figu uracile + biblio ammonia

This commit is contained in:
jcuny 2021-06-14 04:44:43 +02:00
parent 4f5863240c
commit 73fa1ecee2
18 changed files with 35650 additions and 5394 deletions

BIN
thesis/.DS_Store vendored

Binary file not shown.

BIN
thesis/3/.DS_Store vendored

Binary file not shown.

View File

@ -1,58 +1,59 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\FN@pp@footnotehinttrue
\citation{deMonNano2009}
\citation{Elstner1998}
\citation{Gaus2013para}
\citation{Li1998,Thompson2003,Rapacioli2009corr}
\citation{Rapacioli2009corr,Elstner2001,Zhechkov2005}
\citation{Simon2012,Odutola1980}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{51}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:structure}{{3}{49}{Exploration of Structural and Energetic Properties}{chapter.3}{}}
\newlabel{chap:structure}{{3}{51}{Exploration of Structural and Energetic Properties}{chapter.3}{}}
\citation{Sugita1999,Sugita2000,Earl2005}
\citation{Elstner1998}
\citation{Nose1984M,Hoover1985}
\citation{Douady2009}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}}
\newlabel{sec:structure-methods}{{3.1}{50}{Computational Details}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}}
\@writefile{brf}{\backcite{deMonNano2009}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Li1998}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner2001}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Zhechkov2005}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Simon2012}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Odutola1980}{{50}{3.1.1}{subsection.3.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}}
\@writefile{brf}{\backcite{Earl2005}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita1999}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita2000}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Elstner1998}{{50}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Computational Details}{52}{section.3.1}}
\newlabel{sec:structure-methods}{{3.1}{52}{Computational Details}{section.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{52}{subsection.3.1.1}}
\@writefile{brf}{\backcite{deMonNano2009}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Li1998}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Elstner2001}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Zhechkov2005}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Simon2012}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{brf}{\backcite{Odutola1980}{{52}{3.1.1}{subsection.3.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{52}{subsection.3.1.2}}
\@writefile{brf}{\backcite{Earl2005}{{52}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita1999}{{52}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Sugita2000}{{52}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Elstner1998}{{52}{3.1.2}{subsection.3.1.2}}}
\citation{Nose1984M,Hoover1985}
\citation{Wolken2000,Pedersen2014}
\citation{Weigend2005,Weigend2006}
\citation{GaussianCode}
\citation{Boys2002}
\@writefile{brf}{\backcite{Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Douady2009}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Wolken2000}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Pedersen2014}{{51}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}}
\@writefile{brf}{\backcite{Weigend2005}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Weigend2006}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{GaussianCode}{{51}{3.1.3}{subsection.3.1.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{52}{figure.caption.9}}
\newlabel{uracil_s}{{3.1}{52}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }{figure.caption.9}{}}
\@writefile{brf}{\backcite{Boys2002}{{52}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Nose1984M}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Douady2009}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Nose1984M}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Wolken2000}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{brf}{\backcite{Pedersen2014}{{53}{3.1.2}{subsection.3.1.2}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{53}{subsection.3.1.3}}
\@writefile{brf}{\backcite{Weigend2005}{{53}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{Weigend2006}{{53}{3.1.3}{subsection.3.1.3}}}
\@writefile{brf}{\backcite{GaussianCode}{{53}{3.1.3}{subsection.3.1.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }}{54}{figure.caption.9}}
\newlabel{uracil_s}{{3.1}{54}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.\relax }{figure.caption.9}{}}
\@writefile{brf}{\backcite{Boys2002}{{54}{3.1.3}{subsection.3.1.3}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{54}{subsection.3.1.4}}
\citation{Keesee1989,Gilligan2000,Sennikov2005,Cabellos2016,Orabi2013,Bommer2016,Rodgers2003,Van2004,Gibb2004,Tielens2005,Parise2005,Boogert2015,Dulieu2010,Michoulier2018}
\citation{Kulmala2004}
\citation{Ziereis1986}
@ -70,200 +71,204 @@
\citation{Morrell2010}
\citation{Pei2015}
\citation{Walters2018}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{53}{subsection.3.1.4}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}}
\newlabel{sec:ammoniumwater}{{3.2}{53}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}}
\@writefile{brf}{\backcite{Tielens2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Keesee1989}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gilligan2000}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sennikov2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Cabellos2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Orabi2013}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bommer2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rodgers2003}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Van2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gibb2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Parise2005}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Boogert2015}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dulieu2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Michoulier2018}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kulmala2004}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Ziereis1986}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Arnold1997}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dunne2016}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kirkby2011}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2009}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Herbine1985}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Stockman1992}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hulthe1997}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Wang1998}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{55}{section.3.2}}
\newlabel{sec:ammoniumwater}{{3.2}{55}{Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}General introduction}{55}{subsection.3.2.1}}
\@writefile{brf}{\backcite{Tielens2005}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Keesee1989}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gilligan2000}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sennikov2005}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Cabellos2016}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Orabi2013}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bommer2016}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rodgers2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Van2004}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gibb2004}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Parise2005}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Boogert2015}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dulieu2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Michoulier2018}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kulmala2004}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Ziereis1986}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Arnold1997}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Dunne2016}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kirkby2011}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2009}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Herbine1985}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Stockman1992}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hulthe1997}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Wang1998}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Perkins1984}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hulthe1997}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Skurski1998}{{55}{3.2.1}{subsection.3.2.1}}}
\citation{Choi2010,Choi2013,Korchagina2017,Simon2019}
\citation{Simon2012,Simon2013water}
\citation{Korchagina2016}
\citation{Simon2017formation}
\citation{Winget2003}
\citation{Gaus2013para}
\@writefile{brf}{\backcite{Hulthe1997}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Chang1998}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Jiang1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Galashev2013}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Skurski1998}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Donaldson1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sadlej1999}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kozack1992polar}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Pei2015}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Walters2018}{{54}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Donaldson1999}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Sadlej1999}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Lee1996}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Bacelo2002}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Douady2008}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Kozack1992polar}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Morrell2010}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Pei2015}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Walters2018}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Korchagina2017}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2010}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2013}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2012}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2013water}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Korchagina2016}{{56}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2017formation}{{56}{3.2.1}{subsection.3.2.1}}}
\citation{Thompson2003,Rapacioli2009}
\citation{Simon2019}
\@writefile{brf}{\backcite{Korchagina2017}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2010}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Choi2013}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2012}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2013water}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Korchagina2016}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2017formation}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Winget2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{55}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{56}{figure.caption.10}}
\newlabel{fig:E_nh4}{{3.2}{56}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{57}{figure.caption.11}}
\newlabel{fig:E_nh3}{{3.3}{57}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}}
\@writefile{brf}{\backcite{Winget2003}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Gaus2013para}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2009}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Thompson2003}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{brf}{\backcite{Simon2019}{{57}{3.2.1}{subsection.3.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{57}{subsection.3.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{57}{subsubsection.3.2.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{58}{figure.caption.10}}
\newlabel{fig:E_nh4}{{3.2}{58}{Binding energies of (H$_2$O){NH$_4$}$^+$ as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.10}{}}
\citation{Winget2003,Gaus2013para}
\@writefile{brf}{\backcite{Gaus2013para}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{brf}{\backcite{Winget2003}{{58}{3.2.2.1}{figure.caption.11}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{58}{figure.caption.12}}
\newlabel{dimers}{{3.4}{58}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }}{59}{figure.caption.11}}
\newlabel{fig:E_nh3}{{3.3}{59}{Binding energies of (H$_2$O){NH$_3$} as a function of the N---O distance at MP2/Def2TZVP (plain black), MP2/Def2TZVP with BSSE correction (dotted black), original SCC-DFTB (plain red), SCC-DFTB (0.14/1.28) (dotted red) and SCC-DFTB (0.12/1.16) (dashed red) levels of theory.\relax }{figure.caption.11}{}}
\citation{Wang1998,Jiang1999}
\citation{Wang1998,Jiang1999}
\citation{Douady2008}
\@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Douady2008}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{59}{figure.caption.13}}
\newlabel{fig:nh3-nh4-1w}{{3.5}{59}{Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.13}{}}
\@writefile{brf}{\backcite{Gaus2013para}{{60}{3.2.2.1}{figure.caption.11}}}
\@writefile{brf}{\backcite{Winget2003}{{60}{3.2.2.1}{figure.caption.11}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }}{60}{figure.caption.12}}
\newlabel{dimers}{{3.4}{60}{Structure of (H$_2$O){NH$_4$}$^+$ obtained from geometry optimization at the SCC-DFTB 0.14/1.28 (right) and original SCC-DFTB (left) levels.\relax }{figure.caption.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{60}{subsubsection.3.2.2.2}}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}}
\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{61}{figure.caption.13}}
\newlabel{fig:nh3-nh4-1w}{{3.5}{61}{Structure of 1-a and 1$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (1-a$^*$ and 1$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{62}{figure.caption.14}}
\newlabel{fig:nh3-nh4-2-3w}{{3.6}{62}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{62}{figure.caption.15}}
\newlabel{fig:nh3-nh4-3w}{{3.7}{62}{Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.15}{}}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Douady2009,Morrell2010}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.14}}
\newlabel{fig:nh3-nh4-2-3w}{{3.6}{60}{Structure of 2-a and 2$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (2-a$^*$, 2$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \r A.\relax }}{60}{figure.caption.15}}
\newlabel{fig:nh3-nh4-3w}{{3.7}{60}{Structure of 3-a, 3-b and 3$^\prime $-a isomers obtained at the SCC-DFTB level and corresponding structures obtained at MP2/Def2TZVP level (3-a$^*$, 3-b$^*$ and 3$^\prime $-a$^*$ isomers). Selected bond lengths are in \AA .\relax }{figure.caption.15}{}}
\citation{Wang1998,Jiang1999,Douady2008,Lee2004,Pickard2005}
\citation{Chang1998,Wang1998}
\citation{Jiang1999}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }}{61}{table.caption.16}}
\newlabel{reBindE-small}{{3.1}{61}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the low-energy isomers of (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$} clusters. Values are given in kcal.mol$^{-1}$.\relax }{table.caption.16}{}}
\@writefile{brf}{\backcite{Douady2009}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Morrell2010}{{61}{3.2.2.2}{table.caption.16}}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Douady2008}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Chang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{62}{table.caption.18}}
\newlabel{reBindE}{{3.2}{62}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal·mol\textsuperscript {-1}.\relax }{table.caption.18}{}}
\@writefile{brf}{\backcite{Douady2009}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Wang1998}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Jiang1999}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Morrell2010}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{brf}{\backcite{Lee2004}{{63}{3.2.2.2}{table.caption.16}}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{63}{subsubsection.3.2.2.3}}
\@writefile{brf}{\backcite{Wang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Lee2004}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Pickard2005}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Wang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Chang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{brf}{\backcite{Jiang1999}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{64}{table.caption.18}}
\newlabel{reBindE}{{3.2}{64}{Relative binding energies $\Delta E_{bind.}^{whole}$ and $\Delta E_{bind.}^{sep.}$ of the five lowest-energy isomers of (H$_2$O)$_{4-10}${NH$_4$}$^+$ and (H$_2$O)$_{4-10}${NH$_3$}. Binding energies are given in kcal·mol\textsuperscript {-1}.\relax }{table.caption.18}{}}
\citation{Douady2008,Morrell2010}
\citation{Jiang1999}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{63}{figure.caption.17}}
\newlabel{fig:nh4-4-6w}{{3.8}{63}{Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal·mol\textsuperscript {-1}.\relax }{figure.caption.17}{}}
\@writefile{brf}{\backcite{Douady2008}{{63}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{63}{3.2.2.3}{table.caption.18}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}.\relax }}{65}{figure.caption.17}}
\newlabel{fig:nh4-4-6w}{{3.8}{65}{Five lowest-energy isomers of (H$_2$O)$_{4-6}${NH$_4$}$^+$ and corresponding relative energies at MP2/Def2TZVP level with (bold) and without ZPVE (roman) correction and SCC-DFTB level (italic). Relative energies are given in kcal·mol\textsuperscript {-1}.\relax }{figure.caption.17}{}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Jiang1999}{{65}{3.2.2.3}{table.caption.18}}}
\citation{Douady2008}
\citation{Morrell2010}
\citation{Wang1998}
\citation{Douady2008}
\@writefile{brf}{\backcite{Jiang1999}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Wang1998}{{64}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{64}{3.2.2.3}{table.caption.18}}}
\citation{Douady2008}
\citation{Douady2008}
\citation{Morrell2010}
\@writefile{brf}{\backcite{Douady2008}{{66}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{66}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Wang1998}{{66}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{66}{3.2.2.3}{table.caption.18}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{65}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{65}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{66}{figure.caption.19}}
\newlabel{fig:nh4-7-10w}{{3.9}{66}{The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.19}{}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Morrell2010}{{67}{3.2.2.3}{table.caption.18}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{67}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{68}{figure.caption.19}}
\newlabel{fig:nh4-7-10w}{{3.9}{68}{The first five low-energy isomers of clusters (H$_2$O)$_{7-10}${NH$_4$}$^+$ and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.19}{}}
\@writefile{brf}{\backcite{Douady2008}{{68}{3.2.2.3}{figure.caption.19}}}
\citation{Douady2008}
\citation{Douady2008}
\@writefile{brf}{\backcite{Douady2008}{{69}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{69}{3.2.2.3}{figure.caption.19}}}
\@writefile{brf}{\backcite{Douady2008}{{69}{3.2.2.3}{figure.caption.19}}}
\citation{Lee1996}
\citation{Bacelo2002}
\citation{Bacelo2002}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}}
\@writefile{brf}{\backcite{Lee1996}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{69}{figure.caption.20}}
\newlabel{fig:nh3-4-7w}{{3.10}{69}{The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{72}{figure.caption.21}}
\newlabel{fig:nh3-8-10w}{{3.11}{72}{The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.21}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{70}{subsubsection.3.2.2.4}}
\@writefile{brf}{\backcite{Lee1996}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{brf}{\backcite{Bacelo2002}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{71}{figure.caption.20}}
\newlabel{fig:nh3-4-7w}{{3.10}{71}{The first five low-energy isomers of cluster (H$_2$O)$_{4-7}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal\IeC {\textperiodcentered }mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }}{74}{figure.caption.21}}
\newlabel{fig:nh3-8-10w}{{3.11}{74}{The first five low-energy isomers of clusters (H$_2$O)$_{8-10}${NH$_3$} and the associated relative energies (in kcal·mol\textsuperscript {-1}) at MP2/Def2TZVP level with (bold) and without ZPVE correction and SCC-DFTB level (italic).\relax }{figure.caption.21}{}}
\citation{Kazimirski2003,Douady2009,Bandow2006}
\citation{Douady2009}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Clusters}{73}{subsubsection.3.2.2.5}}
\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{74}{figure.caption.22}}
\newlabel{fig:nh3-nh4-20w}{{3.12}{74}{The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{75}{subsubsection.3.2.2.5}}
\@writefile{brf}{\backcite{Douady2009}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Kazimirski2003}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Bandow2006}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{brf}{\backcite{Douady2009}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }}{76}{figure.caption.22}}
\newlabel{fig:nh3-nh4-20w}{{3.12}{76}{The first five low-energy isomers of cluster (H$_2$O)$_{20}${NH$_4$}$^{+}$ (a) and (H$_2$O)$_{20}${NH$_3$} (b) at SCC-DFTB level.\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{76}{subsection.3.2.3}}
\citation{Maclot2011,Domaracka2012,Markush2016,Castrovilli2017}
\citation{Wincel2009}
\citation{Boudaiffa2000}
\citation{Smyth2011,Siefermann2011,Alizadeh2013}
\citation{Rasmussen2010}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}}
\newlabel{structureUH}{{3.3}{75}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}}
\@writefile{brf}{\backcite{Castrovilli2017}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Maclot2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Domaracka2012}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Markush2016}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Wincel2009}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Boudaiffa2000}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Smyth2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Siefermann2011}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Alizadeh2013}{{75}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{77}{section.3.3}}
\newlabel{structureUH}{{3.3}{77}{Structural and Energetic Properties of Protonated Uracil Water Clusters}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}General introduction}{77}{subsection.3.3.1}}
\@writefile{brf}{\backcite{Castrovilli2017}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Maclot2011}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Domaracka2012}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Markush2016}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Wincel2009}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Boudaiffa2000}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Smyth2011}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Siefermann2011}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Alizadeh2013}{{77}{3.3.1}{subsection.3.3.1}}}
\citation{Coates2018}
\citation{Nelson1994,Sadr2014,Molina2016}
\citation{Bakker2008}
@ -277,44 +282,45 @@
\citation{Gadre2000}
\citation{Danilov2006,Bacchus2015}
\citation{Braud2019}
\@writefile{brf}{\backcite{Rasmussen2010}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Coates2018}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Nelson1994}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Sadr2014}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Molina2016}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Braud2019}{{77}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}}
\newlabel{exp_ur}{{3.3.2.1}{77}{Experimental Results}{subsubsection.3.3.2.1}{}}
\@writefile{brf}{\backcite{Rasmussen2010}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Coates2018}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Nelson1994}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Sadr2014}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Molina2016}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}}
\@writefile{brf}{\backcite{Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}}
\citation{Dalleska1993}
\citation{Zamith2012}
\@writefile{brf}{\backcite{Braud2019}{{79}{3.3.1}{subsection.3.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{79}{subsection.3.3.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}}
\newlabel{exp_ur}{{3.3.2.1}{79}{Experimental Results}{subsubsection.3.3.2.1}{}}
\citation{Myers2007}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{78}{figure.caption.23}}
\newlabel{mass7w}{{3.13}{78}{Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}}
\@writefile{brf}{\backcite{Dalleska1993}{{78}{3.3.2.1}{figure.caption.23}}}
\@writefile{brf}{\backcite{Zamith2012}{{78}{3.3.2.1}{figure.caption.23}}}
\newlabel{cross-section-geo}{{3.3}{78}{Experimental Results}{equation.3.3.3}{}}
\citation{Zamith2012}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame).}}{80}{figure.caption.23}}
\newlabel{mass7w}{{3.13}{80}{Time of flight of mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with Ne at 7.2 eV center of mass collision energy (93.5 eV in the laboratory frame)}{figure.caption.23}{}}
\@writefile{brf}{\backcite{Dalleska1993}{{80}{3.3.2.1}{figure.caption.23}}}
\@writefile{brf}{\backcite{Zamith2012}{{80}{3.3.2.1}{figure.caption.23}}}
\newlabel{cross-section-geo}{{3.3}{80}{Experimental Results}{equation.3.3.3}{}}
\@writefile{brf}{\backcite{Myers2007}{{80}{3.3.2.1}{equation.3.3.3}}}
\citation{Dalleska1993}
\citation{Dalleska1993,Hansen2009}
\citation{Wincel2009}
@ -325,20 +331,19 @@
\citation{Zamith2012}
\citation{Dalleska1993}
\citation{Zamith2012}
\@writefile{brf}{\backcite{Myers2007}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Zamith2012}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Bakker2008}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{80}{figure.caption.24}}
\@writefile{brf}{\backcite{Dalleska1993}{{80}{3.14}{figure.caption.24}}}
\@writefile{brf}{\backcite{Zamith2012}{{80}{3.14}{figure.caption.24}}}
\newlabel{fragcrosssec}{{3.14}{80}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
\@writefile{brf}{\backcite{Zamith2012}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Bakker2008}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Hansen2009}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{brf}{\backcite{Wincel2009}{{81}{3.3.2.1}{equation.3.3.3}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation.}}{82}{figure.caption.24}}
\@writefile{brf}{\backcite{Dalleska1993}{{82}{3.14}{figure.caption.24}}}
\@writefile{brf}{\backcite{Zamith2012}{{82}{3.14}{figure.caption.24}}}
\newlabel{fragcrosssec}{{3.14}{82}{Fragmentation cross sections of clusters (H$_2$O)$_{n-1}$UH$^+$ at a collision energy of 7.2 eV plotted as a function of the total number n of molecules in the clusters. The experimental results and geometrical cross sections are shown for collision with H$_2$O and Ne. The results from Dalleska et al.\cite {Dalleska1993} using Xe as target atoms on pure protonated water clusters (H$_2$O)$_{2-6}$H$^+$ and from Zamith \textit {et al.} \cite {Zamith2012} using water as target molecules on deuterated water clusters (D$_2$O)$_{n=5,10}$H$^+$ are also shown. The geometrical collision cross sections of water clusters in collision with Xe atoms and water molecules are also plotted. Error bars represent one standard deviation}{figure.caption.24}{}}
\citation{Kurinovich2002}
\citation{Magnera1991}
\citation{Cheng1998}
@ -350,59 +355,61 @@
\citation{Cheng1998}
\citation{Kurinovich2002}
\citation{Bakker2008}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{81}{figure.caption.25}}
\newlabel{Uloss}{{3.15}{81}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}}
\@writefile{brf}{\backcite{Kurinovich2002}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Magnera1991}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{82}{figure.caption.26}}
\@writefile{brf}{\backcite{Magnera1991}{{82}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Cheng1998}{{82}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Kurinovich2002}{{82}{3.16}{figure.caption.26}}}
\newlabel{protonAffinity}{{3.16}{82}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.26}{}}
\@writefile{brf}{\backcite{Bakker2008}{{82}{3.3.2.1}{figure.caption.26}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy.}}{83}{figure.caption.25}}
\newlabel{Uloss}{{3.15}{83}{Proportion of neutral uracil molecule loss plotted as a function of the number of water molecules n in the parent cluster (H$_2$O)$_{n}$UH$^+$. Results obtained for collisions with Ne atoms at 7.2 eV center of mass collision energy}{figure.caption.25}{}}
\@writefile{brf}{\backcite{Kurinovich2002}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Magnera1991}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Cheng1998}{{83}{3.3.2.1}{figure.caption.25}}}
\@writefile{brf}{\backcite{Bakker2008}{{83}{3.3.2.1}{figure.caption.26}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}}{84}{figure.caption.26}}
\@writefile{brf}{\backcite{Magnera1991}{{84}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Cheng1998}{{84}{3.16}{figure.caption.26}}}
\@writefile{brf}{\backcite{Kurinovich2002}{{84}{3.16}{figure.caption.26}}}
\newlabel{protonAffinity}{{3.16}{84}{The proton affinities of water clusters as a function of the number of water molecules n, which are taken from the work of Magnera (black circles) \cite {Magnera1991} and from the work of Cheng (blue squares).\cite {Cheng1998} The value of the proton affinity of uracil (red dotted dashed line) is also plotted.\cite {Kurinovich2002}}{figure.caption.26}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{85}{table.caption.28}}
\newlabel{tab:DNH}{{3.3}{85}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.28}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{85}{subsubsection.3.3.2.2}}
\newlabel{calcul_ur}{{3.3.2.2}{85}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }}{85}{figure.caption.27}}
\newlabel{uracil_i}{{3.17}{85}{Structure of two (H$_2$O)U isomers used for binding energy calculations.\relax }{figure.caption.27}{}}
\citation{Wolken2000}
\citation{Pedersen2014}
\citation{Pedersen2014}
\citation{Bakker2008}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }}{83}{table.caption.27}}
\newlabel{tab:DNH}{{3.3}{83}{Binding energy of two (H$_2$O)U isomers at MP2/Def2TZVP and SCC-DFTB levels of theory.\relax }{table.caption.27}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}}
\newlabel{calcul_ur}{{3.3.2.2}{83}{Calculated Structures of Protonated Uracil Water Clusters}{subsubsection.3.3.2.2}{}}
\@writefile{brf}{\backcite{Wolken2000}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{brf}{\backcite{Pedersen2014}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{brf}{\backcite{Bakker2008}{{84}{3.3.2.2}{table.caption.27}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.17}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{85}{figure.caption.28}}
\newlabel{1a-f}{{3.17}{85}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{86}{figure.caption.29}}
\newlabel{1a-f-b3lyp}{{3.18}{86}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.29}{}}
\@writefile{brf}{\backcite{Wolken2000}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Pedersen2014}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Pedersen2014}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{brf}{\backcite{Bakker2008}{{86}{3.3.2.2}{table.caption.28}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.18}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.29}}
\newlabel{1a-f}{{3.18}{87}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.29}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.30}}
\newlabel{1a-f-b3lyp}{{3.19}{88}{Lowest-energy structures of (H$_2$O)UH$^+$ obtained at the B3LYP/6-311++G(3df,2p) level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. The corresponding values with ZPVE corrections are provided in brackets. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}}
\citation{Zundel1968}
\@writefile{lof}{\contentsline {figure}{\numberline {3.19}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{87}{figure.caption.30}}
\newlabel{2a-f}{{3.19}{87}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.30}{}}
\@writefile{brf}{\backcite{Zundel1968}{{87}{3.3.2.2}{figure.caption.33}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{88}{figure.caption.31}}
\newlabel{3a-f}{{3.20}{88}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.32}}
\newlabel{4a-f}{{3.21}{89}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.33}}
\newlabel{5a-f}{{3.22}{90}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.20}{\ignorespaces Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{89}{figure.caption.31}}
\newlabel{2a-f}{{3.20}{89}{Lowest-energy structures of (H$_2$O)$_2$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.31}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces (H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{90}{figure.caption.32}}
\newlabel{3a-f}{{3.21}{90}{(H$_2$O)$_3$UH$^+$ lowest-energy structures obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.32}{}}
\@writefile{brf}{\backcite{Zundel1968}{{90}{3.3.2.2}{figure.caption.34}}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.33}}
\newlabel{4a-f}{{3.22}{91}{Lowest-energy structures of (H$_2$O)$_4$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{92}{figure.caption.34}}
\newlabel{5a-f}{{3.23}{92}{Lowest-energy structures of (H$_2$O)$_5$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.35}}
\newlabel{6a-f}{{3.24}{93}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}}
\citation{Molina2015,Molina2016}
\@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{91}{figure.caption.34}}
\newlabel{6a-f}{{3.23}{91}{Lowest-energy structures of (H$_2$O)$_6$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.34}{}}
\@writefile{brf}{\backcite{Molina2015}{{92}{3.3.2.2}{figure.caption.37}}}
\@writefile{brf}{\backcite{Molina2016}{{92}{3.3.2.2}{figure.caption.37}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}}
\@writefile{brf}{\backcite{Molina2015}{{94}{3.3.2.2}{figure.caption.38}}}
\@writefile{brf}{\backcite{Molina2016}{{94}{3.3.2.2}{figure.caption.38}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}}
\FN@pp@footnotehinttrue
\@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{93}{figure.caption.35}}
\newlabel{7a-f}{{3.24}{93}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.35}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{94}{figure.caption.36}}
\newlabel{11a-f}{{3.25}{94}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.37}}
\newlabel{12a-f}{{3.26}{95}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{95}{figure.caption.36}}
\newlabel{7a-f}{{3.25}{95}{Lowest-energy structures of (H$_2$O)$_7$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.36}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{96}{figure.caption.37}}
\newlabel{11a-f}{{3.26}{96}{Lowest-energy structures of (H$_2$O)$_{11}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.37}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \r A.}}{97}{figure.caption.38}}
\newlabel{12a-f}{{3.27}{97}{Lowest-energy structures of (H$_2$O)$_{12}$UH$^+$ obtained at the MP2/Def2TZVP level of theory. Relative ($E_\textrm {rel}$) and binding energies ($E_\textrm {bind}$) are given in kcal.mol$^{-1}$. Important hydrogen-bond distances are indicated in bold and are given in \AA }{figure.caption.38}{}}
\@setckpt{3/structure_stability}{
\setcounter{page}{96}
\setcounter{page}{98}
\setcounter{equation}{3}
\setcounter{enumi}{5}
\setcounter{enumii}{0}
@ -417,7 +424,7 @@
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{26}
\setcounter{figure}{27}
\setcounter{table}{3}
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
% this file is c\emph{}alled up by thesis.tex
Conclusions% this file is c\emph{}alled up by thesis.tex
% content in this file will be fed into the main document
%%\chapter{Aims of the project} % top level followed by section, subsection
@ -83,7 +83,7 @@ level. See below for the details on MP2/Def2TZVP calculations.
%\figuremacro{uracil}{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.}
\begin{figure}[h!]
\includegraphics[width=0.5\linewidth]{a-b.pdf}
\includegraphics[width=0.5\linewidth]{uracil.pdf}
\centering
\caption{Structures of the two protonated uracil isomers, u178 (keto-enol form) and u138 (di-keto form), used as initial conditions in the PTMD simulations.}
\label{uracil_s}
@ -494,7 +494,7 @@ For cluster (H$_2$O)$_{10}${NH$_3$}, 10$^\prime$-a to 10$^\prime$-e are the firs
The smallest and biggest values of $\Delta E_{bind.}^{whole}$ of isomers 10$^\prime$-a to 10$^\prime$-e are -0.03 and -1.10 kcal·mol\textsuperscript{-1} while the smallest absolute value of $\Delta E_{bind.}^{sep.}$ is 4.80 kcal·mol\textsuperscript{-1} shown in Table \ref{reBindE}. The values of $\Delta E_{bind.}^{whole}$ implies that SCC-DFTB agree very well with MP2/Def2TZVP for cluster (H$_2$O)$_{10}$NH$_3$ when all the water molecules are regarded as a whole part.
\subsubsection{Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Clusters}
\subsubsection{Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}
For cluster (H$_2$O)$_{20}${NH$_4$}$^+$, the lowest-energy structure shown in Figure \ref{fig:nh3-nh4-20w} (a) was obtained with the combination of SCC-DFTB and PTMD which is consistent with that of previous study.\cite{Kazimirski2003, Douady2009, Bandow2006}
Microcanonical and canonical caloric curves were obtained using exchange Monte Carlo simulations by Spiegelmans group.\cite{Douady2009}
@ -579,7 +579,7 @@ section~\ref{exp_cid} of chapter~4, where these details are important to explici
\subsubsection{Experimental Results} \label{exp_ur}
\textbf{Time of flight of mass spectrum(TOFMS) .}
\textbf{Time of flight of mass spectrum(TOFMS).}
A typical fragmentation mass spectrum obtained by colliding (H$_2$O)$_{7}$UH$^+$ with neon at a center of mass collision energy of 7.2 eV is shown in Figure \ref{mass7w}. The more intense peak on the right comes from the parent cluster (H$_2$O)$_{7}$UH$^+$, the next 7 peaks at the left of the parent peak correspond to the loss of 1-7 water molecules of parent cluster, and the next 5 peaks to the left results from the evaporation of the uracil molecule and several water molecules from parent cluster. This mass spectrum is obtained at the highest pressure explored in the present experiments. This is still true for the largest size investigated here, namely, (H$_2$O)$_{15}$UH$^+$. From the result of the fragmentation mass spectrum displayed in Figure \ref{mass7w}, it indicates multiple collisions are possible, which allows the evaporation of all water molecules. Moreover, the intensity of evaporation of water molecules is bigger than the one of evaporation of U.
In our study, we are interested in two specific channels. Channel 1 corresponds to the loss of only neutral water molecules, whereas channel 2 corresponds to the loss of neutral uracil and one or several water molecules,
\begin{align}
@ -632,9 +632,16 @@ This analysis based on PA is however quite crude. Indeed, it assumes that the pr
As discussed in section~\ref{sec:ammoniumwater}, we have proposed a modified set of NH parameters to describe sp$^3$ nitrogen atoms. For,
sp$^2$ nitrogen atoms there is no need to modified the integral parameters as SCC-DFTB describe them rather correctly. Consequently, only the
$D_{NH}$ parameter needs to be defined for the present calculations. Table~\ref{tab:DNH} present the binding energy of the two
(H$_2$O)U isomers represented in Figure~\ref{uracil_s} at MP2/Def2TZVP and SCC-DFTB levels of theory. Both $D_\textrm{NH}$ = 0.12 and
(H$_2$O)U isomers represented in Figure~\ref{uracil_i} at MP2/Def2TZVP and SCC-DFTB levels of theory. Both $D_\textrm{NH}$ = 0.12 and
$D_\textrm{NH}$ = 0.14 lead to consistent binding energies. So, to be consistent with the work performed in the previous section, we
have used $D_\textrm{NH}$ = 0.14 in the following.
have used $D_\textrm{NH}$ = 0.12 in the following.
\begin{figure}[h!]
\includegraphics[width=0.5\linewidth]{a-b.pdf}
\centering
\caption{Structure of two (H$_2$O)U isomers used for binding energy calculations.}
\label{uracil_i}
\end{figure}
\begin{table}
%\footnotesize
@ -721,7 +728,7 @@ water molecule. Upon direct dissociation, the excess proton and the uracil can t
collision-induced dissociation experiments and theoretical calculation allows to probe the solvation and protonation properties of organic molecules such as nucleobases.
This is a step toward a better understanding of the role of water in the chemistry of in vivo DNA and RNA bases. However, the knowledge of the lowest-energy isomers
of the species involved in CID experiments is not enough to understand all the collision process. To get a deeper understanding of the collision mechanism, an explicit
modelling of the collision is needed?. This question is addressed in the next chapter of this thesis.
modelling of the collision is needed. This question is addressed in the next chapter of this thesis.
% ---------------------------------------------------------------------------

