mirror of
https://github.com/TREX-CoE/trexio.git
synced 2025-01-08 20:33:36 +01:00
153 lines
7.4 KiB
OpenEdge ABL
153 lines
7.4 KiB
OpenEdge ABL
%module pytrexio
|
|
/* Define SWIGWORDSIZE in order to properly align long integers on 64-bit system */
|
|
#define SWIGWORDSIZE64
|
|
%{
|
|
#define SWIG_FILE_WITH_INIT
|
|
/* Include the headers in the wrapper code */
|
|
#include "trexio_s.h"
|
|
#include "trexio.h"
|
|
%}
|
|
|
|
/* Include stdint to recognize types from stdint.h */
|
|
%include <stdint.i>
|
|
|
|
/* NOTE:
|
|
carrays was useful before numpy.i was introduced.
|
|
For Python interface it's better to use numpy arrays instead of carrays, because the latter are less python-ic.
|
|
On the other hand, carrays might be more portable to other target languages.
|
|
// Include carrays to work with C pointers to arrays
|
|
%include "carrays.i"
|
|
// Include classes that correspond to integer and float arrays
|
|
%array_class(double, doubleArray);
|
|
%array_class(float, floatArray);
|
|
%array_class(int32_t, int32Array);
|
|
%array_class(int64_t, int64Array);
|
|
*/
|
|
|
|
/* Include typemaps to play with input/output re-casting
|
|
Useful when working with C pointers
|
|
*/
|
|
%include typemaps.i
|
|
/* Redefine the [int32_t*, int64_t*, float*, double*] num
|
|
pattern to be appended to the output tuple.
|
|
Useful for TREXIO read_num functions where the
|
|
num variable is modified by address
|
|
*/
|
|
/* Return num variables as part of the output tuple */
|
|
%apply int32_t *OUTPUT { int32_t* const num};
|
|
%apply int64_t *OUTPUT { int64_t* const num};
|
|
%apply int32_t *OUTPUT { int32_t* const num_up};
|
|
%apply int32_t *OUTPUT { int32_t* const num_dn};
|
|
%apply int64_t *OUTPUT { int64_t* const num_up};
|
|
%apply int64_t *OUTPUT { int64_t* const num_dn};
|
|
%apply float *OUTPUT { float* const num};
|
|
%apply double *OUTPUT { double* const num};
|
|
/* Return TREXIO exit code from trexio_open as part of the output tuple */
|
|
%apply int *OUTPUT { trexio_exit_code* const rc_open};
|
|
/* Return number of sparse data points stored in the file as part of the output tuple */
|
|
%apply int *OUTPUT { int64_t* const size_max};
|
|
/* Return number of sparse data points read from the file as part of the output tuple */
|
|
%apply int *INOUT { int64_t* const buffer_size_read};
|
|
|
|
/* Does not work for arrays (SIGSEGV) */
|
|
|
|
/* This enables access to trexio_[...]_read_dset_str_low set of functions
|
|
in order to return one long string with TREXIO_DELIM delimeter as 2-nd argument of output tuple
|
|
*/
|
|
%include <cstring.i>
|
|
/* This enables read of long strings with TREXIO_DELIM delimeters that can be further converted into an array of string */
|
|
%cstring_bounded_output(char* dset_out, 4096);
|
|
/* This enables read of single string attributes with pre-defined max_str_len
|
|
for Python we pre-define max_str_len = PYTREXIO_MAX_STR_LENGTH everywhere for simplicity
|
|
*/
|
|
%cstring_output_maxsize(char* const str_out, const int32_t max_str_len);
|
|
|
|
|
|
/* This block is needed make SWIG treat (double * dset_out|_in, int64_t dim_out|_in) pattern
|
|
as a special case in order to return the NumPy array to Python from C pointer to array
|
|
provided by trexio_read_safe_[dset_num] function.
