{57}{subsubsection.3.2.2.1}
\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{60}{subsubsection.3.2.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{63}{subsubsection.3.2.2.3}
\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{70}{subsubsection.3.2.2.4}
\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{75}{subsubsection.3.2.2.5}
\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{76}{subsection.3.2.3}
\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{77}{section.3.3}
\contentsline {subsection}{\numberline {3.3.1}General introduction}{77}{subsection.3.3.1}
\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{79}{subsection.3.3.2}
\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}
\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{85}{subsubsection.3.3.2.2}
\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}
\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}
\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}
\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}
\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}
\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}
\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}
\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}
\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}
\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}
\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}
\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}
\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}
\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}
\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}
\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}
\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}
\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}
\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}
\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}
\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}
\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}
\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}
\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}
\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}
\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}
\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}
\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}
\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}
\contentsline {chapter}{References}{163}{chapter*.82}
\contentsline {chapter}{\nonumberline Glossary}{xi}{chapter*.2}%
\contentsline {chapter}{\numberline {1}General Introduction}{1}{chapter.1}%
\contentsline {chapter}{\numberline {2}Computational Methods}{13}{chapter.2}%
\contentsline {section}{\numberline {2.1}Schr{\"o}dinger Equation}{15}{section.2.1}%
\contentsline {section}{\numberline {2.2}Born-Oppenheimer Approximation}{16}{section.2.2}%
\contentsline {section}{\numberline {2.3}Computation of Electronic Energy}{18}{section.2.3}%
\contentsline {subsection}{\numberline {2.3.1}Wavefunction based Methods}{19}{subsection.2.3.1}%
\contentsline {subsection}{\numberline {2.3.2}Density Functional Theory}{21}{subsection.2.3.2}%
\contentsline {subsection}{\numberline {2.3.3}Density Functional based Tight-Binding Theory}{26}{subsection.2.3.3}%
\contentsline {subsection}{\numberline {2.3.4}Force Field Methods}{34}{subsection.2.3.4}%
\contentsline {section}{\numberline {2.4}Exploration of PES}{36}{section.2.4}%
\contentsline {subsection}{\numberline {2.4.1}Monte Carlo Simulations}{37}{subsection.2.4.1}%
\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{40}{subsection.2.4.2}%
\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{45}{subsection.2.4.3}%
\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{47}{subsection.2.4.4}%
\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{51}{chapter.3}%
\contentsline {section}{\numberline {3.1}Computational Details}{52}{section.3.1}%
\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{52}{subsection.3.1.1}%
\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{52}{subsection.3.1.2}%
\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{53}{subsection.3.1.3}%
\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{54}{subsection.3.1.4}%
\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{55}{section.3.2}%
\contentsline {subsection}{\numberline {3.2.1}General introduction}{55}{subsection.3.2.1}%
\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{57}{subsection.3.2.2}%
\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{57}{subsubsection.3.2.2.1}%
\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{60}{subsubsection.3.2.2.2}%
\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{63}{subsubsection.3.2.2.3}%
\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{70}{subsubsection.3.2.2.4}%
\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{75}{subsubsection.3.2.2.5}%
\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{76}{subsection.3.2.3}%
\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{77}{section.3.3}%
\contentsline {subsection}{\numberline {3.3.1}General introduction}{77}{subsection.3.3.1}%
\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{79}{subsection.3.3.2}%
\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}%
\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{85}{subsubsection.3.3.2.2}%
\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}%
\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}%
\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}%
\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}%
\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}%
\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}%
\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}%
\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}%
\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}%
\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}%
\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}%
\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}%
\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}%
\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}%
\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}%
\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}%
\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}%
\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}%
\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}%
\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}%
\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}%
\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}%
\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}%
\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}%
\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}%
\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}%
\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}%
\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}%
\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}%
\contentsline {chapter}{References}{163}{chapter*.82}%