View File

@ -5,16 +5,16 @@
\citation{Wong2004,Bush2008}
\citation{Holm2010,Gatchell2014,Gatchell2017}
\citation{Boering1992,Wells2005,Zamith2019thermal}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:collision}{{4}{97}{Dynamical Simulation of Collision-Induced Dissociation}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}}
\newlabel{exp_cid}{{4.1}{97}{Experimental Methods}{section.4.1}{}}
\@writefile{brf}{\backcite{Brechignac1989}{{97}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Brechignac1994}{{97}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wong2004}{{97}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bush2008}{{97}{4.1}{section.4.1}}}
\newlabel{chap:collision}{{4}{99}{Dynamical Simulation of Collision-Induced Dissociation}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}}
\newlabel{exp_cid}{{4.1}{99}{Experimental Methods}{section.4.1}{}}
\@writefile{brf}{\backcite{Brechignac1989}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Brechignac1994}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wong2004}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bush2008}{{99}{4.1}{section.4.1}}}
\citation{Ma1997,Chowdhury2009}
\citation{Nelson1994,Molina2015}
\citation{Carl2007}
@ -31,80 +31,80 @@
\citation{Dawson1982,Bakker2008,Mcquinn2009,Zamith2012}
\citation{Liu2006}
\citation{Carl2013,Hofstetter2013,Coates2018}
\@writefile{brf}{\backcite{Holm2010}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Gatchell2017}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Gatchell2014}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Boering1992}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wells2005}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Ma1997}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Chowdhury2009}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Nelson1994}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Molina2015}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2007}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wells2005}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Sleno2004ion}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Cody1982}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Olsen2007higher}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hart2011}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Gauthier1991}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Laskin2005}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2018}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Mcquinn2009}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2013}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hofstetter2013}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2017}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Graul1989}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wei1991}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Goebbert2006}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Haag2009}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Liu2006}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Nguyen2011}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Shuck2014}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Castrovilli2017}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bera2018}{{98}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Holm2010}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Gatchell2017}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Gatchell2014}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Boering1992}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wells2005}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Ma1997}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Chowdhury2009}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Nelson1994}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Molina2015}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2007}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wells2005}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Sleno2004ion}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Cody1982}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Olsen2007higher}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hart2011}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Gauthier1991}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Laskin2005}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2018}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Mcquinn2009}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2013}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hofstetter2013}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2017}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Graul1989}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Wei1991}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Goebbert2006}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Haag2009}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Liu2006}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Nguyen2011}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Shuck2014}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Castrovilli2017}{{100}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bera2018}{{100}{4.1}{section.4.1}}}
\citation{Spasov2000,Armentrout2008}
\citation{Braud2019}
\citation{Zamith2020threshold}
\citation{Klippenstein1992,Baer1996}
\citation{Armentrout2008}
\@writefile{brf}{\backcite{Liu2006}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Castrovilli2017}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Markush2016}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Li1992}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bobbert2002}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2018}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2013}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hofstetter2013}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Dawson1982}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2012}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Mcquinn2009}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Liu2006}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2018}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2013}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hofstetter2013}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Spasov2000}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Armentrout2008}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Braud2019}{{99}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{99}{4.1}{section.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}}
\newlabel{principleTCID}{{4.1.1}{99}{Principle of TCID}{subsection.4.1.1}{}}
\@writefile{brf}{\backcite{Klippenstein1992}{{99}{4.1.1}{subsection.4.1.1}}}
\@writefile{brf}{\backcite{Baer1996}{{99}{4.1.1}{subsection.4.1.1}}}
\@writefile{brf}{\backcite{Liu2006}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Castrovilli2017}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Markush2016}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Li1992}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bobbert2002}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2018}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2013}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hofstetter2013}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Dawson1982}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Bakker2008}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2012}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Mcquinn2009}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Liu2006}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Coates2018}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Carl2013}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Hofstetter2013}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Spasov2000}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Armentrout2008}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Braud2019}{{101}{4.1}{section.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{101}{4.1}{section.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}}
\newlabel{principleTCID}{{4.1.1}{101}{Principle of TCID}{subsection.4.1.1}{}}
\@writefile{brf}{\backcite{Klippenstein1992}{{101}{4.1.1}{subsection.4.1.1}}}
\@writefile{brf}{\backcite{Baer1996}{{101}{4.1.1}{subsection.4.1.1}}}
\citation{Rodgers1998,Armentrout2007}
\citation{Braud2017}
\@writefile{brf}{\backcite{Armentrout2008}{{100}{4.1.1}{subsection.4.1.1}}}
\newlabel{CIDcross}{{4.1}{100}{Principle of TCID}{equation.4.1.1}{}}
\@writefile{brf}{\backcite{Rodgers1998}{{100}{4.1.1}{equation.4.1.1}}}
\@writefile{brf}{\backcite{Armentrout2007}{{100}{4.1.1}{equation.4.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}}
\newlabel{EXPsetup}{{4.1.2}{100}{Experimental Setup}{subsection.4.1.2}{}}
\@writefile{brf}{\backcite{Braud2017}{{100}{4.1.2}{figure.caption.38}}}
\@writefile{brf}{\backcite{Armentrout2008}{{102}{4.1.1}{subsection.4.1.1}}}
\newlabel{CIDcross}{{4.1}{102}{Principle of TCID}{equation.4.1.1}{}}
\@writefile{brf}{\backcite{Rodgers1998}{{102}{4.1.1}{equation.4.1.1}}}
\@writefile{brf}{\backcite{Armentrout2007}{{102}{4.1.1}{equation.4.1.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}}
\newlabel{EXPsetup}{{4.1.2}{102}{Experimental Setup}{subsection.4.1.2}{}}
\@writefile{brf}{\backcite{Braud2017}{{102}{4.1.2}{figure.caption.39}}}
\citation{Chirot2006new}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{101}{figure.caption.38}}
\newlabel{experiment-setup}{{4.1}{101}{Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First WileyMcLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second WileyMcLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector}{figure.caption.38}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First Wiley\IeC {\textendash }McLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second Wiley\IeC {\textendash }McLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector.}}{103}{figure.caption.39}}
\newlabel{experiment-setup}{{4.1}{103}{Schematic view of the experimental setup. (a) Cluster gas aggregation source. (b) Thermalization chamber. (c) First WileyMcLaren acceleration stage. (d) Massfilter. (e) Energy focusing. (f) Deceleration. (g) Collision cell. (h) Second WileyMcLaren acceleration stage. (i) Reflectron. (j) Micro-channel plate detector}{figure.caption.39}{}}
\citation{Elstner1998,Porezag1995,Seifert1996,Frenzel2004,Elstner2014,Spiegelman2020}
\citation{Simon2017,Korchagina2017,Rapacioli2018,Simon2018}
\citation{Warshel1976}
@ -113,119 +113,119 @@
\citation{Kukk2015}
\citation{Simon2017}
\citation{Simon2017,Simon2018,Rapacioli2018atomic}
\@writefile{brf}{\backcite{Chirot2006new}{{102}{4.1.2}{figure.caption.38}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{102}{figure.caption.39}}
\newlabel{exp-setup}{{4.2}{102}{Schematic of the simplified experimental setup}{figure.caption.39}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}}
\newlabel{Comput_meth}{{4.2}{102}{Computational Details}{section.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}}
\newlabel{DFTBpotential}{{4.2.1}{102}{SCC-DFTB Potential}{subsection.4.2.1}{}}
\@writefile{brf}{\backcite{Elstner1998}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Elstner2014}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Porezag1995}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Seifert1996}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Frenzel2004}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Spiegelman2020}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Korchagina2017}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2017}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2018}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2018}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Warshel1976}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Cui2001}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Iftner2014}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Kukk2015}{{102}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Chirot2006new}{{104}{4.1.2}{figure.caption.39}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Schematic of the simplified experimental setup.}}{104}{figure.caption.40}}
\newlabel{exp-setup}{{4.2}{104}{Schematic of the simplified experimental setup}{figure.caption.40}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}}
\newlabel{Comput_meth}{{4.2}{104}{Computational Details}{section.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}}
\newlabel{DFTBpotential}{{4.2.1}{104}{SCC-DFTB Potential}{subsection.4.2.1}{}}
\@writefile{brf}{\backcite{Elstner1998}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Elstner2014}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Porezag1995}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Seifert1996}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Frenzel2004}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Spiegelman2020}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Korchagina2017}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2017}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2018}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2018}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Warshel1976}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Cui2001}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Iftner2014}{{104}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Kukk2015}{{104}{4.2.1}{subsection.4.2.1}}}
\citation{Dontot2019}
\citation{Nose1984,Hoover1985}
\@writefile{brf}{\backcite{Kukk2015}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2017}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2017}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2018}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2018atomic}{{103}{4.2.1}{subsection.4.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}}
\newlabel{makingtrajectories}{{4.2.2}{103}{Collision Trajectories}{subsection.4.2.2}{}}
\@writefile{brf}{\backcite{Dontot2019}{{103}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Nose1984}{{103}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{103}{4.2.2}{subsection.4.2.2}}}
\newlabel{vectorq}{{4.2}{104}{Collision Trajectories}{equation.4.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{104}{figure.caption.40}}
\newlabel{howinputs}{{4.3}{104}{Schematic of the generation of the initial inputs}{figure.caption.40}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}}
\newlabel{trajecanylysis}{{4.2.3}{104}{Trajectory Analysis}{subsection.4.2.3}{}}
\@writefile{brf}{\backcite{Kukk2015}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2017}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2017}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Simon2018}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{brf}{\backcite{Rapacioli2018atomic}{{105}{4.2.1}{subsection.4.2.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}}
\newlabel{makingtrajectories}{{4.2.2}{105}{Collision Trajectories}{subsection.4.2.2}{}}
\@writefile{brf}{\backcite{Dontot2019}{{105}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Nose1984}{{105}{4.2.2}{subsection.4.2.2}}}
\@writefile{brf}{\backcite{Hoover1985}{{105}{4.2.2}{subsection.4.2.2}}}
\newlabel{vectorq}{{4.2}{106}{Collision Trajectories}{equation.4.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Schematic of the generation of the initial inputs.}}{106}{figure.caption.41}}
\newlabel{howinputs}{{4.3}{106}{Schematic of the generation of the initial inputs}{figure.caption.41}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}}
\newlabel{trajecanylysis}{{4.2.3}{106}{Trajectory Analysis}{subsection.4.2.3}{}}
\citation{Braud2019}
\newlabel{integ}{{4.3}{105}{Trajectory Analysis}{equation.4.2.3}{}}
\newlabel{sec:collisionwUH}{{4.3}{105}{Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{section.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}}
\@writefile{brf}{\backcite{Braud2019}{{105}{4.3.1}{subsection.4.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}}
\newlabel{resul_disc}{{4.3.2}{106}{Results and Discussion}{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}}
\newlabel{convergence}{{4.3.2.1}{106}{Statistical Convergence}{subsubsection.4.3.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{107}{figure.caption.41}}
\newlabel{3b-sphere}{{4.4}{107}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively}{figure.caption.41}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{108}{figure.caption.42}}
\newlabel{12f-sphere}{{4.5}{108}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively}{figure.caption.42}{}}
\newlabel{PNUL}{{4.4}{108}{Statistical Convergence}{equation.4.3.4}{}}
\newlabel{integ}{{4.3}{107}{Trajectory Analysis}{equation.4.2.3}{}}
\newlabel{sec:collisionwUH}{{4.3}{107}{Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{section.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}}
\@writefile{brf}{\backcite{Braud2019}{{107}{4.3.1}{subsection.4.3.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}}
\newlabel{resul_disc}{{4.3.2}{108}{Results and Discussion}{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}}
\newlabel{convergence}{{4.3.2.1}{108}{Statistical Convergence}{subsubsection.4.3.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively.}}{109}{figure.caption.42}}
\newlabel{3b-sphere}{{4.4}{109}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_3$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter being 0 and 6 (d), respectively}{figure.caption.42}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively.}}{110}{figure.caption.43}}
\newlabel{12f-sphere}{{4.5}{110}{Schematic representation of random argon orientations for the collision with the second lowest-energy isomer of cluster (H$_2$O)$_{12}$UH$^+$. 200 (a), 400 (b) and 600 (c) random argon orientations are generated with impact parameter being 0. ~200 orientations are generated with impact parameter value being 0 and 7 (d), respectively}{figure.caption.43}{}}
\newlabel{PNUL}{{4.4}{110}{Statistical Convergence}{equation.4.3.4}{}}
\citation{Braud2019}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}}
\newlabel{time}{{4.3.3}{109}{Time-Dependent Proportion of Fragments}{subsection.4.3.3}{}}
\@writefile{brf}{\backcite{Braud2019}{{109}{4.3.3}{subsection.4.3.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{110}{table.caption.43}}
\newlabel{tab:converge-1w-5w}{{4.1}{110}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.43}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{111}{table.caption.44}}
\newlabel{tab:converge-6w-12w}{{4.2}{111}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.44}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{112}{figure.caption.45}}
\newlabel{proporEachFrag-1a2a}{{4.6}{112}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right)}{figure.caption.45}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}}
\newlabel{small}{{4.3.4}{112}{Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{subsection.4.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}}
\newlabel{time}{{4.3.3}{111}{Time-Dependent Proportion of Fragments}{subsection.4.3.3}{}}
\@writefile{brf}{\backcite{Braud2019}{{111}{4.3.3}{subsection.4.3.3}}}
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{112}{table.caption.44}}
\newlabel{tab:converge-1w-5w}{{4.1}{112}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{1-5}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.44}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }}{113}{table.caption.45}}
\newlabel{tab:converge-6w-12w}{{4.2}{113}{The proportions of $P_{NUL}$ and $\sigma _{frag}$ of first lowest-energy isomer and the isomer whose $P_{NUL}$ fits the experiment (in bold) of (H$_2$O)$_{6, 7, 11, 12}$UH$^+$ with simulations of 200, 400, and 600 as initial conditions.\relax }{table.caption.45}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right).}}{114}{figure.caption.46}}
\newlabel{proporEachFrag-1a2a}{{4.6}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_1$UH$^+$ (left) and (H$_2$O)$_{2}$UH$^+$ (right)}{figure.caption.46}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}}
\newlabel{small}{{4.3.4}{114}{Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{subsection.4.3.4}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{113}{figure.caption.46}}
\newlabel{proporEachFrag-3a4a-zoom}{{4.7}{113}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.46}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{114}{figure.caption.47}}
\newlabel{proporEachFrag-5a6a-zoom}{{4.8}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.47}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{114}{figure.caption.48}}
\newlabel{proporEachFrag-11a-zoom}{{4.9}{114}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions}{figure.caption.48}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{115}{table.caption.51}}
\newlabel{tab:full}{{4.3}{115}{Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \AA $^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }{table.caption.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.49}}
\newlabel{proporEachFrag-7a12a-zoom}{{4.10}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.49}{}}
\@writefile{brf}{\backcite{Braud2019}{{116}{4.3.4}{table.caption.51}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{117}{figure.caption.50}}
\newlabel{proporEachFrag-7d12c-zoom}{{4.11}{117}{Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.50}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{118}{figure.caption.52}}
\newlabel{fig-1a-3b}{{4.12}{118}{Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.52}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{119}{figure.caption.53}}
\newlabel{fig-4a-5d}{{4.13}{119}{Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.53}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.54}}
\newlabel{fig-6a-6f}{{4.14}{120}{Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.54}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.55}}
\newlabel{fig-7a-7d}{{4.15}{121}{Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.55}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{115}{figure.caption.47}}
\newlabel{proporEachFrag-3a4a-zoom}{{4.7}{115}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_3$UH$^+$ (left) and (H$_2$O)$_{4}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.47}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{116}{figure.caption.48}}
\newlabel{proporEachFrag-5a6a-zoom}{{4.8}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_5$UH$^+$ (left) and (H$_2$O)$_{6}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions.}}{116}{figure.caption.49}}
\newlabel{proporEachFrag-11a-zoom}{{4.9}{116}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomer of (H$_2$O)$_{11}$UH$^+$. Right panel corresponds to a zoom over the lower proportions}{figure.caption.49}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \r A$^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }}{117}{table.caption.52}}
\newlabel{tab:full}{{4.3}{117}{Relative energy $E_{rel.}$ (in kcal.mol$^{-1}$) at the MP2/Def2TZVP level, LEP, $P_{PU}$ (in \%), $P_{NUL}$ (in \%), $\sigma _{frag}$ (in \AA $^2$) of the considered low-energy isomers of (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Isomers which $P_{NUL}$ fit best to the experimental value are indicated in bold. $P_{{NUL}_{exp}}$ and $\sigma _{{frag}_{exp}}$ are the experimental values for $P_{NUL}$ and $\sigma _{frag}$, respectively. For (H$_2$O)$_{12}$UH$^+$, experimental values were obtained for collision with Ne, whereas all other theoretical and experimental data are for collision with Ar.\relax }{table.caption.52}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{118}{figure.caption.50}}
\newlabel{proporEachFrag-7a12a-zoom}{{4.10}{118}{Time-dependent proportions of the main fragments obtained from the dissociation of the lowest-energy isomers of (H$_2$O)$_7$UH$^+$ (left) and (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.50}{}}
\@writefile{brf}{\backcite{Braud2019}{{118}{4.3.4}{table.caption.52}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions.}}{119}{figure.caption.51}}
\newlabel{proporEachFrag-7d12c-zoom}{{4.11}{119}{Time-dependent proportions of the main fragments obtained from the dissociation of the the third lowest-energy isomer of (H$_2$O)$_7$UH$^+$ (left) and the third lowest-energy isomer (H$_2$O)$_{12}$UH$^+$ (right). Bottom panels correspond to a zoom over the lower proportions}{figure.caption.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{120}{figure.caption.53}}
\newlabel{fig-1a-3b}{{4.12}{120}{Selected low-energy configurations of (H$_2$O)$_{1-3}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.53}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{121}{figure.caption.54}}
\newlabel{fig-4a-5d}{{4.13}{121}{Selected low-energy configurations of (H$_2$O)$_{4-5}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.54}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{122}{figure.caption.55}}
\newlabel{fig-6a-6f}{{4.14}{122}{Selected low-energy configurations of (H$_2$O)$_{6}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.55}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{123}{figure.caption.56}}
\newlabel{fig-7a-7d}{{4.15}{123}{Selected low-energy configurations of (H$_2$O)$_{7}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.56}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{122}{figure.caption.56}}
\newlabel{neutralUloss-Ne-Ar}{{4.16}{122}{Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.56}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}}
\newlabel{large}{{4.3.5}{122}{Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{subsection.4.3.5}{}}
\@writefile{brf}{\backcite{Braud2019}{{122}{4.3.5}{subsection.4.3.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{123}{figure.caption.57}}
\newlabel{cross-section-Ne-Ar}{{4.17}{123}{Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.57}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{124}{figure.caption.57}}
\newlabel{neutralUloss-Ne-Ar}{{4.16}{124}{Theoretical (green and blue lines) and experimental (red line) $P_{NUL}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.57}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}}