|
|
NOTE: numpy.i is currently not part of SWIG but included in the numpy distribution (under numpy/tools/swig/numpy.i)
|
|
*/
|
|
%include "numpy.i"
|
|
|
|
%init %{
|
|
import_array();
|
|
%}
|
|
|
|
/* Typemaps below change the type of numpy array dimensions from int to int64_t */
|
|
%numpy_typemaps(double, NPY_DOUBLE, int64_t)
|
|
%numpy_typemaps(float, NPY_FLOAT, int64_t)
|
|
%numpy_typemaps(int32_t, NPY_INT32, int64_t)
|
|
%numpy_typemaps(int64_t, NPY_INT64, int64_t)
|
|
%numpy_typemaps(bitfield_t, NPY_INT64, int64_t)
|
|
/* Enable write|read_safe functions to convert numpy arrays from/to double arrays */
|
|
%apply (double* ARGOUT_ARRAY1, int64_t DIM1) {(double* const dset_out, const int64_t dim_out)};
|
|
%apply (double* IN_ARRAY1, int64_t DIM1) {(const double* dset_in, const int64_t dim_in)};
|
|
/* Enable write|read_safe functions to convert numpy arrays from/to float arrays */
|
|
%apply (float* ARGOUT_ARRAY1, int64_t DIM1) {(float* const dset_out, const int64_t dim_out)};
|
|
%apply (float* IN_ARRAY1, int64_t DIM1) {(const float* dset_in, const int64_t dim_in)};
|
|
/* Enable write|read_safe functions to convert numpy arrays from/to int32 arrays */
|
|
%apply (int32_t* ARGOUT_ARRAY1, int64_t DIM1) {(int32_t* const dset_out, const int64_t dim_out)};
|
|
%apply (int32_t* IN_ARRAY1, int64_t DIM1) {(const int32_t* dset_in, const int64_t dim_in)};
|
|
/* Enable write|read_safe functions to convert numpy arrays from/to int64 arrays */
|
|
%apply (int64_t* ARGOUT_ARRAY1, int64_t DIM1) {(int64_t* const dset_out, const int64_t dim_out)};
|
|
%apply (int64_t* IN_ARRAY1, int64_t DIM1) {(const int64_t* dset_in, const int64_t dim_in)};
|
|
/* Enable write|read_safe functions to convert numpy arrays from/to sparse arrays */
|
|
%apply (double* IN_ARRAY1, int64_t DIM1) {(const double* value_sparse_write, const int64_t size_value_write)};
|
|
%apply (int32_t* IN_ARRAY1, int64_t DIM1) {(const int32_t* index_sparse_write, const int64_t size_index_write)};
|
|
|
|
%apply (double* ARGOUT_ARRAY1, int64_t DIM1) {(double* const value_sparse_read, const int64_t size_value_read)};
|
|
%apply (int32_t* ARGOUT_ARRAY1, int64_t DIM1) {(int32_t* const index_sparse_read, const int64_t size_index_read)};
|
|
/* Enable write|read_safe functions to convert numpy arrays from orbital list arrays */
|
|
%apply (int32_t* ARGOUT_ARRAY1, int64_t DIM1) {(int32_t* const dset_up_out, const int64_t dim_up_out)};
|
|
%apply (int32_t* ARGOUT_ARRAY1, int64_t DIM1) {(int32_t* const dset_dn_out, const int64_t dim_dn_out)};
|
|
%apply (int64_t* ARGOUT_ARRAY1, int64_t DIM1) {(int64_t* const dset_up_out, const int64_t dim_up_out)};
|
|
%apply (int64_t* ARGOUT_ARRAY1, int64_t DIM1) {(int64_t* const dset_dn_out, const int64_t dim_dn_out)};
|
|
%apply (bitfield_t* IN_ARRAY1, int64_t DIM1) {(const bitfield_t* dset_in, const int64_t dim_in)};
|
|
%apply (int32_t* IN_ARRAY1, int32_t DIM1) {(const int32_t* orb_list, const int32_t occupied_num)};
|
|
/* For some reasons SWIG does not apply the proper bitfield_t typemap, so one has to manually specify int64_t* ARGOUT_ARRAY1 below */
|
|
%apply (int64_t* ARGOUT_ARRAY1, int32_t DIM1) {(bitfield_t* const bit_list, const int32_t N_int)};
|
|
|
|
/* NAO functions */
|
|
%apply double *OUTPUT { double* const log_r_out, double* const amplitude};
|
|
%apply (double *ARGOUT_ARRAY1, int DIM1) {(double* const amplitudes, int amplitude_cnt)};
|
|
%apply (double* IN_ARRAY1, int DIM1) {(double* grid_r, int n_grid_r),
|
|
(double* interpolator, int n_interp), (double* nucleus_coords, int n_nuc_co), (double* normalization, int n_norm)};
|
|
%apply (int64_t* IN_ARRAY1, int DIM1) {(int64_t* grid_start, int n_grid_st),
|
|
(int64_t* grid_size, int n_grid_si), (int64_t* nucleus_index, int n_nuc_id)};
|
|
|
|
/* This tells SWIG to treat char ** dset_in pattern as a special case
|
|
Enables access to trexio_[...]_write_dset_str set of functions directly, i.e.
|
|
by converting input list of strings from Python into char ** of C
|
|
*/
|
|
%typemap(in) char** dset_in {
|
|
/* Check if is a list */
|
|
if (PyList_Check($input)) {
|
|
int size = PyList_Size($input);
|
|
Py_ssize_t i = 0;
|
|
$1 = (char **) malloc((size+1)*sizeof(char *));
|
|
for (i = 0; i < size; i++) {
|
|
PyObject *o = PyList_GetItem($input, i);
|
|
if (PyUnicode_Check(o)) {
|
|
$1[i] = PyUnicode_AsUTF8(PyList_GetItem($input,i));
|
|
} else {
|
|
PyErr_Format(PyExc_TypeError, "list must contain strings. %d/%d element was not string.", i, size);
|
|
free($1);
|
|
return NULL;
|
|
}
|
|
}
|
|
$1[i] = 0;
|
|
} else {
|
|
PyErr_SetString(PyExc_TypeError, "not a list");
|
|
return NULL;
|
|
}
|
|
}
|
|
/* This cleans up the char ** array we malloc-ed before */
|
|
%typemap(freearg) char** dset_in {
|
|
free((char *) $1);
|
|
}
|
|
|
|
/* Parse the header files to generate wrappers */
|
|
%include "trexio_s.h"
|
|
%include "trexio.h"
|