\newlabel{large}{{4.3.5}{124}{Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{subsection.4.3.5}{}}
\@writefile{brf}{\backcite{Braud2019}{{124}{4.3.5}{subsection.4.3.5}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers.}}{125}{figure.caption.58}}
\newlabel{cross-section-Ne-Ar}{{4.17}{125}{Theoretical (green and blue lines) and experimental (red line) $\sigma _{frag}$ values for the (H$_2$O)$_{1-7, 11, 12}$UH$^+$ clusters. Theory 1 (green line) is obtained from the isomers which $P_{NUL}$ matches best to the experimental data while Theory 2 (blue line) is obtained from lowest-energy isomers}{figure.caption.58}{}}
\citation{Braud2019}
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.58}}
\newlabel{fig-11a-f}{{4.18}{125}{Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.58}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{125}{figure.caption.59}}
\newlabel{fig-12a-f}{{4.19}{125}{Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.59}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}}
\newlabel{mass-spectra}{{4.3.6}{126}{Mass Spectra of Fragments with Excess Proton}{subsection.4.3.6}{}}
\@writefile{brf}{\backcite{Braud2019}{{126}{4.3.6}{subsection.4.3.6}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{126}{figure.caption.60}}
\newlabel{MS-BR-1w-4w-Ne-Ar-branch}{{4.20}{126}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area)}{figure.caption.60}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{127}{figure.caption.61}}
\newlabel{MS-BR-5w-11w-Ne-Ar-branch}{{4.21}{127}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area)}{figure.caption.61}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{128}{figure.caption.62}}
\newlabel{MS-BR-12w-Ne-branch}{{4.22}{128}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green)}{figure.caption.62}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{129}{table.caption.63}}
\newlabel{tab:fragenergy}{{4.4}{129}{Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }{table.caption.63}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}}
\newlabel{Concl}{{4.3.7}{129}{Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{subsection.4.3.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.59}}
\newlabel{fig-11a-f}{{4.18}{127}{Selected low-energy configurations of (H$_2$O)$_{11}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.59}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$.}}{127}{figure.caption.60}}
\newlabel{fig-12a-f}{{4.19}{127}{Selected low-energy configurations of (H$_2$O)$_{12}$UH$^+$. Relative energies at the MP2/Def2TZVP level are in kcal.mol$^{-1}$}{figure.caption.60}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}}
\newlabel{mass-spectra}{{4.3.6}{128}{Mass Spectra of Fragments with Excess Proton}{subsection.4.3.6}{}}
\@writefile{brf}{\backcite{Braud2019}{{128}{4.3.6}{subsection.4.3.6}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area).}}{128}{figure.caption.61}}
\newlabel{MS-BR-1w-4w-Ne-Ar-branch}{{4.20}{128}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue for argon; (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green for neon) from isomers (a) 1a, (b) 2b, (c) 3b, (d) 4b. The counterparts in experiment are plotted (negative area)}{figure.caption.61}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area).}}{129}{figure.caption.62}}
\newlabel{MS-BR-5w-11w-Ne-Ar-branch}{{4.21}{129}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers (e) 5d, (f) 6f, (g) 7d, and (h) 11d. The counterparts in experiment are plotted (negative area)}{figure.caption.62}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green).}}{130}{figure.caption.63}}
\newlabel{MS-BR-12w-Ne-branch}{{4.22}{130}{Simulated mass spectra (positive area) of the charged fragments after 15~ps simulation time (fragments (H$_2$O)$_n$H$^+$ in red and (H$_2$O)$_n$UH$^+$ in blue) from isomers 12c. The counterparts in experiment obtained for collision with neon are plotted in negative area (H$_2$O)$_n$H$^+$ in pink and (H$_2$O)$_n$UH$^+$ in green)}{figure.caption.63}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.4}{\ignorespaces Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }}{131}{table.caption.64}}
\newlabel{tab:fragenergy}{{4.4}{131}{Energies of different (H$_2$O)$_6$UH$^+$ fragments selected from the dissociation of 7d at SCC-DFTB level, and the lowest energies (H$_2$O)$_5$UH$^+$ and (H$_2$O) at SCC-DFTB level. The relative energy $\Delta E$ = $E_{(H_2O)_6UH^+}$ -($E_{(H_2O)_5UH^+}$ +$ E_{H_2O}$). All energies here are given in eV.\relax }{table.caption.64}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}}
\newlabel{Concl}{{4.3.7}{131}{Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{subsection.4.3.7}{}}
\citation{Chung2011,Saggese2015,Eaves2015,Mao2017,Wang2018}
\citation{Kyrtopoulos2001,Farmer2003}
\citation{Aumaitre2019}
@ -240,35 +240,35 @@
\citation{Delaunay2015}
\citation{Zhen2018}
\citation{Chen2018}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}}
\@writefile{brf}{\backcite{Eaves2015}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Chung2011}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Saggese2015}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Mao2017}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Wang2018}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Kyrtopoulos2001}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Farmer2003}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Aumaitre2019}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Tielens2008}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Leger1984}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Allamandola1985}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2005}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Berne2008}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Wang2018}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Eschenbach1998}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Goulart2017}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Lei2019}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Joblin2017}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Roser2015}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Lemmens2019}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Joblin2017}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Holm2010}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2015}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2017}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{131}{4.4.1}{subsection.4.4.1}}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}}
\@writefile{brf}{\backcite{Eaves2015}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Chung2011}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Saggese2015}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Mao2017}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Wang2018}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Kyrtopoulos2001}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Farmer2003}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Aumaitre2019}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Tielens2008}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Leger1984}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Allamandola1985}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2005}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Berne2008}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Wang2018}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Eschenbach1998}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Goulart2017}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Lei2019}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Joblin2017}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Roser2015}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Lemmens2019}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Joblin2017}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Holm2010}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2015}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2017}{{133}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{133}{4.4.1}{subsection.4.4.1}}}
\citation{Piacenza2005,Birer2015}
\citation{Zhao2008truhlar,Rapacioli2009corr,Mao2017,Bowal2019}
\citation{Ricca2013}
@ -283,106 +283,106 @@
\citation{Gatchell2016,Gatchell2016knockout}
\citation{Zamith2020threshold}
\citation{Zamith2019thermal}
\@writefile{brf}{\backcite{Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Delaunay2015}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zhen2018}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Chen2018}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Piacenza2005}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Birer2015}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Mao2017}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zhao2008truhlar}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Bowal2019}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Ricca2013}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Grafenstein2009}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2009}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Joblin2017}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Dontot2019}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Dontot2016}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Dontot2020}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Porezag1995}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Seifert1996}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Spiegelman2020}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2011}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2016}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}}
\newlabel{Eparti}{{4.5}{133}{Calculation of Energies}{equation.4.4.5}{}}
\newlabel{Eintra}{{4.6}{134}{Calculation of Energies}{equation.4.4.6}{}}
\newlabel{Einter}{{4.7}{134}{Calculation of Energies}{equation.4.4.7}{}}
\newlabel{Erotation}{{4.9}{134}{Calculation of Energies}{equation.4.4.9}{}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Delaunay2015}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zhen2018}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Chen2018}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Piacenza2005}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Birer2015}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2009corr}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Mao2017}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zhao2008truhlar}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Bowal2019}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Ricca2013}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Grafenstein2009}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2009}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Joblin2017}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Dontot2019}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Dontot2016}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Dontot2020}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Elstner1998}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Porezag1995}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Seifert1996}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Spiegelman2020}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Rapacioli2011}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2016}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{brf}{\backcite{Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}}
\newlabel{Eparti}{{4.5}{135}{Calculation of Energies}{equation.4.4.5}{}}
\newlabel{Eintra}{{4.6}{136}{Calculation of Energies}{equation.4.4.6}{}}
\newlabel{Einter}{{4.7}{136}{Calculation of Energies}{equation.4.4.7}{}}
\newlabel{Erotation}{{4.9}{136}{Calculation of Energies}{equation.4.4.9}{}}
\citation{Zamith2020threshold}
\citation{Levine1987}
\citation{Zamith2020threshold}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Levine1987}{{135}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Levine1987}{{137}{4.4.3}{subsection.4.4.3}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}}
\citation{Dontot2019,Zamith2020threshold}
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{136}{figure.caption.64}}
\newlabel{MDPST}{{4.23}{136}{Principle of MD+PST}{figure.caption.64}{}}
\newlabel{sec:results}{{4.4.4}{137}{Results and Discussion}{subsection.4.4.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{137}{4.4.4}{subsection.4.4.4}}}
\@writefile{brf}{\backcite{Dontot2019}{{137}{4.4.4}{subsection.4.4.4}}}
\newlabel{sec:MS}{{4.4.4.1}{137}{TOFMS Comparison}{subsubsection.4.4.4.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{137}{figure.caption.65}}
\newlabel{expTOF}{{4.24}{137}{Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model}{figure.caption.65}{}}
\newlabel{sec:MDanalysis}{{4.4.4.2}{138}{Molecular Dynamics Analysis}{subsubsection.4.4.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{139}{figure.caption.66}}
\newlabel{collisions}{{4.25}{139}{Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\AA {} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively)}{figure.caption.66}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Principle of MD+PST.}}{138}{figure.caption.65}}
\newlabel{MDPST}{{4.23}{138}{Principle of MD+PST}{figure.caption.65}{}}
\newlabel{sec:results}{{4.4.4}{139}{Results and Discussion}{subsection.4.4.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{139}{4.4.4}{subsection.4.4.4}}}
\@writefile{brf}{\backcite{Dontot2019}{{139}{4.4.4}{subsection.4.4.4}}}
\newlabel{sec:MS}{{4.4.4.1}{139}{TOFMS Comparison}{subsubsection.4.4.4.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model.}}{139}{figure.caption.66}}
\newlabel{expTOF}{{4.24}{139}{Normalized time of flight mass spectra of the parent pyrene dimer cation (a), and the pyrene fragment Py$^+$ (b) resulting from the collision of Py$_2^+$ with argon at a center of mass collision energy of 17.5~eV. The black line is for the experimental result whereas red and green curves are the MD+PST and PST model results. The blue curve is the PST subcontribution of the MD+PST model}{figure.caption.66}{}}
\newlabel{sec:MDanalysis}{{4.4.4.2}{140}{Molecular Dynamics Analysis}{subsubsection.4.4.4.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\r A{} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively).}}{141}{figure.caption.67}}
\newlabel{collisions}{{4.25}{141}{Snapshots for two different molecular dynamics trajectories. Top and bottom: trajectories with impact parameter of 3.5~\AA {} and a collision energy of 17.5~eV, leading to dissociation and non-dissociation (top and bottom, respectively)}{figure.caption.67}{}}
\citation{Chen2014,Gatchell2016knockout}
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{141}{figure.caption.67}}
\newlabel{distriPerc-Etf-175eV-d-bin03}{{4.26}{141}{Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model}{figure.caption.67}{}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{141}{4.4.4.2}{figure.caption.68}}}
\@writefile{brf}{\backcite{Chen2014}{{141}{4.4.4.2}{figure.caption.68}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{142}{figure.caption.68}}
\newlabel{fragmentation}{{4.27}{142}{Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\AA {} and a collision energy of 27.5 eV leading to intramolecular fragmentation}{figure.caption.68}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{142}{figure.caption.69}}
\newlabel{opacitycurves}{{4.28}{142}{Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies}{figure.caption.69}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.26}{\ignorespaces Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model.}}{143}{figure.caption.68}}
\newlabel{distriPerc-Etf-175eV-d-bin03}{{4.26}{143}{Distribution of transferred energy in rovibrational modes $\Delta E_{int}^{Py_2}$ for trajectories leading to dissociation at the end of MD (center of mass collision energy of 17.5~eV). The dashed line shows the distribution of transferred energy used in the LOC model}{figure.caption.68}{}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{143}{4.4.4.2}{figure.caption.69}}}
\@writefile{brf}{\backcite{Chen2014}{{143}{4.4.4.2}{figure.caption.69}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.27}{\ignorespaces Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\r A{} and a collision energy of 27.5 eV leading to intramolecular fragmentation.}}{144}{figure.caption.69}}
\newlabel{fragmentation}{{4.27}{144}{Snapshots for molecular dynamics trajectory with impact parameter of 0.5~\AA {} and a collision energy of 27.5 eV leading to intramolecular fragmentation}{figure.caption.69}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.28}{\ignorespaces Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies.}}{144}{figure.caption.70}}
\newlabel{opacitycurves}{{4.28}{144}{Opacity curves as a function of the impact parameter $b$ for several selected center of mass collision energies}{figure.caption.70}{}}
\citation{Zamith2020threshold}
\citation{Dontot2019,Zamith2020threshold}
\@writefile{brf}{\backcite{Zamith2020threshold}{{143}{4.4.4.2}{figure.caption.69}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{143}{4.4.4.2}{equation.4.4.12}}}
\@writefile{brf}{\backcite{Dontot2019}{{143}{4.4.4.2}{equation.4.4.12}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{144}{figure.caption.70}}
\newlabel{cross-section}{{4.29}{144}{Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs}{figure.caption.70}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{145}{figure.caption.71}}
\newlabel{transferredE-Ar-300}{{4.30}{145}{At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted}{figure.caption.71}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{146}{table.caption.72}}
\newlabel{tab:table1}{{4.5}{146}{The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }{table.caption.72}{}}
\newlabel{separately}{{4.13}{146}{Molecular Dynamics Analysis}{equation.4.4.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{147}{figure.caption.73}}
\newlabel{Epartition-Ar-300-SP}{{4.31}{147}{Mean kinetic energy partition at the end of the MD simulations}{figure.caption.73}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{148}{table.caption.74}}
\newlabel{tab:table2}{{4.6}{148}{The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\AA .\relax }{table.caption.74}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{148}{figure.caption.75}}
\newlabel{Epartition-Ar-300-Tstep-01}{{4.32}{148}{Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles}{figure.caption.75}{}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{145}{4.4.4.2}{figure.caption.70}}}
\@writefile{brf}{\backcite{Zamith2020threshold}{{145}{4.4.4.2}{equation.4.4.12}}}
\@writefile{brf}{\backcite{Dontot2019}{{145}{4.4.4.2}{equation.4.4.12}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.29}{\ignorespaces Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs.}}{146}{figure.caption.71}}
\newlabel{cross-section}{{4.29}{146}{Dissociation cross sections of Py$_2^+$ after collision with argon as a function of center of mass collision energy for the short (MD), experimental (MD+PST) and infinite timescales. Cross sections resulting from the LOC model are also plotted. $\sigma _\mathrm {MD}$ (0.1) denotes the dissociation cross section for short (MD) timescale with a time step of 0.1 fs}{figure.caption.71}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.30}{\ignorespaces At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted.}}{147}{figure.caption.72}}
\newlabel{transferredE-Ar-300}{{4.30}{147}{At the end of the MD collision simulations with a time step of 0.1 and 0.5 fs, the total transferred energy $\Delta E_{int}^{Py_2}$ to the rovibrational modes or restricted to the sole dissociated ($\Delta E_{int-d}^{Py_2}$) or undissociated ($\Delta E_{int-ud}^{Py_2}$) pyrene dimers as a function of collision energy. The transeferred energy to the monomers rovibrational modes for the dissociated dimers $\Delta E_{int-d}^{Py^1+Py^2}$ is also plotted}{figure.caption.72}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.5}{\ignorespaces The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }}{148}{table.caption.73}}
\newlabel{tab:table1}{{4.5}{148}{The kinetic energy partition after the collision of pyrene dimer with argon at different collision energies $E_{col}$. All energies are in eV.\relax }{table.caption.73}{}}
\newlabel{separately}{{4.13}{148}{Molecular Dynamics Analysis}{equation.4.4.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.31}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations.}}{149}{figure.caption.74}}
\newlabel{Epartition-Ar-300-SP}{{4.31}{149}{Mean kinetic energy partition at the end of the MD simulations}{figure.caption.74}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.6}{\ignorespaces The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\r A.\relax }}{150}{table.caption.75}}
\newlabel{tab:table2}{{4.6}{150}{The kinetic energy partition and cross section at the end of MD simulations with time step being 0.1 and 0.5 at different collision energies of 20 and 25. All energies are in eV. Time step ($Tstep$) is in fs. Cross section $\sigma _{_{MD}}$ is in ~\AA .\relax }{table.caption.75}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.32}{\ignorespaces Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles.}}{150}{figure.caption.76}}
\newlabel{Epartition-Ar-300-Tstep-01}{{4.32}{150}{Mean kinetic energy partition at the end of the MD simulations with time step being 0.5 fs at the center of mass collision energy from 2.5 to 25 eV. The mean kinetic energy partition with time step being 0.1 fs at center of mass collision energies of 20 and 25 eV are plotted with filled round circles}{figure.caption.76}{}}
\citation{Dontot2020}
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{149}{figure.caption.76}}
\newlabel{prot-Ar-300}{{4.33}{149}{Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy}{figure.caption.76}{}}
\@writefile{brf}{\backcite{Dontot2020}{{149}{4.4.4.2}{figure.caption.77}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{150}{figure.caption.77}}
\newlabel{Epartition-Ar-300-d-ud}{{4.34}{150}{Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy}{figure.caption.77}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{151}{figure.caption.78}}
\newlabel{figuretimescale}{{4.35}{151}{Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue)}{figure.caption.78}{}}
\newlabel{kineticT}{{4.14}{151}{Molecular Dynamics Analysis}{equation.4.4.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{152}{figure.caption.79}}
\newlabel{T-time-zoom_abcdef}{{4.36}{152}{Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\AA {}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel}{figure.caption.79}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{153}{figure.caption.80}}
\newlabel{E-time-abcdef}{{4.37}{153}{Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \AA {}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation}{figure.caption.80}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.33}{\ignorespaces Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy.}}{151}{figure.caption.77}}
\newlabel{prot-Ar-300}{{4.33}{151}{Kinetic energy proportion after collision of Py$_2^+$ with argon as a function of collision energy}{figure.caption.77}{}}
\@writefile{brf}{\backcite{Dontot2020}{{151}{4.4.4.2}{figure.caption.78}}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.34}{\ignorespaces Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy.}}{152}{figure.caption.78}}
\newlabel{Epartition-Ar-300-d-ud}{{4.34}{152}{Kinetic energy partition for dissociated (-d) and undissociated (-ud) trajectories at the end of the MD simulation as a function of collision energy}{figure.caption.78}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.35}{\ignorespaces Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue).}}{153}{figure.caption.79}}
\newlabel{figuretimescale}{{4.35}{153}{Timescales, as a function of center of mass collision energy, for argon to travel across some typical distances: a carbon-carbon bond (green), a carbon-hydrogen bond (purple) or the largest axis of the pyrene molecule (blue)}{figure.caption.79}{}}
\newlabel{kineticT}{{4.14}{153}{Molecular Dynamics Analysis}{equation.4.4.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.36}{\ignorespaces Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\r A{}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel.}}{154}{figure.caption.80}}
\newlabel{T-time-zoom_abcdef}{{4.36}{154}{Instantaneous kinetic temperatures as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5~eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2~\AA {}. In cases (a) and (b) dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation. In (c) to (f) the lower panel is a vertical zoom of the corresponding intramolecular parts in upper panel}{figure.caption.80}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.37}{\ignorespaces Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \r A{}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation.}}{155}{figure.caption.81}}
\newlabel{E-time-abcdef}{{4.37}{155}{Instantaneous kinetic energies as a function of time for intra and intermolecular modes of the pyrene dimer at a collision energy of 22.5 eV. Impact parameters $b$ are (a) 2, (b) 3, (c) 0, (d) 2.5, (e) 2, and (f) 2 \AA {}. In cases (a) and (b), dissociation takes place whereas in the other cases the dimer remains undissociated at the end of the MD simulation}{figure.caption.81}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}}
\citation{Chen2014,Gatchell2016knockout}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{155}{4.4.5}{subsection.4.4.5}}}
\@writefile{brf}{\backcite{Chen2014}{{155}{4.4.5}{subsection.4.4.5}}}
\@writefile{brf}{\backcite{Gatchell2016knockout}{{157}{4.4.5}{subsection.4.4.5}}}
\@writefile{brf}{\backcite{Chen2014}{{157}{4.4.5}{subsection.4.4.5}}}
\FN@pp@footnotehinttrue
\@setckpt{4/collision}{
\setcounter{page}{157}
\setcounter{page}{159}
\setcounter{equation}{14}
\setcounter{enumi}{5}
\setcounter{enumii}{0}

View File

@ -1,14 +1,14 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\FN@pp@footnotehinttrue
\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}}
\FN@pp@footnotehinttrue
\@setckpt{5/general_conclusion}{
\setcounter{page}{161}
\setcounter{page}{163}
\setcounter{equation}{0}
\setcounter{enumi}{5}
\setcounter{enumii}{0}

View File

@ -1,7 +1,7 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\@setckpt{6_backmatter/declaration}{
\setcounter{page}{178}
\setcounter{page}{180}
\setcounter{equation}{0}
\setcounter{enumi}{5}
\setcounter{enumii}{0}
@ -21,7 +21,7 @@
\setcounter{ContinuedFloat}{0}
\setcounter{pp@next@reset}{1}
\setcounter{@fnserial}{0}
\setcounter{NAT@ctr}{480}
\setcounter{NAT@ctr}{484}
\setcounter{Item}{5}
\setcounter{Hfootnote}{0}
\setcounter{bookmark@seq@number}{65}

View File

@ -2,7 +2,46 @@
%% Created for Jakob Suckale at 2007-09-06 11:30:44 +0200
%% Saved with string encoding Unicode (UTF-8)
@article{Bandow2006,
title={Larger water clusters with edges and corners on their way to ice: Structural trends elucidated with an improved parallel evolutionary algorithm},
author={Bandow, Bernhard and Hartke, Bernd},
journal={J. Phys. Chem. A},
volume={110},
number={17},
pages={5809--5822},
year={2006},
publisher={ACS Publications}}
@article{Kazimirski2003,
title={Search for low energy structures of water clusters (H2O) n, n= 20- 22, 48, 123, and 293},
author={Kazimirski, Jan K and Buch, Victoria},
journal={J. Phys. Chem. A},
volume={107},
number={46},
pages={9762--9775},
year={2003},
publisher={ACS Publications}}
@article{Pickard2005,
title={Comparison of model chemistry and density functional theory thermochemical predictions with experiment for formation of ionic clusters of the ammonium cation complexed with water and ammonia; atmospheric implications},
author={Pickard IV, Frank C and Dunn, Meghan E and Shields, George C},
journal={J. Phys. Chem. A},
volume={109},
number={22},
pages={4905--4910},
year={2005},
publisher={ACS Publications}}
@article{Lee2004,
title={Insights into the Structures, Energetics, and Vibrations of Monovalent Cation-(Water) 1-6 Clusters},
author={Lee, Han Myoung and Tarakeshwar, P and Park, Jungwon and Ko{\l}aski, Maciej Roman and Yoon, Yeo Jin and Yi, Hai-Bo and Kim, Woo Youn and Kim, Kwang S},
journal={J. Phys. Chem. A},
volume={108},
number={15},
pages={2949--2958},
year={2004},
publisher={ACS Publications}}
@article{Boys2002,
title={The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors},
author={Boys, SF and Bernardi, F},

View File

@ -79,7 +79,7 @@
\bibcite{Faraday1857}{{32}{}{{}}{{}}}
\bibcite{Kulmala2000}{{33}{}{{}}{{}}}
\bibcite{Wang2008}{{34}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{References}{161}{chapter*.81}}
\@writefile{toc}{\contentsline {chapter}{References}{163}{chapter*.82}}
\bibcite{Depalma2014}{{35}{}{{}}{{}}}
\bibcite{Katakuse1985}{{36}{}{{}}{{}}}
\bibcite{Posthumus2009}{{37}{}{{}}{{}}}
@ -433,99 +433,103 @@
\bibcite{Simon2019}{{385}{}{{}}{{}}}
\bibcite{Simon2013water}{{386}{}{{}}{{}}}
\bibcite{Winget2003}{{387}{}{{}}{{}}}
\bibcite{Maclot2011}{{388}{}{{}}{{}}}
\bibcite{Domaracka2012}{{389}{}{{}}{{}}}
\bibcite{Markush2016}{{390}{}{{}}{{}}}
\bibcite{Wincel2009}{{391}{}{{}}{{}}}
\bibcite{Boudaiffa2000}{{392}{}{{}}{{}}}
\bibcite{Smyth2011}{{393}{}{{}}{{}}}
\bibcite{Siefermann2011}{{394}{}{{}}{{}}}
\bibcite{Alizadeh2013}{{395}{}{{}}{{}}}
\bibcite{Rasmussen2010}{{396}{}{{}}{{}}}
\bibcite{Sadr2014}{{397}{}{{}}{{}}}
\bibcite{Molina2016}{{398}{}{{}}{{}}}
\bibcite{Bakker2008}{{399}{}{{}}{{}}}
\bibcite{Shishkin2000}{{400}{}{{}}{{}}}
\bibcite{Gadre2000}{{401}{}{{}}{{}}}
\bibcite{Van2001diffu}{{402}{}{{}}{{}}}
\bibcite{Gaigeot2001}{{403}{}{{}}{{}}}
\bibcite{Danilov2006}{{404}{}{{}}{{}}}
\bibcite{Bacchus2015}{{405}{}{{}}{{}}}
\bibcite{Dalleska1993}{{406}{}{{}}{{}}}
\bibcite{Zamith2012}{{407}{}{{}}{{}}}
\bibcite{Myers2007}{{408}{}{{}}{{}}}
\bibcite{Hansen2009}{{409}{}{{}}{{}}}
\bibcite{Kurinovich2002}{{410}{}{{}}{{}}}
\bibcite{Magnera1991}{{411}{}{{}}{{}}}
\bibcite{Cheng1998}{{412}{}{{}}{{}}}
\bibcite{Zundel1968}{{413}{}{{}}{{}}}
\bibcite{Brechignac1989}{{414}{}{{}}{{}}}
\bibcite{Brechignac1994}{{415}{}{{}}{{}}}
\bibcite{Wong2004}{{416}{}{{}}{{}}}
\bibcite{Bush2008}{{417}{}{{}}{{}}}
\bibcite{Gatchell2014}{{418}{}{{}}{{}}}
\bibcite{Boering1992}{{419}{}{{}}{{}}}
\bibcite{Wells2005}{{420}{}{{}}{{}}}
\bibcite{Ma1997}{{421}{}{{}}{{}}}
\bibcite{Chowdhury2009}{{422}{}{{}}{{}}}
\bibcite{Sleno2004ion}{{423}{}{{}}{{}}}
\bibcite{Cody1982}{{424}{}{{}}{{}}}
\bibcite{Olsen2007higher}{{425}{}{{}}{{}}}
\bibcite{Hart2011}{{426}{}{{}}{{}}}
\bibcite{Gauthier1991}{{427}{}{{}}{{}}}
\bibcite{Laskin2005}{{428}{}{{}}{{}}}
\bibcite{Mcquinn2009}{{429}{}{{}}{{}}}
\bibcite{Carl2013}{{430}{}{{}}{{}}}
\bibcite{Hofstetter2013}{{431}{}{{}}{{}}}
\bibcite{Coates2017}{{432}{}{{}}{{}}}
\bibcite{Haag2009}{{433}{}{{}}{{}}}
\bibcite{Li1992}{{434}{}{{}}{{}}}
\bibcite{Bobbert2002}{{435}{}{{}}{{}}}
\bibcite{Spasov2000}{{436}{}{{}}{{}}}
\bibcite{Armentrout2008}{{437}{}{{}}{{}}}
\bibcite{Rodgers1998}{{438}{}{{}}{{}}}
\bibcite{Armentrout2007}{{439}{}{{}}{{}}}
\bibcite{Braud2017}{{440}{}{{}}{{}}}
\bibcite{Chirot2006new}{{441}{}{{}}{{}}}
\bibcite{Frenzel2004}{{442}{}{{}}{{}}}
\bibcite{Spiegelman2020}{{443}{}{{}}{{}}}
\bibcite{Simon2017}{{444}{}{{}}{{}}}
\bibcite{Rapacioli2018}{{445}{}{{}}{{}}}
\bibcite{Simon2018}{{446}{}{{}}{{}}}
\bibcite{Warshel1976}{{447}{}{{}}{{}}}
\bibcite{Cui2001}{{448}{}{{}}{{}}}
\bibcite{Iftner2014}{{449}{}{{}}{{}}}
\bibcite{Kukk2015}{{450}{}{{}}{{}}}
\bibcite{Rapacioli2018atomic}{{451}{}{{}}{{}}}
\bibcite{Dontot2019}{{452}{}{{}}{{}}}
\bibcite{Chung2011}{{453}{}{{}}{{}}}
\bibcite{Saggese2015}{{454}{}{{}}{{}}}
\bibcite{Mao2017}{{455}{}{{}}{{}}}
\bibcite{Wang2018}{{456}{}{{}}{{}}}
\bibcite{Kyrtopoulos2001}{{457}{}{{}}{{}}}
\bibcite{Farmer2003}{{458}{}{{}}{{}}}
\bibcite{Aumaitre2019}{{459}{}{{}}{{}}}
\bibcite{Rapacioli2005}{{460}{}{{}}{{}}}
\bibcite{Berne2008}{{461}{}{{}}{{}}}
\bibcite{Eschenbach1998}{{462}{}{{}}{{}}}
\bibcite{Goulart2017}{{463}{}{{}}{{}}}
\bibcite{Lei2019}{{464}{}{{}}{{}}}
\bibcite{Roser2015}{{465}{}{{}}{{}}}
\bibcite{Lemmens2019}{{466}{}{{}}{{}}}
\bibcite{Delaunay2015}{{467}{}{{}}{{}}}
\bibcite{Piacenza2005}{{468}{}{{}}{{}}}
\bibcite{Birer2015}{{469}{}{{}}{{}}}
\bibcite{Zhao2008truhlar}{{470}{}{{}}{{}}}
\bibcite{Bowal2019}{{471}{}{{}}{{}}}
\bibcite{Ricca2013}{{472}{}{{}}{{}}}
\bibcite{Grafenstein2009}{{473}{}{{}}{{}}}
\bibcite{Dontot2016}{{474}{}{{}}{{}}}
\bibcite{Dontot2020}{{475}{}{{}}{{}}}
\bibcite{Rapacioli2011}{{476}{}{{}}{{}}}
\bibcite{Gatchell2016}{{477}{}{{}}{{}}}
\bibcite{Gatchell2016knockout}{{478}{}{{}}{{}}}
\bibcite{Levine1987}{{479}{}{{}}{{}}}
\bibcite{Chen2014}{{480}{}{{}}{{}}}
\bibcite{Lee2004}{{388}{}{{}}{{}}}
\bibcite{Pickard2005}{{389}{}{{}}{{}}}
\bibcite{Kazimirski2003}{{390}{}{{}}{{}}}
\bibcite{Bandow2006}{{391}{}{{}}{{}}}
\bibcite{Maclot2011}{{392}{}{{}}{{}}}
\bibcite{Domaracka2012}{{393}{}{{}}{{}}}
\bibcite{Markush2016}{{394}{}{{}}{{}}}
\bibcite{Wincel2009}{{395}{}{{}}{{}}}
\bibcite{Boudaiffa2000}{{396}{}{{}}{{}}}
\bibcite{Smyth2011}{{397}{}{{}}{{}}}
\bibcite{Siefermann2011}{{398}{}{{}}{{}}}
\bibcite{Alizadeh2013}{{399}{}{{}}{{}}}
\bibcite{Rasmussen2010}{{400}{}{{}}{{}}}
\bibcite{Sadr2014}{{401}{}{{}}{{}}}
\bibcite{Molina2016}{{402}{}{{}}{{}}}
\bibcite{Bakker2008}{{403}{}{{}}{{}}}
\bibcite{Shishkin2000}{{404}{}{{}}{{}}}
\bibcite{Gadre2000}{{405}{}{{}}{{}}}
\bibcite{Van2001diffu}{{406}{}{{}}{{}}}
\bibcite{Gaigeot2001}{{407}{}{{}}{{}}}
\bibcite{Danilov2006}{{408}{}{{}}{{}}}
\bibcite{Bacchus2015}{{409}{}{{}}{{}}}
\bibcite{Dalleska1993}{{410}{}{{}}{{}}}
\bibcite{Zamith2012}{{411}{}{{}}{{}}}
\bibcite{Myers2007}{{412}{}{{}}{{}}}
\bibcite{Hansen2009}{{413}{}{{}}{{}}}
\bibcite{Kurinovich2002}{{414}{}{{}}{{}}}
\bibcite{Magnera1991}{{415}{}{{}}{{}}}
\bibcite{Cheng1998}{{416}{}{{}}{{}}}
\bibcite{Zundel1968}{{417}{}{{}}{{}}}
\bibcite{Brechignac1989}{{418}{}{{}}{{}}}
\bibcite{Brechignac1994}{{419}{}{{}}{{}}}
\bibcite{Wong2004}{{420}{}{{}}{{}}}
\bibcite{Bush2008}{{421}{}{{}}{{}}}
\bibcite{Gatchell2014}{{422}{}{{}}{{}}}
\bibcite{Boering1992}{{423}{}{{}}{{}}}
\bibcite{Wells2005}{{424}{}{{}}{{}}}
\bibcite{Ma1997}{{425}{}{{}}{{}}}
\bibcite{Chowdhury2009}{{426}{}{{}}{{}}}
\bibcite{Sleno2004ion}{{427}{}{{}}{{}}}
\bibcite{Cody1982}{{428}{}{{}}{{}}}
\bibcite{Olsen2007higher}{{429}{}{{}}{{}}}
\bibcite{Hart2011}{{430}{}{{}}{{}}}
\bibcite{Gauthier1991}{{431}{}{{}}{{}}}
\bibcite{Laskin2005}{{432}{}{{}}{{}}}
\bibcite{Mcquinn2009}{{433}{}{{}}{{}}}
\bibcite{Carl2013}{{434}{}{{}}{{}}}
\bibcite{Hofstetter2013}{{435}{}{{}}{{}}}
\bibcite{Coates2017}{{436}{}{{}}{{}}}
\bibcite{Haag2009}{{437}{}{{}}{{}}}
\bibcite{Li1992}{{438}{}{{}}{{}}}
\bibcite{Bobbert2002}{{439}{}{{}}{{}}}
\bibcite{Spasov2000}{{440}{}{{}}{{}}}
\bibcite{Armentrout2008}{{441}{}{{}}{{}}}
\bibcite{Rodgers1998}{{442}{}{{}}{{}}}
\bibcite{Armentrout2007}{{443}{}{{}}{{}}}
\bibcite{Braud2017}{{444}{}{{}}{{}}}
\bibcite{Chirot2006new}{{445}{}{{}}{{}}}
\bibcite{Frenzel2004}{{446}{}{{}}{{}}}
\bibcite{Spiegelman2020}{{447}{}{{}}{{}}}
\bibcite{Simon2017}{{448}{}{{}}{{}}}
\bibcite{Rapacioli2018}{{449}{}{{}}{{}}}
\bibcite{Simon2018}{{450}{}{{}}{{}}}
\bibcite{Warshel1976}{{451}{}{{}}{{}}}
\bibcite{Cui2001}{{452}{}{{}}{{}}}
\bibcite{Iftner2014}{{453}{}{{}}{{}}}
\bibcite{Kukk2015}{{454}{}{{}}{{}}}
\bibcite{Rapacioli2018atomic}{{455}{}{{}}{{}}}
\bibcite{Dontot2019}{{456}{}{{}}{{}}}
\bibcite{Chung2011}{{457}{}{{}}{{}}}
\bibcite{Saggese2015}{{458}{}{{}}{{}}}
\bibcite{Mao2017}{{459}{}{{}}{{}}}
\bibcite{Wang2018}{{460}{}{{}}{{}}}
\bibcite{Kyrtopoulos2001}{{461}{}{{}}{{}}}
\bibcite{Farmer2003}{{462}{}{{}}{{}}}
\bibcite{Aumaitre2019}{{463}{}{{}}{{}}}
\bibcite{Rapacioli2005}{{464}{}{{}}{{}}}
\bibcite{Berne2008}{{465}{}{{}}{{}}}
\bibcite{Eschenbach1998}{{466}{}{{}}{{}}}
\bibcite{Goulart2017}{{467}{}{{}}{{}}}
\bibcite{Lei2019}{{468}{}{{}}{{}}}
\bibcite{Roser2015}{{469}{}{{}}{{}}}
\bibcite{Lemmens2019}{{470}{}{{}}{{}}}
\bibcite{Delaunay2015}{{471}{}{{}}{{}}}
\bibcite{Piacenza2005}{{472}{}{{}}{{}}}
\bibcite{Birer2015}{{473}{}{{}}{{}}}
\bibcite{Zhao2008truhlar}{{474}{}{{}}{{}}}
\bibcite{Bowal2019}{{475}{}{{}}{{}}}
\bibcite{Ricca2013}{{476}{}{{}}{{}}}
\bibcite{Grafenstein2009}{{477}{}{{}}{{}}}
\bibcite{Dontot2016}{{478}{}{{}}{{}}}
\bibcite{Dontot2020}{{479}{}{{}}{{}}}
\bibcite{Rapacioli2011}{{480}{}{{}}{{}}}
\bibcite{Gatchell2016}{{481}{}{{}}{{}}}
\bibcite{Gatchell2016knockout}{{482}{}{{}}{{}}}
\bibcite{Levine1987}{{483}{}{{}}{{}}}
\bibcite{Chen2014}{{484}{}{{}}{{}}}
\FN@pp@footnotehinttrue
\@input{6_backmatter/declaration.aux}
\providecommand\NAT@force@numbers{}\NAT@force@numbers

View File

@ -2424,6 +2424,34 @@
differential overlap based semiempirical molecular orbital technique}.
\newblock {\em Theor. Chem. Acc.}, {\bf 110}(4):254--266, 2003.
\bibitem{Lee2004}
{\sc Han~Myoung Lee, P~Tarakeshwar, Jungwon Park, Maciej~Roman Ko{\l}aski,
Yeo~Jin Yoon, Hai-Bo Yi, Woo~Youn Kim, and Kwang~S Kim}.
\newblock {\bf Insights into the Structures, Energetics, and Vibrations of
Monovalent Cation-(Water) 1-6 Clusters}.
\newblock {\em J. Phys. Chem. A}, {\bf 108}(15):2949--2958, 2004.
\bibitem{Pickard2005}
{\sc Frank~C Pickard~IV, Meghan~E Dunn, and George~C Shields}.
\newblock {\bf Comparison of model chemistry and density functional theory
thermochemical predictions with experiment for formation of ionic clusters of
the ammonium cation complexed with water and ammonia; atmospheric
implications}.
\newblock {\em J. Phys. Chem. A}, {\bf 109}(22):4905--4910, 2005.
\bibitem{Kazimirski2003}
{\sc Jan~K Kazimirski and Victoria Buch}.
\newblock {\bf Search for low energy structures of water clusters (H2O) n, n=
20- 22, 48, 123, and 293}.
\newblock {\em J. Phys. Chem. A}, {\bf 107}(46):9762--9775, 2003.
\bibitem{Bandow2006}
{\sc Bernhard Bandow and Bernd Hartke}.
\newblock {\bf Larger water clusters with edges and corners on their way to
ice: Structural trends elucidated with an improved parallel evolutionary
algorithm}.
\newblock {\em J. Phys. Chem. A}, {\bf 110}(17):5809--5822, 2006.
\bibitem{Maclot2011}
{\sc Sylvain Maclot, Michael Capron, R{\'e}mi Maisonny, Arkadiusz {\L}awicki,
Alain M{\'e}ry, Jimmy Rangama, Jean-Yves Chesnel, Sadia Bari, Ronnie

View File

@ -12,81 +12,81 @@ A level-1 auxiliary file: 4/collision.aux
A level-1 auxiliary file: 5/general_conclusion.aux
The style file: Latex/Classes/PhDbiblio-url2.bst
A level-1 auxiliary file: 6_backmatter/declaration.aux
Reallocated field_info (elt_size=4) to 17960 items from 5000.
Reallocated field_info (elt_size=4) to 18068 items from 5000.
Database file #1: 6_backmatter/references.bib
You're missing a field name---line 1412 of file 6_backmatter/references.bib
You're missing a field name---line 1451 of file 6_backmatter/references.bib
:
: %howpublished={\url{https://en.wikipedia.org/wiki/Cluster_(physics)}}}
(Error may have been on previous line)
I'm skipping whatever remains of this entry
Repeated entry---line 2397 of file 6_backmatter/references.bib
Repeated entry---line 2436 of file 6_backmatter/references.bib
: @inproceedings{Domaracka2012
: ,
I'm skipping whatever remains of this entry
Warning--I'm ignoring Simon2018's extra "publisher" field
--line 2630 of file 6_backmatter/references.bib
Repeated entry---line 3095 of file 6_backmatter/references.bib
--line 2669 of file 6_backmatter/references.bib
Repeated entry---line 3134 of file 6_backmatter/references.bib
: @article{Joblin2017
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 3233 of file 6_backmatter/references.bib
Repeated entry---line 3272 of file 6_backmatter/references.bib
: @article{Wei1991
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 3253 of file 6_backmatter/references.bib
Repeated entry---line 3292 of file 6_backmatter/references.bib
: @article{Liu2006
: ,
I'm skipping whatever remains of this entry
Reallocated str_pool (elt_size=1) to 130000 items from 65000.
Repeated entry---line 3693 of file 6_backmatter/references.bib
Repeated entry---line 3732 of file 6_backmatter/references.bib
: @article{Douady2009
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 3713 of file 6_backmatter/references.bib
Repeated entry---line 3752 of file 6_backmatter/references.bib
: @article{Iannuzzi2003
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 3779 of file 6_backmatter/references.bib
Repeated entry---line 3818 of file 6_backmatter/references.bib
: @article{Goursot2007
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 4005 of file 6_backmatter/references.bib
Repeated entry---line 4044 of file 6_backmatter/references.bib
: @book{Kaplan2006
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 4674 of file 6_backmatter/references.bib
Repeated entry---line 4713 of file 6_backmatter/references.bib
: @article{Karplus2002
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 4703 of file 6_backmatter/references.bib
Repeated entry---line 4742 of file 6_backmatter/references.bib
: @book{Allen2017
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 4870 of file 6_backmatter/references.bib
Repeated entry---line 4909 of file 6_backmatter/references.bib
: @article{Becke1993
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 5106 of file 6_backmatter/references.bib
Repeated entry---line 5145 of file 6_backmatter/references.bib
: @article{Raghavachari1989
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 5116 of file 6_backmatter/references.bib
Repeated entry---line 5155 of file 6_backmatter/references.bib
: @article{Purvis1982
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 5146 of file 6_backmatter/references.bib
Repeated entry---line 5185 of file 6_backmatter/references.bib
: @article{Head1994
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 5182 of file 6_backmatter/references.bib
Repeated entry---line 5221 of file 6_backmatter/references.bib
: @article{Vcivzek1966
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 5312 of file 6_backmatter/references.bib
Repeated entry---line 5351 of file 6_backmatter/references.bib
: @book{Jensen2017
: ,
I'm skipping whatever remains of this entry
Repeated entry---line 5392 of file 6_backmatter/references.bib
Repeated entry---line 5431 of file 6_backmatter/references.bib
: @article{Elstner1998
: ,
I'm skipping whatever remains of this entry
@ -98,45 +98,45 @@ Warning--empty year in Magnasco2009
Warning--empty title in GaussianCode
Warning--empty journal in GaussianCode
Warning--empty year in GaussianCode
You've used 480 entries,
You've used 484 entries,
2776 wiz_defined-function locations,
3587 strings with 97189 characters,
and the built_in function-call counts, 221754 in all, are:
= -- 23157
> -- 9212
3607 strings with 98136 characters,
and the built_in function-call counts, 223751 in all, are:
= -- 23367
> -- 9299
< -- 22
+ -- 3678
- -- 3142
* -- 17430
:= -- 33719
add.period$ -- 1446
call.type$ -- 480
change.case$ -- 2516
+ -- 3712
- -- 3172
* -- 17596
:= -- 34021
add.period$ -- 1458
call.type$ -- 484
change.case$ -- 2539
chr.to.int$ -- 0
cite$ -- 488
duplicate$ -- 6814
empty$ -- 18768
format.name$ -- 3142
if$ -- 50894
cite$ -- 492
duplicate$ -- 6870
empty$ -- 18932
format.name$ -- 3172
if$ -- 51345
int.to.chr$ -- 0
int.to.str$ -- 480
missing$ -- 502
newline$ -- 2400
num.names$ -- 960
pop$ -- 3723
int.to.str$ -- 484
missing$ -- 506
newline$ -- 2420
num.names$ -- 968
pop$ -- 3754
preamble$ -- 1
purify$ -- 2515
purify$ -- 2538
quote$ -- 0
skip$ -- 11260
skip$ -- 11354
stack$ -- 0
substring$ -- 13665
swap$ -- 1964
substring$ -- 13809
swap$ -- 1980
text.length$ -- 22
text.prefix$ -- 0
top$ -- 0
type$ -- 1866
type$ -- 1882
warning$ -- 8
while$ -- 1742
width$ -- 483
write$ -- 5255
while$ -- 1758
width$ -- 487
write$ -- 5299
(There were 18 error messages)

View File

@ -386,354 +386,359 @@
\backcite {Unger1993}{{47}{2.4.4}{subsection.2.4.4}}
\backcite {Sivanandam2008}{{47}{2.4.4}{subsection.2.4.4}}
\backcite {Toledo2014}{{47}{2.4.4}{subsection.2.4.4}}
\backcite {deMonNano2009}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Elstner1998}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Gaus2013para}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Li1998}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Thompson2003}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Rapacioli2009corr}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Elstner2001}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Zhechkov2005}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Simon2012}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Odutola1980}{{50}{3.1.1}{subsection.3.1.1}}
\backcite {Earl2005}{{50}{3.1.2}{subsection.3.1.2}}
\backcite {Sugita1999}{{50}{3.1.2}{subsection.3.1.2}}
\backcite {Sugita2000}{{50}{3.1.2}{subsection.3.1.2}}
\backcite {Elstner1998}{{50}{3.1.2}{subsection.3.1.2}}
\backcite {Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Douady2009}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Nose1984M}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Hoover1985}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Wolken2000}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Pedersen2014}{{51}{3.1.2}{subsection.3.1.2}}
\backcite {Weigend2005}{{51}{3.1.3}{subsection.3.1.3}}
\backcite {Weigend2006}{{51}{3.1.3}{subsection.3.1.3}}
\backcite {GaussianCode}{{51}{3.1.3}{subsection.3.1.3}}
\backcite {Boys2002}{{52}{3.1.3}{subsection.3.1.3}}
\backcite {Tielens2005}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Keesee1989}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Gilligan2000}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Sennikov2005}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Cabellos2016}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Orabi2013}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Bommer2016}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Rodgers2003}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Van2004}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Gibb2004}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Parise2005}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Boogert2015}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Dulieu2010}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Michoulier2018}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Kulmala2004}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Ziereis1986}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Arnold1997}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Dunne2016}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Kirkby2011}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Douady2009}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Herbine1985}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Stockman1992}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Hulthe1997}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Wang1998}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Chang1998}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Jiang1999}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Hvelplund2010}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Douady2008}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Morrell2010}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Bacelo2002}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Galashev2013}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Perkins1984}{{53}{3.2.1}{subsection.3.2.1}}
\backcite {Hulthe1997}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Chang1998}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Jiang1999}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Hvelplund2010}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Galashev2013}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Lee1996}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Skurski1998}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Donaldson1999}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Sadlej1999}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Lee1996}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Bacelo2002}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Douady2008}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Kozack1992polar}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Morrell2010}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Pei2015}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Walters2018}{{54}{3.2.1}{subsection.3.2.1}}
\backcite {Korchagina2017}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Choi2010}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Choi2013}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2019}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2012}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2013water}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Korchagina2016}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2017formation}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Winget2003}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Gaus2013para}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Rapacioli2009}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Thompson2003}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2019}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Gaus2013para}{{58}{3.2.2.1}{figure.caption.11}}
\backcite {Winget2003}{{58}{3.2.2.1}{figure.caption.11}}
\backcite {Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Wang1998}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Jiang1999}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Douady2008}{{59}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Douady2009}{{61}{3.2.2.2}{table.caption.16}}
\backcite {Wang1998}{{61}{3.2.2.2}{table.caption.16}}
\backcite {Jiang1999}{{61}{3.2.2.2}{table.caption.16}}
\backcite {Douady2008}{{61}{3.2.2.2}{table.caption.16}}
\backcite {Morrell2010}{{61}{3.2.2.2}{table.caption.16}}
\backcite {Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Douady2008}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Wang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Chang1998}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Jiang1999}{{61}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Douady2008}{{63}{3.2.2.3}{table.caption.18}}
\backcite {Morrell2010}{{63}{3.2.2.3}{table.caption.18}}
\backcite {Jiang1999}{{64}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{64}{3.2.2.3}{table.caption.18}}
\backcite {Morrell2010}{{64}{3.2.2.3}{table.caption.18}}
\backcite {Wang1998}{{64}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{64}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{65}{3.2.2.3}{table.caption.18}}
\backcite {deMonNano2009}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Elstner1998}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Gaus2013para}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Li1998}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Rapacioli2009corr}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Thompson2003}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Rapacioli2009corr}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Elstner2001}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Zhechkov2005}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Simon2012}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Odutola1980}{{52}{3.1.1}{subsection.3.1.1}}
\backcite {Earl2005}{{52}{3.1.2}{subsection.3.1.2}}
\backcite {Sugita1999}{{52}{3.1.2}{subsection.3.1.2}}
\backcite {Sugita2000}{{52}{3.1.2}{subsection.3.1.2}}
\backcite {Elstner1998}{{52}{3.1.2}{subsection.3.1.2}}
\backcite {Nose1984M}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Hoover1985}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Douady2009}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Nose1984M}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Hoover1985}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Wolken2000}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Pedersen2014}{{53}{3.1.2}{subsection.3.1.2}}
\backcite {Weigend2005}{{53}{3.1.3}{subsection.3.1.3}}
\backcite {Weigend2006}{{53}{3.1.3}{subsection.3.1.3}}
\backcite {GaussianCode}{{53}{3.1.3}{subsection.3.1.3}}
\backcite {Boys2002}{{54}{3.1.3}{subsection.3.1.3}}
\backcite {Tielens2005}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Keesee1989}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Gilligan2000}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Sennikov2005}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Cabellos2016}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Orabi2013}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Bommer2016}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Rodgers2003}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Van2004}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Gibb2004}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Parise2005}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Boogert2015}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Dulieu2010}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Michoulier2018}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Kulmala2004}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Ziereis1986}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Perkins1984}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Arnold1997}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Dunne2016}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Kirkby2011}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Douady2009}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Perkins1984}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Herbine1985}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Stockman1992}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Hulthe1997}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Wang1998}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Chang1998}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Jiang1999}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Hvelplund2010}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Douady2008}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Morrell2010}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Bacelo2002}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Galashev2013}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Perkins1984}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Hulthe1997}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Hvelplund2010}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Chang1998}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Jiang1999}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Hvelplund2010}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Bacelo2002}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Galashev2013}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Lee1996}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Skurski1998}{{55}{3.2.1}{subsection.3.2.1}}
\backcite {Donaldson1999}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Sadlej1999}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Lee1996}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Bacelo2002}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Douady2008}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Kozack1992polar}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Morrell2010}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Pei2015}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Walters2018}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Korchagina2017}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Choi2010}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Choi2013}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2019}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2012}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2013water}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Korchagina2016}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2017formation}{{56}{3.2.1}{subsection.3.2.1}}
\backcite {Winget2003}{{57}{3.2.1}{subsection.3.2.1}}
\backcite {Gaus2013para}{{57}{3.2.1}{subsection.3.2.1}}
\backcite {Rapacioli2009}{{57}{3.2.1}{subsection.3.2.1}}
\backcite {Thompson2003}{{57}{3.2.1}{subsection.3.2.1}}
\backcite {Simon2019}{{57}{3.2.1}{subsection.3.2.1}}
\backcite {Gaus2013para}{{60}{3.2.2.1}{figure.caption.11}}
\backcite {Winget2003}{{60}{3.2.2.1}{figure.caption.11}}
\backcite {Wang1998}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Jiang1999}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Wang1998}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Jiang1999}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Douady2008}{{61}{3.2.2.2}{subsubsection.3.2.2.2}}
\backcite {Douady2009}{{63}{3.2.2.2}{table.caption.16}}
\backcite {Wang1998}{{63}{3.2.2.2}{table.caption.16}}
\backcite {Jiang1999}{{63}{3.2.2.2}{table.caption.16}}
\backcite {Douady2008}{{63}{3.2.2.2}{table.caption.16}}
\backcite {Morrell2010}{{63}{3.2.2.2}{table.caption.16}}
\backcite {Lee2004}{{63}{3.2.2.2}{table.caption.16}}
\backcite {Wang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Jiang1999}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Douady2008}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Lee2004}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Pickard2005}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Wang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Chang1998}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Jiang1999}{{63}{3.2.2.3}{subsubsection.3.2.2.3}}
\backcite {Douady2008}{{65}{3.2.2.3}{table.caption.18}}
\backcite {Morrell2010}{{65}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{65}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{65}{3.2.2.3}{figure.caption.19}}
\backcite {Jiang1999}{{65}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{66}{3.2.2.3}{table.caption.18}}
\backcite {Morrell2010}{{66}{3.2.2.3}{table.caption.18}}
\backcite {Wang1998}{{66}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{66}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{67}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{67}{3.2.2.3}{table.caption.18}}
\backcite {Morrell2010}{{67}{3.2.2.3}{table.caption.18}}
\backcite {Douady2008}{{67}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{67}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{67}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{67}{3.2.2.3}{figure.caption.19}}
\backcite {Lee1996}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}
\backcite {Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}
\backcite {Bacelo2002}{{68}{3.2.2.4}{subsubsection.3.2.2.4}}
\backcite {Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}
\backcite {Douady2009}{{73}{3.2.2.5}{subsubsection.3.2.2.5}}
\backcite {Castrovilli2017}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Maclot2011}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Domaracka2012}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Markush2016}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Wincel2009}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Boudaiffa2000}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Smyth2011}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Siefermann2011}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Alizadeh2013}{{75}{3.3.1}{subsection.3.3.1}}
\backcite {Rasmussen2010}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Coates2018}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Nelson1994}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Sadr2014}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Molina2016}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Bakker2008}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Van2001diffu}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Gaigeot2001}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Shishkin2000}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Gadre2000}{{76}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Braud2019}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Dalleska1993}{{78}{3.3.2.1}{figure.caption.23}}
\backcite {Zamith2012}{{78}{3.3.2.1}{figure.caption.23}}
\backcite {Myers2007}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Zamith2012}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Bakker2008}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Hansen2009}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Wincel2009}{{79}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{80}{3.14}{figure.caption.24}}
\backcite {Zamith2012}{{80}{3.14}{figure.caption.24}}
\backcite {Kurinovich2002}{{81}{3.3.2.1}{figure.caption.25}}
\backcite {Magnera1991}{{81}{3.3.2.1}{figure.caption.25}}
\backcite {Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}
\backcite {Cheng1998}{{81}{3.3.2.1}{figure.caption.25}}
\backcite {Magnera1991}{{82}{3.16}{figure.caption.26}}
\backcite {Cheng1998}{{82}{3.16}{figure.caption.26}}
\backcite {Kurinovich2002}{{82}{3.16}{figure.caption.26}}
\backcite {Bakker2008}{{82}{3.3.2.1}{figure.caption.26}}
\backcite {Wolken2000}{{84}{3.3.2.2}{table.caption.27}}
\backcite {Pedersen2014}{{84}{3.3.2.2}{table.caption.27}}
\backcite {Pedersen2014}{{84}{3.3.2.2}{table.caption.27}}
\backcite {Bakker2008}{{84}{3.3.2.2}{table.caption.27}}
\backcite {Zundel1968}{{87}{3.3.2.2}{figure.caption.33}}
\backcite {Molina2015}{{92}{3.3.2.2}{figure.caption.37}}
\backcite {Molina2016}{{92}{3.3.2.2}{figure.caption.37}}
\backcite {Brechignac1989}{{97}{4.1}{section.4.1}}
\backcite {Brechignac1994}{{97}{4.1}{section.4.1}}
\backcite {Wong2004}{{97}{4.1}{section.4.1}}
\backcite {Bush2008}{{97}{4.1}{section.4.1}}
\backcite {Holm2010}{{98}{4.1}{section.4.1}}
\backcite {Gatchell2017}{{98}{4.1}{section.4.1}}
\backcite {Gatchell2014}{{98}{4.1}{section.4.1}}
\backcite {Zamith2019thermal}{{98}{4.1}{section.4.1}}
\backcite {Boering1992}{{98}{4.1}{section.4.1}}
\backcite {Wells2005}{{98}{4.1}{section.4.1}}
\backcite {Ma1997}{{98}{4.1}{section.4.1}}
\backcite {Chowdhury2009}{{98}{4.1}{section.4.1}}
\backcite {Nelson1994}{{98}{4.1}{section.4.1}}
\backcite {Molina2015}{{98}{4.1}{section.4.1}}
\backcite {Carl2007}{{98}{4.1}{section.4.1}}
\backcite {Wells2005}{{98}{4.1}{section.4.1}}
\backcite {Sleno2004ion}{{98}{4.1}{section.4.1}}
\backcite {Cody1982}{{98}{4.1}{section.4.1}}
\backcite {Olsen2007higher}{{98}{4.1}{section.4.1}}
\backcite {Hart2011}{{98}{4.1}{section.4.1}}
\backcite {Gauthier1991}{{98}{4.1}{section.4.1}}
\backcite {Laskin2005}{{98}{4.1}{section.4.1}}
\backcite {Coates2018}{{98}{4.1}{section.4.1}}
\backcite {Mcquinn2009}{{98}{4.1}{section.4.1}}
\backcite {Carl2013}{{98}{4.1}{section.4.1}}
\backcite {Hofstetter2013}{{98}{4.1}{section.4.1}}
\backcite {Coates2017}{{98}{4.1}{section.4.1}}
\backcite {Graul1989}{{98}{4.1}{section.4.1}}
\backcite {Wei1991}{{98}{4.1}{section.4.1}}
\backcite {Goebbert2006}{{98}{4.1}{section.4.1}}
\backcite {Haag2009}{{98}{4.1}{section.4.1}}
\backcite {Liu2006}{{98}{4.1}{section.4.1}}
\backcite {Nguyen2011}{{98}{4.1}{section.4.1}}
\backcite {Shuck2014}{{98}{4.1}{section.4.1}}
\backcite {Castrovilli2017}{{98}{4.1}{section.4.1}}
\backcite {Bera2018}{{98}{4.1}{section.4.1}}
\backcite {Liu2006}{{99}{4.1}{section.4.1}}
\backcite {Castrovilli2017}{{99}{4.1}{section.4.1}}
\backcite {Markush2016}{{99}{4.1}{section.4.1}}
\backcite {Bakker2008}{{99}{4.1}{section.4.1}}
\backcite {Li1992}{{99}{4.1}{section.4.1}}
\backcite {Bobbert2002}{{99}{4.1}{section.4.1}}
\backcite {Coates2018}{{99}{4.1}{section.4.1}}
\backcite {Carl2013}{{99}{4.1}{section.4.1}}
\backcite {Hofstetter2013}{{99}{4.1}{section.4.1}}
\backcite {Dawson1982}{{99}{4.1}{section.4.1}}
\backcite {Bakker2008}{{99}{4.1}{section.4.1}}
\backcite {Zamith2012}{{99}{4.1}{section.4.1}}
\backcite {Mcquinn2009}{{99}{4.1}{section.4.1}}
\backcite {Liu2006}{{99}{4.1}{section.4.1}}
\backcite {Coates2018}{{99}{4.1}{section.4.1}}
\backcite {Carl2013}{{99}{4.1}{section.4.1}}
\backcite {Hofstetter2013}{{99}{4.1}{section.4.1}}
\backcite {Spasov2000}{{99}{4.1}{section.4.1}}
\backcite {Armentrout2008}{{99}{4.1}{section.4.1}}
\backcite {Braud2019}{{99}{4.1}{section.4.1}}
\backcite {Zamith2020threshold}{{99}{4.1}{section.4.1}}
\backcite {Klippenstein1992}{{99}{4.1.1}{subsection.4.1.1}}
\backcite {Baer1996}{{99}{4.1.1}{subsection.4.1.1}}
\backcite {Armentrout2008}{{100}{4.1.1}{subsection.4.1.1}}
\backcite {Rodgers1998}{{100}{4.1.1}{equation.4.1.1}}
\backcite {Armentrout2007}{{100}{4.1.1}{equation.4.1.1}}
\backcite {Braud2017}{{100}{4.1.2}{figure.caption.38}}
\backcite {Chirot2006new}{{102}{4.1.2}{figure.caption.38}}
\backcite {Elstner1998}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Elstner2014}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Porezag1995}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Seifert1996}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Frenzel2004}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Spiegelman2020}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Korchagina2017}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2017}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Rapacioli2018}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2018}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Warshel1976}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Cui2001}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Iftner2014}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Kukk2015}{{102}{4.2.1}{subsection.4.2.1}}
\backcite {Kukk2015}{{103}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2017}{{103}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2017}{{103}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2018}{{103}{4.2.1}{subsection.4.2.1}}
\backcite {Rapacioli2018atomic}{{103}{4.2.1}{subsection.4.2.1}}
\backcite {Dontot2019}{{103}{4.2.2}{subsection.4.2.2}}
\backcite {Nose1984}{{103}{4.2.2}{subsection.4.2.2}}
\backcite {Hoover1985}{{103}{4.2.2}{subsection.4.2.2}}
\backcite {Braud2019}{{105}{4.3.1}{subsection.4.3.1}}
\backcite {Braud2019}{{109}{4.3.3}{subsection.4.3.3}}
\backcite {Braud2019}{{116}{4.3.4}{table.caption.51}}
\backcite {Braud2019}{{122}{4.3.5}{subsection.4.3.5}}
\backcite {Braud2019}{{126}{4.3.6}{subsection.4.3.6}}
\backcite {Eaves2015}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Chung2011}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Saggese2015}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Mao2017}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Wang2018}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Kyrtopoulos2001}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Farmer2003}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Aumaitre2019}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Tielens2008}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Leger1984}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Allamandola1985}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2005}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Berne2008}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Wang2018}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Eschenbach1998}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Goulart2017}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Lei2019}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Joblin2017}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Roser2015}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Lemmens2019}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Joblin2017}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Holm2010}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Schmidt2006}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2015}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2017}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2019thermal}{{131}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Delaunay2015}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Zhen2018}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Chen2018}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Piacenza2005}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Birer2015}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2009corr}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Mao2017}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Zhao2008truhlar}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Bowal2019}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Ricca2013}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Grafenstein2009}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2009}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Joblin2017}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Dontot2019}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Dontot2016}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Dontot2020}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Elstner1998}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Porezag1995}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Seifert1996}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Spiegelman2020}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2011}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2016}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2016knockout}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2020threshold}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2019thermal}{{132}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}
\backcite {Levine1987}{{135}{4.4.3}{subsection.4.4.3}}
\backcite {Zamith2020threshold}{{135}{4.4.3}{subsection.4.4.3}}
\backcite {Zamith2020threshold}{{137}{4.4.4}{subsection.4.4.4}}
\backcite {Dontot2019}{{137}{4.4.4}{subsection.4.4.4}}
\backcite {Gatchell2016knockout}{{141}{4.4.4.2}{figure.caption.68}}
\backcite {Chen2014}{{141}{4.4.4.2}{figure.caption.68}}
\backcite {Zamith2020threshold}{{143}{4.4.4.2}{figure.caption.69}}
\backcite {Zamith2020threshold}{{143}{4.4.4.2}{equation.4.4.12}}
\backcite {Dontot2019}{{143}{4.4.4.2}{equation.4.4.12}}
\backcite {Dontot2020}{{149}{4.4.4.2}{figure.caption.77}}
\backcite {Gatchell2016knockout}{{155}{4.4.5}{subsection.4.4.5}}
\backcite {Chen2014}{{155}{4.4.5}{subsection.4.4.5}}
\backcite {Douady2008}{{68}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{69}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{69}{3.2.2.3}{figure.caption.19}}
\backcite {Douady2008}{{69}{3.2.2.3}{figure.caption.19}}
\backcite {Lee1996}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}
\backcite {Bacelo2002}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}
\backcite {Bacelo2002}{{70}{3.2.2.4}{subsubsection.3.2.2.4}}
\backcite {Douady2009}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}
\backcite {Kazimirski2003}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}
\backcite {Bandow2006}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}
\backcite {Douady2009}{{75}{3.2.2.5}{subsubsection.3.2.2.5}}
\backcite {Castrovilli2017}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Maclot2011}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Domaracka2012}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Markush2016}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Wincel2009}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Boudaiffa2000}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Smyth2011}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Siefermann2011}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Alizadeh2013}{{77}{3.3.1}{subsection.3.3.1}}
\backcite {Rasmussen2010}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Coates2018}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Nelson1994}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Sadr2014}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Molina2016}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Bakker2008}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Van2001diffu}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Gaigeot2001}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Shishkin2000}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Gadre2000}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Danilov2006}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Bacchus2015}{{78}{3.3.1}{subsection.3.3.1}}
\backcite {Braud2019}{{79}{3.3.1}{subsection.3.3.1}}
\backcite {Dalleska1993}{{80}{3.3.2.1}{figure.caption.23}}
\backcite {Zamith2012}{{80}{3.3.2.1}{figure.caption.23}}
\backcite {Myers2007}{{80}{3.3.2.1}{equation.3.3.3}}
\backcite {Zamith2012}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Hansen2009}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Wincel2009}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Bakker2008}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Hansen2009}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Wincel2009}{{81}{3.3.2.1}{equation.3.3.3}}
\backcite {Dalleska1993}{{82}{3.14}{figure.caption.24}}
\backcite {Zamith2012}{{82}{3.14}{figure.caption.24}}
\backcite {Kurinovich2002}{{83}{3.3.2.1}{figure.caption.25}}
\backcite {Magnera1991}{{83}{3.3.2.1}{figure.caption.25}}
\backcite {Cheng1998}{{83}{3.3.2.1}{figure.caption.25}}
\backcite {Cheng1998}{{83}{3.3.2.1}{figure.caption.25}}
\backcite {Bakker2008}{{83}{3.3.2.1}{figure.caption.26}}
\backcite {Magnera1991}{{84}{3.16}{figure.caption.26}}
\backcite {Cheng1998}{{84}{3.16}{figure.caption.26}}
\backcite {Kurinovich2002}{{84}{3.16}{figure.caption.26}}
\backcite {Wolken2000}{{86}{3.3.2.2}{table.caption.28}}
\backcite {Pedersen2014}{{86}{3.3.2.2}{table.caption.28}}
\backcite {Pedersen2014}{{86}{3.3.2.2}{table.caption.28}}
\backcite {Bakker2008}{{86}{3.3.2.2}{table.caption.28}}
\backcite {Zundel1968}{{90}{3.3.2.2}{figure.caption.34}}
\backcite {Molina2015}{{94}{3.3.2.2}{figure.caption.38}}
\backcite {Molina2016}{{94}{3.3.2.2}{figure.caption.38}}
\backcite {Brechignac1989}{{99}{4.1}{section.4.1}}
\backcite {Brechignac1994}{{99}{4.1}{section.4.1}}
\backcite {Wong2004}{{99}{4.1}{section.4.1}}
\backcite {Bush2008}{{99}{4.1}{section.4.1}}
\backcite {Holm2010}{{100}{4.1}{section.4.1}}
\backcite {Gatchell2017}{{100}{4.1}{section.4.1}}
\backcite {Gatchell2014}{{100}{4.1}{section.4.1}}
\backcite {Zamith2019thermal}{{100}{4.1}{section.4.1}}
\backcite {Boering1992}{{100}{4.1}{section.4.1}}
\backcite {Wells2005}{{100}{4.1}{section.4.1}}
\backcite {Ma1997}{{100}{4.1}{section.4.1}}
\backcite {Chowdhury2009}{{100}{4.1}{section.4.1}}
\backcite {Nelson1994}{{100}{4.1}{section.4.1}}
\backcite {Molina2015}{{100}{4.1}{section.4.1}}
\backcite {Carl2007}{{100}{4.1}{section.4.1}}
\backcite {Wells2005}{{100}{4.1}{section.4.1}}
\backcite {Sleno2004ion}{{100}{4.1}{section.4.1}}
\backcite {Cody1982}{{100}{4.1}{section.4.1}}
\backcite {Olsen2007higher}{{100}{4.1}{section.4.1}}
\backcite {Hart2011}{{100}{4.1}{section.4.1}}
\backcite {Gauthier1991}{{100}{4.1}{section.4.1}}
\backcite {Laskin2005}{{100}{4.1}{section.4.1}}
\backcite {Coates2018}{{100}{4.1}{section.4.1}}
\backcite {Mcquinn2009}{{100}{4.1}{section.4.1}}
\backcite {Carl2013}{{100}{4.1}{section.4.1}}
\backcite {Hofstetter2013}{{100}{4.1}{section.4.1}}
\backcite {Coates2017}{{100}{4.1}{section.4.1}}
\backcite {Graul1989}{{100}{4.1}{section.4.1}}
\backcite {Wei1991}{{100}{4.1}{section.4.1}}
\backcite {Goebbert2006}{{100}{4.1}{section.4.1}}
\backcite {Haag2009}{{100}{4.1}{section.4.1}}
\backcite {Liu2006}{{100}{4.1}{section.4.1}}
\backcite {Nguyen2011}{{100}{4.1}{section.4.1}}
\backcite {Shuck2014}{{100}{4.1}{section.4.1}}
\backcite {Castrovilli2017}{{100}{4.1}{section.4.1}}
\backcite {Bera2018}{{100}{4.1}{section.4.1}}
\backcite {Liu2006}{{101}{4.1}{section.4.1}}
\backcite {Castrovilli2017}{{101}{4.1}{section.4.1}}
\backcite {Markush2016}{{101}{4.1}{section.4.1}}
\backcite {Bakker2008}{{101}{4.1}{section.4.1}}
\backcite {Li1992}{{101}{4.1}{section.4.1}}
\backcite {Bobbert2002}{{101}{4.1}{section.4.1}}
\backcite {Coates2018}{{101}{4.1}{section.4.1}}
\backcite {Carl2013}{{101}{4.1}{section.4.1}}
\backcite {Hofstetter2013}{{101}{4.1}{section.4.1}}
\backcite {Dawson1982}{{101}{4.1}{section.4.1}}
\backcite {Bakker2008}{{101}{4.1}{section.4.1}}
\backcite {Zamith2012}{{101}{4.1}{section.4.1}}
\backcite {Mcquinn2009}{{101}{4.1}{section.4.1}}
\backcite {Liu2006}{{101}{4.1}{section.4.1}}
\backcite {Coates2018}{{101}{4.1}{section.4.1}}
\backcite {Carl2013}{{101}{4.1}{section.4.1}}
\backcite {Hofstetter2013}{{101}{4.1}{section.4.1}}
\backcite {Spasov2000}{{101}{4.1}{section.4.1}}
\backcite {Armentrout2008}{{101}{4.1}{section.4.1}}
\backcite {Braud2019}{{101}{4.1}{section.4.1}}
\backcite {Zamith2020threshold}{{101}{4.1}{section.4.1}}
\backcite {Klippenstein1992}{{101}{4.1.1}{subsection.4.1.1}}
\backcite {Baer1996}{{101}{4.1.1}{subsection.4.1.1}}
\backcite {Armentrout2008}{{102}{4.1.1}{subsection.4.1.1}}
\backcite {Rodgers1998}{{102}{4.1.1}{equation.4.1.1}}
\backcite {Armentrout2007}{{102}{4.1.1}{equation.4.1.1}}
\backcite {Braud2017}{{102}{4.1.2}{figure.caption.39}}
\backcite {Chirot2006new}{{104}{4.1.2}{figure.caption.39}}
\backcite {Elstner1998}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Elstner2014}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Porezag1995}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Seifert1996}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Frenzel2004}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Spiegelman2020}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Korchagina2017}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2017}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Rapacioli2018}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2018}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Warshel1976}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Cui2001}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Iftner2014}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Kukk2015}{{104}{4.2.1}{subsection.4.2.1}}
\backcite {Kukk2015}{{105}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2017}{{105}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2017}{{105}{4.2.1}{subsection.4.2.1}}
\backcite {Simon2018}{{105}{4.2.1}{subsection.4.2.1}}
\backcite {Rapacioli2018atomic}{{105}{4.2.1}{subsection.4.2.1}}
\backcite {Dontot2019}{{105}{4.2.2}{subsection.4.2.2}}
\backcite {Nose1984}{{105}{4.2.2}{subsection.4.2.2}}
\backcite {Hoover1985}{{105}{4.2.2}{subsection.4.2.2}}
\backcite {Braud2019}{{107}{4.3.1}{subsection.4.3.1}}
\backcite {Braud2019}{{111}{4.3.3}{subsection.4.3.3}}
\backcite {Braud2019}{{118}{4.3.4}{table.caption.52}}
\backcite {Braud2019}{{124}{4.3.5}{subsection.4.3.5}}
\backcite {Braud2019}{{128}{4.3.6}{subsection.4.3.6}}
\backcite {Eaves2015}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Chung2011}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Saggese2015}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Mao2017}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Wang2018}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Kyrtopoulos2001}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Farmer2003}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Aumaitre2019}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Tielens2008}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Leger1984}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Allamandola1985}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2005}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Berne2008}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Wang2018}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Eschenbach1998}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Goulart2017}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Lei2019}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Joblin2017}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Roser2015}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Lemmens2019}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Joblin2017}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Holm2010}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Schmidt2006}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2015}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2017}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2019thermal}{{133}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Delaunay2015}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Zhen2018}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Chen2018}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Piacenza2005}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Birer2015}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2009corr}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Mao2017}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Zhao2008truhlar}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Bowal2019}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Ricca2013}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Grafenstein2009}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2009}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Joblin2017}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Dontot2019}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Dontot2016}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Dontot2020}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Elstner1998}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Porezag1995}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Seifert1996}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Spiegelman2020}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Rapacioli2011}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2016}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Gatchell2016knockout}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2020threshold}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2019thermal}{{134}{4.4.1}{subsection.4.4.1}}
\backcite {Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}
\backcite {Levine1987}{{137}{4.4.3}{subsection.4.4.3}}
\backcite {Zamith2020threshold}{{137}{4.4.3}{subsection.4.4.3}}
\backcite {Zamith2020threshold}{{139}{4.4.4}{subsection.4.4.4}}
\backcite {Dontot2019}{{139}{4.4.4}{subsection.4.4.4}}
\backcite {Gatchell2016knockout}{{143}{4.4.4.2}{figure.caption.69}}
\backcite {Chen2014}{{143}{4.4.4.2}{figure.caption.69}}
\backcite {Zamith2020threshold}{{145}{4.4.4.2}{figure.caption.70}}
\backcite {Zamith2020threshold}{{145}{4.4.4.2}{equation.4.4.12}}
\backcite {Dontot2019}{{145}{4.4.4.2}{equation.4.4.12}}
\backcite {Dontot2020}{{151}{4.4.4.2}{figure.caption.78}}
\backcite {Gatchell2016knockout}{{157}{4.4.5}{subsection.4.4.5}}
\backcite {Chen2014}{{157}{4.4.5}{subsection.4.4.5}}

View File

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex 2018.9.24) 14 JUN 2021 04:13
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018) (preloaded format=pdflatex 2018.9.24) 14 JUN 2021 04:41
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@ -975,46 +975,52 @@ LaTeX Warning: `h' float specifier changed to `ht'.
\openout2 = `3/structure_stability.aux'.
(./3/structure_stability.tex
(./3/structure_stability.tex [49
] [50
]
3.
[49
] [50]
<3/figures/a-b.pdf, id=1543, 437.635pt x 272.01625pt>
File: 3/figures/a-b.pdf Graphic file (type pdf)
<use 3/figures/a-b.pdf>
Package pdftex.def Info: 3/figures/a-b.pdf used on input line 86.
(pdftex.def) Requested size: 206.28247pt x 128.21706pt.
[51] [52]
<3/figures/uracil.pdf, id=1551, 853.1875pt x 422.57875pt>
File: 3/figures/uracil.pdf Graphic file (type pdf)
<use 3/figures/uracil.pdf>
Package pdftex.def Info: 3/figures/uracil.pdf used on input line 86.
(pdftex.def) Requested size: 206.28247pt x 102.16893pt.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[51] [52 <./3/figures/a-b.pdf>] [53] [54] [55]
<3/figures/E-distance-nh4-w.png, id=1699, 738.76pt x 767.86874pt>
[53] [54 <./3/figures/uracil.pdf>] [55] [56]
<3/figures/E-distance-nh4-w.png, id=1700, 738.76pt x 767.86874pt>
File: 3/figures/E-distance-nh4-w.png Graphic file (type png)
<use 3/figures/E-distance-nh4-w.png>
Package pdftex.def Info: 3/figures/E-distance-nh4-w.png used on input line 209
.
(pdftex.def) Requested size: 247.54149pt x 257.28741pt.
<3/figures/E-distance-nh3-w.png, id=1700, 764.8575pt x 768.8725pt>
LaTeX Warning: `!h' float specifier changed to `!ht'.
<3/figures/E-distance-nh3-w.png, id=1701, 764.8575pt x 768.8725pt>
File: 3/figures/E-distance-nh3-w.png Graphic file (type png)
<use 3/figures/E-distance-nh3-w.png>
Package pdftex.def Info: 3/figures/E-distance-nh3-w.png used on input line 217
.
(pdftex.def) Requested size: 247.54149pt x 248.83644pt.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[56 <./3/figures/E-distance-nh4-w.png>] [57 <./3/figures/E-distance-nh3-w.png>]
<3/figures/dimers.png, id=1716, 489.83pt x 425.59pt>
[57] [58 <./3/figures/E-distance-nh4-w.png>] [59 <./3/figures/E-distance-nh3-w.
png>]
<3/figures/dimers.png, id=1726, 489.83pt x 425.59pt>
File: 3/figures/dimers.png Graphic file (type png)
<use 3/figures/dimers.png>
Package pdftex.def Info: 3/figures/dimers.png used on input line 254.
(pdftex.def) Requested size: 123.77074pt x 107.53368pt.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 267.
@ -1098,13 +1104,13 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 267.
[58 <./3/figures/dimers.png>]
<3/figures/nh3-nh4-1w.png, id=1735, 312.16624pt x 555.07375pt>
[60 <./3/figures/dimers.png>]
<3/figures/nh3-nh4-1w.png, id=1744, 312.16624pt x 555.07375pt>
File: 3/figures/nh3-nh4-1w.png Graphic file (type png)
<use 3/figures/nh3-nh4-1w.png>
Package pdftex.def Info: 3/figures/nh3-nh4-1w.png used on input line 291.
(pdftex.def) Requested size: 82.51172pt x 146.71269pt.
<3/figures/nh3-nh4-2w.png, id=1736, 695.59875pt x 513.92pt>
<3/figures/nh3-nh4-2w.png, id=1745, 695.59875pt x 513.92pt>
File: 3/figures/nh3-nh4-2w.png Graphic file (type png)
<use 3/figures/nh3-nh4-2w.png>
Package pdftex.def Info: 3/figures/nh3-nh4-2w.png used on input line 300.
@ -1113,7 +1119,7 @@ Package pdftex.def Info: 3/figures/nh3-nh4-2w.png used on input line 300.
LaTeX Warning: `!h' float specifier changed to `!ht'.
<3/figures/nh3-nh4-3w.png, id=1737, 747.79375pt x 888.31876pt>
<3/figures/nh3-nh4-3w.png, id=1746, 747.79375pt x 888.31876pt>
File: 3/figures/nh3-nh4-3w.png Graphic file (type png)
<use 3/figures/nh3-nh4-3w.png>
Package pdftex.def Info: 3/figures/nh3-nh4-3w.png used on input line 309.
@ -1121,12 +1127,8 @@ Package pdftex.def Info: 3/figures/nh3-nh4-3w.png used on input line 309.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[59 <./3/figures/nh3-nh4-1w.png>]
Package natbib Warning: Citation `Lee2004' on page 60 undefined on input line 3
44.
[60 <./3/figures/nh3-nh4-2w.png> <./3/figures/nh3-nh4-3w.png>]
[61 <./3/figures/nh3-nh4-1w.png>] [62 <./3/figures/nh3-nh4-2w.png> <./3/figures
/nh3-nh4-3w.png>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 350.
@ -1175,15 +1177,7 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 350.
Package natbib Warning: Citation `Lee2004' on page 61 undefined on input line 3
54.
Package natbib Warning: Citation `Pickard2005' on page 61 undefined on input li
ne 354.
<3/figures/nh4-4-6w.png, id=1768, 1189.44376pt x 887.315pt>
<3/figures/nh4-4-6w.png, id=1779, 1189.44376pt x 887.315pt>
File: 3/figures/nh4-4-6w.png Graphic file (type png)
<use 3/figures/nh4-4-6w.png>
Package pdftex.def Info: 3/figures/nh4-4-6w.png used on input line 362.
@ -1194,8 +1188,8 @@ LaTeX Warning: `!h' float specifier changed to `!ht'.
LaTeX Warning: Float too large for page by 46.56264pt on input line 417.
[61] [62] [63 <./3/figures/nh4-4-6w.png>] [64]
<3/figures/nh4-7-10w.png, id=1806, 1093.08376pt x 902.37125pt>
[63] [64] [65 <./3/figures/nh4-4-6w.png>] [66]
<3/figures/nh4-7-10w.png, id=1821, 1093.08376pt x 902.37125pt>
File: 3/figures/nh4-7-10w.png Graphic file (type png)
<use 3/figures/nh4-7-10w.png>
Package pdftex.def Info: 3/figures/nh4-7-10w.png used on input line 432.
@ -1204,7 +1198,7 @@ Package pdftex.def Info: 3/figures/nh4-7-10w.png used on input line 432.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[65] [66 <./3/figures/nh4-7-10w.png>] [67]
[67] [68 <./3/figures/nh4-7-10w.png>] [69]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 453.
@ -1241,7 +1235,7 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 453.
<3/figures/nh3-4-7w.png, id=1839, 911.405pt x 861.2175pt>
<3/figures/nh3-4-7w.png, id=1852, 911.405pt x 861.2175pt>
File: 3/figures/nh3-4-7w.png Graphic file (type png)
<use 3/figures/nh3-4-7w.png>
Package pdftex.def Info: 3/figures/nh3-4-7w.png used on input line 458.
@ -1249,8 +1243,8 @@ Package pdftex.def Info: 3/figures/nh3-4-7w.png used on input line 458.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[68] [69 <./3/figures/nh3-4-7w.png>] [70]
<3/figures/nh3-8-10w.png, id=1864, 937.5025pt x 854.19125pt>
[70] [71 <./3/figures/nh3-4-7w.png>] [72]
<3/figures/nh3-8-10w.png, id=1878, 937.5025pt x 854.19125pt>
File: 3/figures/nh3-8-10w.png Graphic file (type png)
<use 3/figures/nh3-8-10w.png>
Package pdftex.def Info: 3/figures/nh3-8-10w.png used on input line 481.
@ -1259,7 +1253,7 @@ Package pdftex.def Info: 3/figures/nh3-8-10w.png used on input line 481.
LaTeX Warning: `!h' float specifier changed to `!ht'.
[71] [72 <./3/figures/nh3-8-10w.png>]
[73] [74 <./3/figures/nh3-8-10w.png>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 497.
@ -1308,20 +1302,15 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 497.
Package natbib Warning: Citation `Kazimirski2003' on page 73 undefined on input
line 499.
Package natbib Warning: Citation `Bandow2006' on page 73 undefined on input lin
e 499.
<3/figures/nh3-nh4-20w.jpeg, id=1884, 465.74pt x 253.94875pt>
<3/figures/nh3-nh4-20w.jpeg, id=1899, 465.74pt x 253.94875pt>
File: 3/figures/nh3-nh4-20w.jpeg Graphic file (type jpg)
<use 3/figures/nh3-nh4-20w.jpeg>
Package pdftex.def Info: 3/figures/nh3-nh4-20w.jpeg used on input line 504.
(pdftex.def) Requested size: 247.54149pt x 134.97192pt.
[73] [74 <./3/figures/nh3-nh4-20w.jpeg>] [75]
LaTeX Warning: `!h' float specifier changed to `!ht'.
[75] [76 <./3/figures/nh3-nh4-20w.jpeg>] [77]
LaTeX Font Info: Try loading font information for OML+ptm on input line 558.
@ -1330,249 +1319,255 @@ File: omlptm.fd
)
LaTeX Font Info: Font shape `OML/ptm/m/n' in size <10.95> not available
(Font) Font shape `OML/cmm/m/it' tried instead on input line 558.
[76] [77]
<3/figures/mass7w.pdf, id=1966, 804.00375pt x 546.04pt>
[78]
<3/figures/mass7w.pdf, id=1978, 804.00375pt x 546.04pt>
File: 3/figures/mass7w.pdf Graphic file (type pdf)
<use 3/figures/mass7w.pdf>
Package pdftex.def Info: 3/figures/mass7w.pdf used on input line 592.
(pdftex.def) Requested size: 330.05322pt x 224.1528pt.
[78 <./3/figures/mass7w.pdf>]
<3/figures/fragcrosssec.pdf, id=2003, 893.3375pt x 589.20125pt>
[79]
[80 <./3/figures/mass7w.pdf>]
<3/figures/fragcrosssec.pdf, id=2021, 893.3375pt x 589.20125pt>
File: 3/figures/fragcrosssec.pdf Graphic file (type pdf)
<use 3/figures/fragcrosssec.pdf>
Package pdftex.def Info: 3/figures/fragcrosssec.pdf used on input line 610.
(pdftex.def) Requested size: 330.05322pt x 217.68637pt.
<3/figures/Uloss.pdf, id=2009, 695.59875pt x 512.91624pt>
<3/figures/Uloss.pdf, id=2027, 695.59875pt x 512.91624pt>
File: 3/figures/Uloss.pdf Graphic file (type pdf)
<use 3/figures/Uloss.pdf>
Package pdftex.def Info: 3/figures/Uloss.pdf used on input line 615.
(pdftex.def) Requested size: 330.05322pt x 243.37164pt.
[79] [80 <./3/figures/fragcrosssec.pdf>]
<3/figures/protonAffinity.pdf, id=2038, 681.54625pt x 458.71375pt>
[81] [82 <./3/figures/fragcrosssec.pdf>]
<3/figures/protonAffinity.pdf, id=2055, 681.54625pt x 458.71375pt>
File: 3/figures/protonAffinity.pdf Graphic file (type pdf)
<use 3/figures/protonAffinity.pdf>
Package pdftex.def Info: 3/figures/protonAffinity.pdf used on input line 625.
(pdftex.def) Requested size: 330.05322pt x 222.13992pt.
[81 <./3/figures/Uloss.pdf>] [82 <./3/figures/protonAffinity.pdf>] [83]
<3/figures/1a-f.pdf, id=2098, 907.39pt x 718.685pt>
[83 <./3/figures/Uloss.pdf>] [84 <./3/figures/protonAffinity.pdf>]
<3/figures/a-b.pdf, id=2100, 437.635pt x 272.01625pt>
File: 3/figures/a-b.pdf Graphic file (type pdf)
<use 3/figures/a-b.pdf>
Package pdftex.def Info: 3/figures/a-b.pdf used on input line 640.
(pdftex.def) Requested size: 206.28247pt x 128.21706pt.
[85 <./3/figures/a-b.pdf>]
<3/figures/1a-f.pdf, id=2127, 907.39pt x 718.685pt>
File: 3/figures/1a-f.pdf Graphic file (type pdf)
<use 3/figures/1a-f.pdf>
Package pdftex.def Info: 3/figures/1a-f.pdf used on input line 674.
Package pdftex.def Info: 3/figures/1a-f.pdf used on input line 681.
(pdftex.def) Requested size: 412.56496pt x 326.76093pt.
<3/figures/1a-f-b3lyp.pdf, id=2099, 997.7275pt x 757.83125pt>
<3/figures/1a-f-b3lyp.pdf, id=2128, 997.7275pt x 757.83125pt>
File: 3/figures/1a-f-b3lyp.pdf Graphic file (type pdf)
<use 3/figures/1a-f-b3lyp.pdf>
Package pdftex.def Info: 3/figures/1a-f-b3lyp.pdf used on input line 676.
Package pdftex.def Info: 3/figures/1a-f-b3lyp.pdf used on input line 683.
(pdftex.def) Requested size: 412.56496pt x 313.36089pt.
[84]
<3/figures/2a-f.pdf, id=2110, 1054.94125pt x 807.015pt>
[86]
<3/figures/2a-f.pdf, id=2140, 1054.94125pt x 807.015pt>
File: 3/figures/2a-f.pdf Graphic file (type pdf)
<use 3/figures/2a-f.pdf>
Package pdftex.def Info: 3/figures/2a-f.pdf used on input line 680.
Package pdftex.def Info: 3/figures/2a-f.pdf used on input line 687.
(pdftex.def) Requested size: 412.56496pt x 315.59656pt.
<3/figures/3a-f.pdf, id=2111, 1054.94125pt x 807.015pt>
<3/figures/3a-f.pdf, id=2141, 1054.94125pt x 807.015pt>
File: 3/figures/3a-f.pdf Graphic file (type pdf)
<use 3/figures/3a-f.pdf>
Package pdftex.def Info: 3/figures/3a-f.pdf used on input line 682.
Package pdftex.def Info: 3/figures/3a-f.pdf used on input line 689.
(pdftex.def) Requested size: 412.56496pt x 315.59656pt.
[85 <./3/figures/1a-f.pdf>]
<3/figures/4a-f.pdf, id=2132, 1021.8175pt x 793.96625pt>
[87 <./3/figures/1a-f.pdf>] [88 <./3/figures/1a-f-b3lyp.pdf>]
<3/figures/4a-f.pdf, id=2175, 1021.8175pt x 793.96625pt>
File: 3/figures/4a-f.pdf Graphic file (type pdf)
<use 3/figures/4a-f.pdf>
Package pdftex.def Info: 3/figures/4a-f.pdf used on input line 686.
Package pdftex.def Info: 3/figures/4a-f.pdf used on input line 693.
(pdftex.def) Requested size: 412.56496pt x 320.56114pt.
[86 <./3/figures/1a-f-b3lyp.pdf>]
<3/figures/5a-f.pdf, id=2147, 964.60374pt x 824.07875pt>
<3/figures/5a-f.pdf, id=2176, 964.60374pt x 824.07875pt>
File: 3/figures/5a-f.pdf Graphic file (type pdf)
<use 3/figures/5a-f.pdf>
Package pdftex.def Info: 3/figures/5a-f.pdf used on input line 688.
Package pdftex.def Info: 3/figures/5a-f.pdf used on input line 695.
(pdftex.def) Requested size: 412.56496pt x 352.46078pt.
[87 <./3/figures/2a-f.pdf>] [88 <./3/figures/3a-f.pdf>]
<3/figures/6a-f.pdf, id=2186, 1035.87pt x 826.08624pt>
[89 <./3/figures/2a-f.pdf>] [90 <./3/figures/3a-f.pdf>] [91 <./3/figures/4a-f.p
df>]
<3/figures/6a-f.pdf, id=2230, 1035.87pt x 826.08624pt>
File: 3/figures/6a-f.pdf Graphic file (type pdf)
<use 3/figures/6a-f.pdf>
Package pdftex.def Info: 3/figures/6a-f.pdf used on input line 697.
Package pdftex.def Info: 3/figures/6a-f.pdf used on input line 704.
(pdftex.def) Requested size: 412.56496pt x 329.01688pt.
<3/figures/7a-f.pdf, id=2187, 922.44624pt x 814.04124pt>
<3/figures/7a-f.pdf, id=2231, 922.44624pt x 814.04124pt>
File: 3/figures/7a-f.pdf Graphic file (type pdf)
<use 3/figures/7a-f.pdf>
Package pdftex.def Info: 3/figures/7a-f.pdf used on input line 699.
Package pdftex.def Info: 3/figures/7a-f.pdf used on input line 706.
(pdftex.def) Requested size: 412.56496pt x 364.07935pt.
<3/figures/11a-f.pdf, id=2188, 930.47626pt x 761.84625pt>
<3/figures/11a-f.pdf, id=2232, 930.47626pt x 761.84625pt>
File: 3/figures/11a-f.pdf Graphic file (type pdf)
<use 3/figures/11a-f.pdf>
Package pdftex.def Info: 3/figures/11a-f.pdf used on input line 700.
Package pdftex.def Info: 3/figures/11a-f.pdf used on input line 707.
(pdftex.def) Requested size: 412.56496pt x 337.7941pt.
<3/figures/12a-f.pdf, id=2189, 955.57pt x 780.9175pt>
<3/figures/12a-f.pdf, id=2233, 955.57pt x 780.9175pt>
File: 3/figures/12a-f.pdf Graphic file (type pdf)
<use 3/figures/12a-f.pdf>
Package pdftex.def Info: 3/figures/12a-f.pdf used on input line 703.
Package pdftex.def Info: 3/figures/12a-f.pdf used on input line 710.
(pdftex.def) Requested size: 412.56496pt x 337.1583pt.
[89 <./3/figures/4a-f.pdf>] [90 <./3/figures/5a-f.pdf>] [91 <./3/figures/6a-f.
pdf>]
[92 <./3/figures/5a-f.pdf>] [93 <./3/figures/6a-f.pdf>]
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 711.
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 718.
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 711.
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 711.
(hyperref) removing `math shift' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `subscript' on input line 711.
(hyperref) removing `subscript' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 711.
(hyperref) removing `math shift' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 711.
(hyperref) removing `math shift' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `subscript' on input line 711.
(hyperref) removing `subscript' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 711.
(hyperref) removing `math shift' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 711.
(hyperref) removing `math shift' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `superscript' on input line 711.
(hyperref) removing `superscript' on input line 718.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 711.
(hyperref) removing `math shift' on input line 718.
) [92] [93 <./3/figures/7a-f.pdf>] [94 <./3/figures/11a-f.pdf>] [95 <./3/figure
) [94] [95 <./3/figures/7a-f.pdf>] [96 <./3/figures/11a-f.pdf>] [97 <./3/figure
s/12a-f.pdf>]
\openout2 = `4/collision.aux'.
(./4/collision.tex [96
(./4/collision.tex [98
]
4.
[97] [98] [99]
<4/figures/experiment-setup.pdf, id=2388, 1187.43625pt x 274.02374pt>
[99] [100] [101]
<4/figures/experiment-setup.pdf, id=2419, 1187.43625pt x 274.02374pt>
File: 4/figures/experiment-setup.pdf Graphic file (type pdf)
<use 4/figures/experiment-setup.pdf>
Package pdftex.def Info: 4/figures/experiment-setup.pdf used on input line 94.
(pdftex.def) Requested size: 412.56496pt x 95.20729pt.
[100] [101 <./4/figures/experiment-setup.pdf>]
<4/figures/exp-setup.pdf, id=2417, 959.585pt x 327.2225pt>
[102] [103 <./4/figures/experiment-setup.pdf>]
<4/figures/exp-setup.pdf, id=2446, 959.585pt x 327.2225pt>
File: 4/figures/exp-setup.pdf Graphic file (type pdf)
<use 4/figures/exp-setup.pdf>
Package pdftex.def Info: 4/figures/exp-setup.pdf used on input line 106.
(pdftex.def) Requested size: 412.56496pt x 140.68794pt.
[102 <./4/figures/exp-setup.pdf>]
[104 <./4/figures/exp-setup.pdf>]
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <10.95> not available
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 128.
[103]
<4/figures/howinputs.pdf, id=2475, 1150.2975pt x 584.1825pt>
[105]
<4/figures/howinputs.pdf, id=2504, 1150.2975pt x 584.1825pt>
File: 4/figures/howinputs.pdf Graphic file (type pdf)
<use 4/figures/howinputs.pdf>
Package pdftex.def Info: 4/figures/howinputs.pdf used on input line 135.
(pdftex.def) Requested size: 412.56496pt x 209.5211pt.
[104 <./4/figures/howinputs.pdf>] [105]
<4/figures/3b-sphere.png, id=2505, 787.94376pt x 759.83875pt>
[106 <./4/figures/howinputs.pdf>] [107]
<4/figures/3b-sphere.png, id=2535, 787.94376pt x 759.83875pt>
File: 4/figures/3b-sphere.png Graphic file (type png)
<use 4/figures/3b-sphere.png>
Package pdftex.def Info: 4/figures/3b-sphere.png used on input line 188.
(pdftex.def) Requested size: 330.05322pt x 318.27213pt.
[106]
<4/figures/12f-sphere.png, id=2512, 784.9325pt x 770.88pt>
[108]
<4/figures/12f-sphere.png, id=2543, 784.9325pt x 770.88pt>
File: 4/figures/12f-sphere.png Graphic file (type png)
<use 4/figures/12f-sphere.png>
Package pdftex.def Info: 4/figures/12f-sphere.png used on input line 190.
(pdftex.def) Requested size: 330.05322pt x 324.1438pt.
[107 <./4/figures/3b-sphere.png>] [108 <./4/figures/12f-sphere.png>] [109] [11
0] [111]
<4/figures/proporEachFrag-1a2a.pdf, id=2560, 1046.91125pt x 505.89pt>
[109 <./4/figures/3b-sphere.png>] [110 <./4/figures/12f-sphere.png>] [111] [11
2]
[113]
<4/figures/proporEachFrag-1a2a.pdf, id=2590, 1046.91125pt x 505.89pt>
File: 4/figures/proporEachFrag-1a2a.pdf Graphic file (type pdf)
<use 4/figures/proporEachFrag-1a2a.pdf>
Package pdftex.def Info: 4/figures/proporEachFrag-1a2a.pdf used on input line
307.
(pdftex.def) Requested size: 412.56496pt x 199.35733pt.
<4/figures/proporEachFrag-3a4a-zoom.pdf, id=2561, 932.48375pt x 889.3225pt>
<4/figures/proporEachFrag-3a4a-zoom.pdf, id=2591, 932.48375pt x 889.3225pt>
File: 4/figures/proporEachFrag-3a4a-zoom.pdf Graphic file (type pdf)
<use 4/figures/proporEachFrag-3a4a-zoom.pdf>
Package pdftex.def Info: 4/figures/proporEachFrag-3a4a-zoom.pdf used on input
line 309.
(pdftex.def) Requested size: 330.05322pt x 314.76857pt.
<4/figures/proporEachFrag-5a6a-zoom.pdf, id=2562, 932.48375pt x 890.32625pt>
<4/figures/proporEachFrag-5a6a-zoom.pdf, id=2592, 932.48375pt x 890.32625pt>
File: 4/figures/proporEachFrag-5a6a-zoom.pdf Graphic file (type pdf)
<use 4/figures/proporEachFrag-5a6a-zoom.pdf>
Package pdftex.def Info: 4/figures/proporEachFrag-5a6a-zoom.pdf used on input
line 311.
(pdftex.def) Requested size: 330.05322pt x 315.12386pt.
<4/figures/proporEachFrag-11a-zoom.pdf, id=2563, 966.61125pt x 469.755pt>
<4/figures/proporEachFrag-11a-zoom.pdf, id=2593, 966.61125pt x 469.755pt>
File: 4/figures/proporEachFrag-11a-zoom.pdf Graphic file (type pdf)
<use 4/figures/proporEachFrag-11a-zoom.pdf>
Package pdftex.def Info: 4/figures/proporEachFrag-11a-zoom.pdf used on input l
ine 313.
(pdftex.def) Requested size: 330.05322pt x 160.39554pt.
<4/figures/proporEachFrag-7a12a-zoom.pdf, id=2564, 932.48375pt x 892.33376pt>
<4/figures/proporEachFrag-7a12a-zoom.pdf, id=2594, 932.48375pt x 892.33376pt>
File: 4/figures/proporEachFrag-7a12a-zoom.pdf Graphic file (type pdf)
<use 4/figures/proporEachFrag-7a12a-zoom.pdf>
Package pdftex.def Info: 4/figures/proporEachFrag-7a12a-zoom.pdf used on input
line 315.
(pdftex.def) Requested size: 330.05322pt x 315.8344pt.
<4/figures/proporEachFrag-7d12c-zoom.pdf, id=2565, 972.63374pt x 881.2925pt>
<4/figures/proporEachFrag-7d12c-zoom.pdf, id=2595, 972.63374pt x 881.2925pt>
File: 4/figures/proporEachFrag-7d12c-zoom.pdf Graphic file (type pdf)
<use 4/figures/proporEachFrag-7d12c-zoom.pdf>
Package pdftex.def Info: 4/figures/proporEachFrag-7d12c-zoom.pdf used on input
line 317.
(pdftex.def) Requested size: 330.05322pt x 299.05724pt.
[112 <./4/figures/proporEachFrag-1a2a.pdf>]
[114 <./4/figures/proporEachFrag-1a2a.pdf>]
LaTeX Warning: Float too large for page by 87.84254pt on input line 375.
[113 <./4/figures/proporEachFrag-3a4a-zoom.pdf>] [114 <./4/figures/proporEachFr
ag-5a6a-zoom.pdf> <./4/figures/proporEachFrag-11a-zoom.pdf>] [115] [116 <./4/fi
gures/proporEachFrag-7a12a-zoom.pdf>] [117 <./4/figures/proporEachFrag-7d12c-zo
[115 <./4/figures/proporEachFrag-3a4a-zoom.pdf>] [116 <./4/figures/proporEachFr
ag-5a6a-zoom.pdf> <./4/figures/proporEachFrag-11a-zoom.pdf>] [117] [118 <./4/fi
gures/proporEachFrag-7a12a-zoom.pdf>] [119 <./4/figures/proporEachFrag-7d12c-zo
om.pdf>]
<4/figures/fig-1a-3b.pdf, id=2665, 939.51pt x 735.74875pt>
<4/figures/fig-1a-3b.pdf, id=2695, 939.51pt x 735.74875pt>
File: 4/figures/fig-1a-3b.pdf Graphic file (type pdf)
<use 4/figures/fig-1a-3b.pdf>
Package pdftex.def Info: 4/figures/fig-1a-3b.pdf used on input line 385.
(pdftex.def) Requested size: 330.05322pt x 258.47017pt.
<4/figures/fig-4a-5d.pdf, id=2666, 955.57pt x 808.01875pt>
<4/figures/fig-4a-5d.pdf, id=2696, 955.57pt x 808.01875pt>
File: 4/figures/fig-4a-5d.pdf Graphic file (type pdf)
<use 4/figures/fig-4a-5d.pdf>
Package pdftex.def Info: 4/figures/fig-4a-5d.pdf used on input line 387.
(pdftex.def) Requested size: 330.05322pt x 279.08733pt.
[118 <./4/figures/fig-1a-3b.pdf>] [119 <./4/figures/fig-4a-5d.pdf>]
<4/figures/fig-6a-6f.pdf, id=2702, 1031.855pt x 770.88pt>
[120 <./4/figures/fig-1a-3b.pdf>] [121 <./4/figures/fig-4a-5d.pdf>]
<4/figures/fig-6a-6f.pdf, id=2731, 1031.855pt x 770.88pt>
File: 4/figures/fig-6a-6f.pdf Graphic file (type pdf)
<use 4/figures/fig-6a-6f.pdf>
Package pdftex.def Info: 4/figures/fig-6a-6f.pdf used on input line 405.
(pdftex.def) Requested size: 330.05322pt x 246.56902pt.
<4/figures/fig-7a-7d.pdf, id=2703, 618.31pt x 635.37375pt>
<4/figures/fig-7a-7d.pdf, id=2732, 618.31pt x 635.37375pt>
File: 4/figures/fig-7a-7d.pdf Graphic file (type pdf)
<use 4/figures/fig-7a-7d.pdf>
Package pdftex.def Info: 4/figures/fig-7a-7d.pdf used on input line 407.
(pdftex.def) Requested size: 330.05322pt x 339.17023pt.
[120 <./4/figures/fig-6a-6f.pdf>] [121 <./4/figures/fig-7a-7d.pdf>]
<4/figures/neutralUloss-Ne-Ar.pdf, id=2737, 853.1875pt x 853.1875pt>
[122 <./4/figures/fig-6a-6f.pdf>] [123 <./4/figures/fig-7a-7d.pdf>]
<4/figures/neutralUloss-Ne-Ar.pdf, id=2766, 853.1875pt x 853.1875pt>
File: 4/figures/neutralUloss-Ne-Ar.pdf Graphic file (type pdf)
<use 4/figures/neutralUloss-Ne-Ar.pdf>
Package pdftex.def Info: 4/figures/neutralUloss-Ne-Ar.pdf used on input line 4
16.
(pdftex.def) Requested size: 330.05322pt x 330.05997pt.
<4/figures/cross-section-Ne-Ar.pdf, id=2738, 853.1875pt x 853.1875pt>
<4/figures/cross-section-Ne-Ar.pdf, id=2767, 853.1875pt x 853.1875pt>
File: 4/figures/cross-section-Ne-Ar.pdf Graphic file (type pdf)
<use 4/figures/cross-section-Ne-Ar.pdf>
Package pdftex.def Info: 4/figures/cross-section-Ne-Ar.pdf used on input line
@ -1615,40 +1610,40 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 421.
[122 <./4/figures/neutralUloss-Ne-Ar.pdf>] [123 <./4/figures/cross-section-Ne-A
[124 <./4/figures/neutralUloss-Ne-Ar.pdf>] [125 <./4/figures/cross-section-Ne-A
r.pdf>]
<4/figures/fig-11a-f.pdf, id=2783, 849.1725pt x 572.1375pt>
<4/figures/fig-11a-f.pdf, id=2814, 849.1725pt x 572.1375pt>
File: 4/figures/fig-11a-f.pdf Graphic file (type pdf)
<use 4/figures/fig-11a-f.pdf>
Package pdftex.def Info: 4/figures/fig-11a-f.pdf used on input line 448.
(pdftex.def) Requested size: 330.05322pt x 222.3732pt.
<4/figures/fig-12a-f.pdf, id=2784, 994.71625pt x 767.86874pt>
<4/figures/fig-12a-f.pdf, id=2815, 994.71625pt x 767.86874pt>
File: 4/figures/fig-12a-f.pdf Graphic file (type pdf)
<use 4/figures/fig-12a-f.pdf>
Package pdftex.def Info: 4/figures/fig-12a-f.pdf used on input line 451.
(pdftex.def) Requested size: 330.05322pt x 254.78004pt.
[124] [125 <./4/figures/fig-11a-f.pdf> <./4/figures/fig-12a-f.pdf>]
<4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf, id=2820, 974.64125pt x 865.2325pt>
[126] [127 <./4/figures/fig-11a-f.pdf> <./4/figures/fig-12a-f.pdf>]
<4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf, id=2849, 974.64125pt x 865.2325pt>
File: 4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf Graphic file (type pdf)
<use 4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf>
Package pdftex.def Info: 4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf used on input
line 459.
(pdftex.def) Requested size: 330.05322pt x 293.00015pt.
<4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf, id=2821, 975.645pt x 872.25874pt>
<4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf, id=2850, 975.645pt x 872.25874pt>
File: 4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf Graphic file (type pdf)
<use 4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf>
Package pdftex.def Info: 4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf used on input
line 461.
(pdftex.def) Requested size: 330.05322pt x 295.07336pt.
[126 <./4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf>]
<4/figures/MS-BR-12w-Ne-branch.pdf, id=2839, 647.41875pt x 435.6275pt>
[128 <./4/figures/MS-BR-1w-4w-Ne-Ar-branch.pdf>]
<4/figures/MS-BR-12w-Ne-branch.pdf, id=2868, 647.41875pt x 435.6275pt>
File: 4/figures/MS-BR-12w-Ne-branch.pdf Graphic file (type pdf)
<use 4/figures/MS-BR-12w-Ne-branch.pdf>
Package pdftex.def Info: 4/figures/MS-BR-12w-Ne-branch.pdf used on input line
463.
(pdftex.def) Requested size: 330.05322pt x 222.08067pt.
[127 <./4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf>] [128 <./4/figures/MS-BR-12w-
[129 <./4/figures/MS-BR-5w-11w-Ne-Ar-branch.pdf>] [130 <./4/figures/MS-BR-12w-
Ne-branch.pdf>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
@ -1686,106 +1681,106 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 509.
[129] [130] [131] [132] [133] [134]
<4/figures/MDPST.pdf, id=2998, 896.34875pt x 760.8425pt>
[131] [132] [133] [134] [135] [136]
<4/figures/MDPST.pdf, id=3027, 896.34875pt x 760.8425pt>
File: 4/figures/MDPST.pdf Graphic file (type pdf)
<use 4/figures/MDPST.pdf>
Package pdftex.def Info: 4/figures/MDPST.pdf used on input line 626.
(pdftex.def) Requested size: 412.56496pt x 350.18915pt.
[135] [136 <./4/figures/MDPST.pdf>]
<4/figures/expTOF.pdf, id=3025, 1172.38pt x 413.545pt>
[137] [138 <./4/figures/MDPST.pdf>]
<4/figures/expTOF.pdf, id=3055, 1172.38pt x 413.545pt>
File: 4/figures/expTOF.pdf Graphic file (type pdf)
<use 4/figures/expTOF.pdf>
Package pdftex.def Info: 4/figures/expTOF.pdf used on input line 645.
(pdftex.def) Requested size: 412.56496pt x 145.52538pt.
[137 <./4/figures/expTOF.pdf>]
<4/figures/collisions.pdf, id=3050, 727.71875pt x 815.045pt>
[139 <./4/figures/expTOF.pdf>]
<4/figures/collisions.pdf, id=3080, 727.71875pt x 815.045pt>
File: 4/figures/collisions.pdf Graphic file (type pdf)
<use 4/figures/collisions.pdf>
Package pdftex.def Info: 4/figures/collisions.pdf used on input line 658.
(pdftex.def) Requested size: 412.56496pt x 462.08072pt.
[138] [139 <./4/figures/collisions.pdf>]
<4/figures/distriPerc-Etf-175eV-d-bin03.pdf, id=3075, 1137.24875pt x 881.2925pt
[140] [141 <./4/figures/collisions.pdf>]
<4/figures/distriPerc-Etf-175eV-d-bin03.pdf, id=3104, 1137.24875pt x 881.2925pt
>
File: 4/figures/distriPerc-Etf-175eV-d-bin03.pdf Graphic file (type pdf)
<use 4/figures/distriPerc-Etf-175eV-d-bin03.pdf>
Package pdftex.def Info: 4/figures/distriPerc-Etf-175eV-d-bin03.pdf used on in
put line 671.
(pdftex.def) Requested size: 330.05322pt x 255.76999pt.
<4/figures/fragmentation.pdf, id=3077, 1040.88875pt x 624.3325pt>
<4/figures/fragmentation.pdf, id=3106, 1040.88875pt x 624.3325pt>
File: 4/figures/fragmentation.pdf Graphic file (type pdf)
<use 4/figures/fragmentation.pdf>
Package pdftex.def Info: 4/figures/fragmentation.pdf used on input line 678.
(pdftex.def) Requested size: 412.56496pt x 247.46126pt.
[140]
<4/figures/opacitycurves.pdf, id=3088, 1137.24875pt x 853.1875pt>
[142]
<4/figures/opacitycurves.pdf, id=3117, 1137.24875pt x 853.1875pt>
File: 4/figures/opacitycurves.pdf Graphic file (type pdf)
<use 4/figures/opacitycurves.pdf>
Package pdftex.def Info: 4/figures/opacitycurves.pdf used on input line 685.
(pdftex.def) Requested size: 330.05322pt x 247.61331pt.
[141 <./4/figures/distriPerc-Etf-175eV-d-bin03.pdf>] [142 <./4/figures/fragmen
[143 <./4/figures/distriPerc-Etf-175eV-d-bin03.pdf>] [144 <./4/figures/fragmen
tation.pdf> <./4/figures/opacitycurves.pdf>]
<4/figures/cross-section.pdf, id=3133, 1137.24875pt x 853.1875pt>
<4/figures/cross-section.pdf, id=3163, 1137.24875pt x 853.1875pt>
File: 4/figures/cross-section.pdf Graphic file (type pdf)
<use 4/figures/cross-section.pdf>
Package pdftex.def Info: 4/figures/cross-section.pdf used on input line 701.
(pdftex.def) Requested size: 330.05322pt x 247.61331pt.
[143] [144 <./4/figures/cross-section.pdf>]
<4/figures/transferredE-Ar-300.pdf, id=3160, 1137.24875pt x 853.1875pt>
[145] [146 <./4/figures/cross-section.pdf>]
<4/figures/transferredE-Ar-300.pdf, id=3189, 1137.24875pt x 853.1875pt>
File: 4/figures/transferredE-Ar-300.pdf Graphic file (type pdf)
<use 4/figures/transferredE-Ar-300.pdf>
Package pdftex.def Info: 4/figures/transferredE-Ar-300.pdf used on input line
713.
(pdftex.def) Requested size: 330.05322pt x 247.61331pt.
[145 <./4/figures/transferredE-Ar-300.pdf>]
<4/figures/Epartition-Ar-300-SP.pdf, id=3189, 1137.24875pt x 910.40125pt>
[147 <./4/figures/transferredE-Ar-300.pdf>]
<4/figures/Epartition-Ar-300-SP.pdf, id=3219, 1137.24875pt x 910.40125pt>
File: 4/figures/Epartition-Ar-300-SP.pdf Graphic file (type pdf)
<use 4/figures/Epartition-Ar-300-SP.pdf>
Package pdftex.def Info: 4/figures/Epartition-Ar-300-SP.pdf used on input line
767.
(pdftex.def) Requested size: 330.05322pt x 264.21797pt.
<4/figures/Epartition-Ar-300-Tstep-01.pdf, id=3192, 1137.24875pt x 853.1875pt>
<4/figures/Epartition-Ar-300-Tstep-01.pdf, id=3222, 1137.24875pt x 853.1875pt>
File: 4/figures/Epartition-Ar-300-Tstep-01.pdf Graphic file (type pdf)
<use 4/figures/Epartition-Ar-300-Tstep-01.pdf>
Package pdftex.def Info: 4/figures/Epartition-Ar-300-Tstep-01.pdf used on inpu
t line 796.
(pdftex.def) Requested size: 330.05322pt x 247.61331pt.
[146]
<4/figures/prot-Ar-300.pdf, id=3203, 1137.24875pt x 995.72pt>
[148]
<4/figures/prot-Ar-300.pdf, id=3232, 1137.24875pt x 995.72pt>
File: 4/figures/prot-Ar-300.pdf Graphic file (type pdf)
<use 4/figures/prot-Ar-300.pdf>
Package pdftex.def Info: 4/figures/prot-Ar-300.pdf used on input line 801.
(pdftex.def) Requested size: 330.05322pt x 288.97931pt.
[147 <./4/figures/Epartition-Ar-300-SP.pdf>] [148 <./4/figures/Epartition-Ar-3
[149 <./4/figures/Epartition-Ar-300-SP.pdf>] [150 <./4/figures/Epartition-Ar-3
00-Tstep-01.pdf>]
<4/figures/Epartition-Ar-300-d-ud.pdf, id=3245, 1137.24875pt x 1023.825pt>
<4/figures/Epartition-Ar-300-d-ud.pdf, id=3275, 1137.24875pt x 1023.825pt>
File: 4/figures/Epartition-Ar-300-d-ud.pdf Graphic file (type pdf)
<use 4/figures/Epartition-Ar-300-d-ud.pdf>
Package pdftex.def Info: 4/figures/Epartition-Ar-300-d-ud.pdf used on input li
ne 810.
(pdftex.def) Requested size: 330.05322pt x 297.13597pt.
[149 <./4/figures/prot-Ar-300.pdf>]
<4/figures/figuretimescale.pdf, id=3283, 674.52pt x 497.86pt>
[151 <./4/figures/prot-Ar-300.pdf>]
<4/figures/figuretimescale.pdf, id=3312, 674.52pt x 497.86pt>
File: 4/figures/figuretimescale.pdf Graphic file (type pdf)
<use 4/figures/figuretimescale.pdf>
Package pdftex.def Info: 4/figures/figuretimescale.pdf used on input line 818.
(pdftex.def) Requested size: 330.05322pt x 243.61168pt.
<4/figures/T-time-zoom_abcdef.pdf, id=3284, 642.4pt x 892.33376pt>
<4/figures/T-time-zoom_abcdef.pdf, id=3313, 642.4pt x 892.33376pt>
File: 4/figures/T-time-zoom_abcdef.pdf Graphic file (type pdf)
<use 4/figures/T-time-zoom_abcdef.pdf>
Package pdftex.def Info: 4/figures/T-time-zoom_abcdef.pdf used on input line 8
22.
(pdftex.def) Requested size: 330.05322pt x 458.47456pt.
<4/figures/E-time-abcdef.pdf, id=3285, 794.97pt x 843.15pt>
<4/figures/E-time-abcdef.pdf, id=3314, 794.97pt x 843.15pt>
File: 4/figures/E-time-abcdef.pdf Graphic file (type pdf)
<use 4/figures/E-time-abcdef.pdf>
Package pdftex.def Info: 4/figures/E-time-abcdef.pdf used on input line 824.
(pdftex.def) Requested size: 412.56496pt x 437.57854pt.
[150 <./4/figures/Epartition-Ar-300-d-ud.pdf>] [151 <./4/figures/figuretimesca
le.pdf>] [152 <./4/figures/T-time-zoom_abcdef.pdf>] [153 <./4/figures/E-time-ab
[152 <./4/figures/Epartition-Ar-300-d-ud.pdf>] [153 <./4/figures/figuretimesca
le.pdf>] [154 <./4/figures/T-time-zoom_abcdef.pdf>] [155 <./4/figures/E-time-ab
cdef.pdf>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
@ -1803,16 +1798,16 @@ Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `math shift' on input line 836.
[154] [155]) [156]
[156] [157]) [158]
\openout2 = `5/general_conclusion.aux'.
(./5/general_conclusion.tex
5.
[157
[159
] [158] [159]) [160] (./thesis.bbl (./thesis.brf)
] [160] [161]) [162] (./thesis.bbl (./thesis.brf)
\tf@brf=\write6
\openout6 = `thesis.brf'.
@ -1821,14 +1816,14 @@ Underfull \hbox (badness 10000) in paragraph at lines 181--181
[]\OT1/ptm/m/sc/6 Julien Boulon, Is-abelle Braud, S[]ebastien Zamith,
[]
[161
[163
] [162]
] [164]
Underfull \hbox (badness 10000) in paragraph at lines 465--465
[]\OT1/ptm/m/sc/6 Wandared Poka-panich, Hen-rik Berg-ersen, Ioana L
[]
[163]
[165]
LaTeX Font Info: Font shape `TS1/ptm/bx/n' in size <6> not available
(Font) Font shape `TS1/ptm/b/n' tried instead on input line 687.
@ -1836,17 +1831,17 @@ Underfull \hbox (badness 5105) in paragraph at lines 798--798
[]\OT1/ptm/m/sc/6 MS Call[]en, MT De la Cruz, JM L[]opez, R Murillo,
[]
[164]
[166]
Underfull \hbox (badness 6428) in paragraph at lines 865--865
\OT1/ptm/m/sc/6 Tao Chen, Linda Gi-a-co-mozzi, Ro-drigo F Nasci-mento,
[]
[165] [166] [167] [168]
[167] [168] [169] [170]
Underfull \hbox (badness 5607) in paragraph at lines 1738--1738
[]\OT1/ptm/m/sc/6 Pietro Bal-lone, Wanda An-dreoni, Roberto Car, and
[]
[169] [170]
[171] [172]
Underfull \hbox (badness 10000) in paragraph at lines 2092--2092
[]\OT1/ptm/m/sc/6 Claudio Fabi-ano Motta Toledo, L Oliveira, and
[]
@ -1857,65 +1852,56 @@ Underfull \hbox (badness 5417) in paragraph at lines 2102--2102
/n/6 .
[]
[171]
[173]
Underfull \hbox (badness 7116) in paragraph at lines 2305--2305
[]\OT1/ptm/m/sc/6 Yih-Sheng Wang, Hai-Chou Chang, Jyh-Chiang Jiang,
[]
[172]
Underfull \hbox (badness 10000) in paragraph at lines 2465--2465
[174]
Underfull \hbox (badness 10000) in paragraph at lines 2493--2493
[]\OT1/ptm/m/sc/6 Badia Bouda[]^^Pffa, Pierre Cloutier, Darel Hunt-ing,
[]
Underfull \hbox (badness 10000) in paragraph at lines 2563--2563
Underfull \hbox (badness 10000) in paragraph at lines 2591--2591
[]\OT1/ptm/m/sc/6 S[]ebastien Zamith, Pierre Labastie, and Jean-Marc
[]
[173] [174]
Underfull \hbox (badness 6252) in paragraph at lines 2931--2931
[175] [176]
Underfull \hbox (badness 6252) in paragraph at lines 2959--2959
[]\OT1/ptm/m/sc/6 Annette Es-chen-bach, Rein-hard Wien-berg, and Bernd
[]
[175]) [176]
[177]) [178]
\openout2 = `6_backmatter/declaration.aux'.
(./6_backmatter/declaration.tex [177
(./6_backmatter/declaration.tex [179
])
Package natbib Warning: There were undefined citations.
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 307.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 307.
(./thesis.aux (./0_frontmatter/abstract.aux) (./0_frontmatter/dedication.aux)
(./thesis.aux
(./0_frontmatter/abstract.aux) (./0_frontmatter/dedication.aux)
(./0_frontmatter/acknowledgement.aux) (./0_frontmatter/glossary.aux)
(./1_GeneIntro/GeneIntro.aux) (./2_Introduction/introduction.aux)
(./3/structure_stability.aux) (./4/collision.aux) (./5/general_conclusion.aux)
(./6_backmatter/declaration.aux))
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 307.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 307.
Package rerunfilecheck Warning: File `thesis.out' has changed.
(rerunfilecheck) Rerun to get outlines right
(rerunfilecheck) or use package `bookmark'.
Package rerunfilecheck Info: Checksums for `thesis.out':
(rerunfilecheck) Before: 3AD1CDEE76C591193FCF75ACBEF7AD78;5771
(rerunfilecheck) After: BCE08A250032429D5ABDCB67C5F5F41F;5770.
Package rerunfilecheck Info: File `thesis.out' has not changed.
(rerunfilecheck) Checksum: 54B844088F193135A8E4AE44D25629B8;5769.
Package rerunfilecheck Info: File `thesis.brf' has not changed.
(rerunfilecheck) Checksum: 52C4453B0314C7567681EFFAD9453215;38852.
(rerunfilecheck) Checksum: AE80D8E3642E12035FBDF63BFABAC93A;39206.
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 307.
)
Here is how much of TeX's memory you used:
14703 strings out of 492649
225907 string characters out of 6129622
338859 words of memory out of 5000000
17239 multiletter control sequences out of 15000+600000
14740 strings out of 492649
226541 string characters out of 6129622
343606 words of memory out of 5000000
17268 multiletter control sequences out of 15000+600000
86085 words of font info for 186 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
43i,20n,51p,2185b,2460s stack positions out of 5000i,500n,10000p,200000b,80000s
43i,20n,51p,2185b,2464s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/local/texlive/2018/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/local/t
exlive/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/local/te
xlive/2018/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/local/tex
@ -1929,10 +1915,10 @@ t/fonts/type1/urw/times/utmb8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/ty
pe1/urw/times/utmbi8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type1/urw/t
imes/utmr8a.pfb></usr/local/texlive/2018/texmf-dist/fonts/type1/urw/times/utmri
8a.pfb>
Output written on thesis.pdf (191 pages, 30906315 bytes).
Output written on thesis.pdf (193 pages, 31357928 bytes).
PDF statistics:
4444 PDF objects out of 5155 (max. 8388607)
3912 compressed objects within 40 object streams
919 named destinations out of 1000 (max. 500000)
871 words of extra memory for PDF output out of 10000 (max. 10000000)
4475 PDF objects out of 5155 (max. 8388607)
3937 compressed objects within 40 object streams
926 named destinations out of 1000 (max. 500000)
876 words of extra memory for PDF output out of 10000 (max. 10000000)

View File

@ -26,7 +26,7 @@
\BOOKMARK [3][]{subsubsection.3.2.2.2}{3.2.2.2 Small Species: \(H2O\)1-3NH4+ and \(H2O\)1-3NH3}{subsection.3.2.2}% 26
\BOOKMARK [3][]{subsubsection.3.2.2.3}{3.2.2.3 Properties of \(H2O\)4-10NH4+ Clusters}{subsection.3.2.2}% 27
\BOOKMARK [3][]{subsubsection.3.2.2.4}{3.2.2.4 Properties of \(H2O\)4-10NH3 Clusters}{subsection.3.2.2}% 28
\BOOKMARK [3][]{subsubsection.3.2.2.5}{3.2.2.5 Properties of \(H2O\)20NH4+ Clusters}{subsection.3.2.2}% 29
\BOOKMARK [3][]{subsubsection.3.2.2.5}{3.2.2.5 Properties of \(H2O\)20NH4+ Cluster}{subsection.3.2.2}% 29
\BOOKMARK [2][]{subsection.3.2.3}{3.2.3 Conclusions for Ammonium/Ammonia Including Water Clusters}{section.3.2}% 30
\BOOKMARK [1][]{section.3.3}{3.3 Structural and Energetic Properties of Protonated Uracil Water Clusters}{chapter.3}% 31
\BOOKMARK [2][]{subsection.3.3.1}{3.3.1 General introduction}{section.3.3}% 32
@ -62,4 +62,4 @@
\BOOKMARK [0][]{chapter.5}{5 General Conclusions and Perspectives}{}% 62
\BOOKMARK [1][]{section.5.1}{5.1 General Conclusions}{chapter.5}% 63
\BOOKMARK [1][]{section.5.2}{5.2 Perspectives}{chapter.5}% 64
\BOOKMARK [0][]{chapter*.81}{References}{}% 65
\BOOKMARK [0][]{chapter*.82}{References}{}% 65

Binary file not shown.

Binary file not shown.

View File

@ -14,53 +14,53 @@
\contentsline {subsection}{\numberline {2.4.2}Classical Molecular Dynamics}{40}{subsection.2.4.2}
\contentsline {subsection}{\numberline {2.4.3}Parallel-Tempering Molecular Dynamics}{45}{subsection.2.4.3}
\contentsline {subsection}{\numberline {2.4.4}Global Optimization}{47}{subsection.2.4.4}
\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{49}{chapter.3}
\contentsline {section}{\numberline {3.1}Computational Details}{50}{section.3.1}
\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{50}{subsection.3.1.1}
\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{50}{subsection.3.1.2}
\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{51}{subsection.3.1.3}
\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{53}{subsection.3.1.4}
\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{53}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}General introduction}{53}{subsection.3.2.1}
\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{55}{subsection.3.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{55}{subsubsection.3.2.2.1}
\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{58}{subsubsection.3.2.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{61}{subsubsection.3.2.2.3}
\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{68}{subsubsection.3.2.2.4}
\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Clusters}{73}{subsubsection.3.2.2.5}
\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{74}{subsection.3.2.3}
\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{75}{section.3.3}
\contentsline {subsection}{\numberline {3.3.1}General introduction}{75}{subsection.3.3.1}
\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{77}{subsection.3.3.2}
\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{77}{subsubsection.3.3.2.1}
\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{83}{subsubsection.3.3.2.2}
\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{92}{subsection.3.3.3}
\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{97}{chapter.4}
\contentsline {section}{\numberline {4.1}Experimental Methods}{97}{section.4.1}
\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{99}{subsection.4.1.1}
\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{100}{subsection.4.1.2}
\contentsline {section}{\numberline {4.2}Computational Details}{102}{section.4.2}
\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{102}{subsection.4.2.1}
\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{103}{subsection.4.2.2}
\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{104}{subsection.4.2.3}
\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{105}{section.4.3}
\contentsline {subsection}{\numberline {4.3.1}Introduction}{105}{subsection.4.3.1}
\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{106}{subsection.4.3.2}
\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{106}{subsubsection.4.3.2.1}
\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{109}{subsection.4.3.3}
\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{112}{subsection.4.3.4}
\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{122}{subsection.4.3.5}
\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{126}{subsection.4.3.6}
\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{129}{subsection.4.3.7}
\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{131}{section.4.4}
\contentsline {subsection}{\numberline {4.4.1}Introduction}{131}{subsection.4.4.1}
\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{133}{subsection.4.4.2}
\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{135}{subsection.4.4.3}
\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{137}{subsection.4.4.4}
\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{137}{subsubsection.4.4.4.1}
\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{138}{subsubsection.4.4.4.2}
\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{154}{subsection.4.4.5}
\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{157}{chapter.5}
\contentsline {section}{\numberline {5.1}General Conclusions}{157}{section.5.1}
\contentsline {section}{\numberline {5.2}Perspectives}{160}{section.5.2}
\contentsline {chapter}{References}{161}{chapter*.81}
\contentsline {chapter}{\numberline {3}Exploration of Structural and Energetic Properties}{51}{chapter.3}
\contentsline {section}{\numberline {3.1}Computational Details}{52}{section.3.1}
\contentsline {subsection}{\numberline {3.1.1}SCC-DFTB Potential}{52}{subsection.3.1.1}
\contentsline {subsection}{\numberline {3.1.2}SCC-DFTB Exploration of PES}{52}{subsection.3.1.2}
\contentsline {subsection}{\numberline {3.1.3}MP2 Geometry Optimizations, Relative and Binding Energies}{53}{subsection.3.1.3}
\contentsline {subsection}{\numberline {3.1.4}Structure Classification}{54}{subsection.3.1.4}
\contentsline {section}{\numberline {3.2}Structural and Energetic Properties of Ammonium/Ammonia including Water Clusters}{55}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}General introduction}{55}{subsection.3.2.1}
\contentsline {subsection}{\numberline {3.2.2}Results and Discussion}{57}{subsection.3.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.1}Dissociation Curves and SCC-DFTB Potential}{57}{subsubsection.3.2.2.1}
\contentsline {subsubsection}{\numberline {3.2.2.2}Small Species: (H$_2$O)$_{1-3}${NH$_4$}$^+$ and (H$_2$O)$_{1-3}${NH$_3$}}{60}{subsubsection.3.2.2.2}
\contentsline {subsubsection}{\numberline {3.2.2.3}Properties of (H$_2$O)$_{4-10}${NH$_4$}$^+$ Clusters}{63}{subsubsection.3.2.2.3}
\contentsline {subsubsection}{\numberline {3.2.2.4}Properties of (H$_2$O)$_{4-10}${NH$_3$} Clusters}{70}{subsubsection.3.2.2.4}
\contentsline {subsubsection}{\numberline {3.2.2.5}Properties of (H$_2$O)$_{20}${NH$_4$}$^+$ Cluster}{75}{subsubsection.3.2.2.5}
\contentsline {subsection}{\numberline {3.2.3}Conclusions for Ammonium/Ammonia Including Water Clusters}{76}{subsection.3.2.3}
\contentsline {section}{\numberline {3.3}Structural and Energetic Properties of Protonated Uracil Water Clusters}{77}{section.3.3}
\contentsline {subsection}{\numberline {3.3.1}General introduction}{77}{subsection.3.3.1}
\contentsline {subsection}{\numberline {3.3.2}Results and Discussion}{79}{subsection.3.3.2}
\contentsline {subsubsection}{\numberline {3.3.2.1}Experimental Results}{79}{subsubsection.3.3.2.1}
\contentsline {subsubsection}{\numberline {3.3.2.2}Calculated Structures of Protonated Uracil Water Clusters}{85}{subsubsection.3.3.2.2}
\contentsline {subsection}{\numberline {3.3.3}Conclusions on (H$_2$O)$_{n}$UH$^+$ clusters}{94}{subsection.3.3.3}
\contentsline {chapter}{\numberline {4}Dynamical Simulation of Collision-Induced Dissociation}{99}{chapter.4}
\contentsline {section}{\numberline {4.1}Experimental Methods}{99}{section.4.1}
\contentsline {subsection}{\numberline {4.1.1}Principle of TCID}{101}{subsection.4.1.1}
\contentsline {subsection}{\numberline {4.1.2}Experimental Setup}{102}{subsection.4.1.2}
\contentsline {section}{\numberline {4.2}Computational Details}{104}{section.4.2}
\contentsline {subsection}{\numberline {4.2.1}SCC-DFTB Potential}{104}{subsection.4.2.1}
\contentsline {subsection}{\numberline {4.2.2}Collision Trajectories}{105}{subsection.4.2.2}
\contentsline {subsection}{\numberline {4.2.3}Trajectory Analysis}{106}{subsection.4.2.3}
\contentsline {section}{\numberline {4.3}Dynamical Simulation of Collision-Induced Dissociation of Protonated Uracil Water Clusters}{107}{section.4.3}
\contentsline {subsection}{\numberline {4.3.1}Introduction}{107}{subsection.4.3.1}
\contentsline {subsection}{\numberline {4.3.2}Results and Discussion}{108}{subsection.4.3.2}
\contentsline {subsubsection}{\numberline {4.3.2.1}Statistical Convergence}{108}{subsubsection.4.3.2.1}
\contentsline {subsection}{\numberline {4.3.3}Time-Dependent Proportion of Fragments}{111}{subsection.4.3.3}
\contentsline {subsection}{\numberline {4.3.4}Proportion of Neutral Uracil Loss and Total Fragmentation Cross Sections for Small Clusters}{114}{subsection.4.3.4}
\contentsline {subsection}{\numberline {4.3.5}Behaviour at Larger Sizes, the Cases of (H$_2$O)$_{11, 12}$UH$^+$}{124}{subsection.4.3.5}
\contentsline {subsection}{\numberline {4.3.6}Mass Spectra of Fragments with Excess Proton}{128}{subsection.4.3.6}
\contentsline {subsection}{\numberline {4.3.7}Conclusions about CID of (H$_2$O)$_{n}$UH$^+$}{131}{subsection.4.3.7}
\contentsline {section}{\numberline {4.4}Dynamical Simulation of Collision-Induced Dissociation for Pyrene Dimer Cation}{133}{section.4.4}
\contentsline {subsection}{\numberline {4.4.1}Introduction}{133}{subsection.4.4.1}
\contentsline {subsection}{\numberline {4.4.2}Calculation of Energies}{135}{subsection.4.4.2}
\contentsline {subsection}{\numberline {4.4.3}Simulation of the Experimental TOFMS}{137}{subsection.4.4.3}
\contentsline {subsection}{\numberline {4.4.4}Results and Discussion}{139}{subsection.4.4.4}
\contentsline {subsubsection}{\numberline {4.4.4.1}TOFMS Comparison}{139}{subsubsection.4.4.4.1}
\contentsline {subsubsection}{\numberline {4.4.4.2}Molecular Dynamics Analysis}{140}{subsubsection.4.4.4.2}
\contentsline {subsection}{\numberline {4.4.5}Conclusions about CID of Py$_2^+$}{156}{subsection.4.4.5}
\contentsline {chapter}{\numberline {5}General Conclusions and Perspectives}{159}{chapter.5}
\contentsline {section}{\numberline {5.1}General Conclusions}{159}{section.5.1}
\contentsline {section}{\numberline {5.2}Perspectives}{162}{section.5.2}
\contentsline {chapter}{References}{163}{chapter*.82}