1
0
mirror of https://github.com/TREX-CoE/trexio.git synced 2024-12-22 20:35:44 +01:00
Go to file
2021-11-17 14:17:01 +01:00
.github/workflows remove --enable-maintainer-mode from GH actions 2021-11-01 10:20:03 +01:00
docker minor update for better Python builds 2021-10-01 10:48:13 +02:00
docs Update README 2021-10-13 14:24:54 +02:00
include update gitignore 2021-05-03 15:06:30 +02:00
lib add gitignore 2021-04-30 16:21:13 +02:00
m4 add Autoconf macro for SWIG 2021-08-20 15:20:09 +03:00
pkgconfig Improve HDF5 in configure 2021-06-03 01:25:20 +02:00
python fix pytrexio test 2021-11-02 10:30:35 +01:00
src add trexio_has_backend function to the C and Fortran APIs 2021-11-02 11:05:27 +01:00
tests conditional HDF5 tests based on the trexio_has_backend function 2021-11-02 11:06:03 +01:00
tools explicitly define HAVE_HDF5 in trexio.h for Python builds 2021-11-01 11:58:04 +01:00
.gitignore minor changes 2021-08-24 11:51:29 +03:00
.gitmodules return org-html-themes submodule 2021-09-24 09:46:42 +02:00
AUTHORS Typo 2021-06-02 10:44:03 +02:00
autogen.sh Modernize configure.ac 2021-11-17 14:16:55 +01:00
ChangeLog adapt README and ChangeLog 2021-10-25 11:40:07 +02:00
configure.ac Modernize configure.ac 2021-11-17 14:16:55 +01:00
COPYING Automake done. Need to improve tests 2021-05-28 13:36:39 +02:00
INSTALL Automake done. Need to improve tests 2021-05-28 13:36:39 +02:00
LICENSE Initial commit 2021-01-18 15:48:36 +01:00
Makefile.am Modernize configure.ac 2021-11-17 14:16:55 +01:00
NEWS Automake done. Need to improve tests 2021-05-28 13:36:39 +02:00
README Automake done. Need to improve tests 2021-05-28 13:36:39 +02:00
README.md update README 2021-11-01 12:15:19 +01:00
Sparse.org Moved sparse documentation in src/templates_front/templator_front.org 2021-06-03 13:56:45 +02:00
trex.org Revert "fix error in the ECP example" 2021-10-26 10:34:59 +02:00

TREXIO

build GitHub release (latest by date)

TREX library for efficient I/O.

Minimal requirements (for users):

  • Autotools (autoconf >= 2.69, automake >= 1.11, libtool >= 2.2)
  • C compiler (gcc/icc/clang)
  • Fortran compiler (gfortran/ifort)
  • HDF5 library (>= 1.8) [optional, recommended for high performance]

Installation procedure from the tarball (for users):

  1. Download the trexio-<version>.tar.gz file
  2. gzip -cd trexio-<version>.tar.gz | tar xvf -
  3. cd trexio-<version>
  4. ./configure
  5. make
  6. make check
  7. sudo make install

Note: on systems with no sudo access, one can replace ./configure with ./configure prefix=${PWD}/_install in order to execute make install/uninstall commands without sudo privileges.

Additional requirements (for developers):

  • python3 (>= 3.6)
  • Emacs (>= 26.0)
  • SWIG (>= 4.0)

Installation procedure from the GitHub repo clone (for developers):

  1. git clone https://github.com/TREX-CoE/trexio.git
  2. cd trexio
  3. ./autogen.sh
  4. ./configure
  5. make
  6. make check
  7. sudo make install

Compilation without the HDF5 library

By default, the configuration step proceeds to search for the HDF5 library. This search can be disabled if HDF5 is not present/installable on the user machine. To compile without HDF5, append --without-hdf5 option to configure script. For example,

./configure --without-hdf5

Linking to your program

The make install command takes care of installing the TREXIO shared library on the user machine. Once installed, add -ltrexio to the list of compiler options.

In some cases (e.g. when using custom prefix during configuration), the TREXIO library might end up installed in a directory, which is absent in the default $LIBRARY_PATH. In order to link the program against TREXIO, the search paths can be modified as follows:

export LIBRARY_PATH=$LIBRARY_PATH:<path_to_trexio>/lib

(same holds for $LD_LIBRARY_PATH). The <path_to_trexio> has to be replaced by the prefix used during the installation.

If your compilation relies on some build tools (like Autotools or CMake), feel free to use the built-in solutions to locate and link external dependencies automatically.

In Fortran applications, make sure that the trexio_f.f90 module file is included in the source tree. You might have to manually copy it into your program source directory. The trexio_f.f90 module file can be found in the include/ directory of the TREXIO source code distribution.

Note: there is no need to include trexio.h header file during compilation of Fortran programs. Only the installed library and the Fortran module file are required.

Naming convention

The primary TREXIO API is composed of the following functions:

  • trexio_open
  • trexio_write_[group]_[variable]
  • trexio_read_[group]_[variable]
  • trexio_has_[group]_[variable]
  • trexio_close

where [group] and [variable] substitutions correspond to the contents of the trex.json configuration file (for more details, see the corresponding documentation page). For example, consider the coord variable (array), which belongs to the nucleus group. The TREXIO user can write or read it using trexio_write_nucleus_coord or trexio_read_nucleus_coord functions, respectively.

Note: the [variable] names have to be unique only within the corresponding parent [group]. There is no naming conflict when, for example, num variable exists both in the nucleus group (i.e. the number of nuclei) and in the mo group (i.e. the number of molecular orbitals). These quantities can be accessed using the corresponding trexio_[has|read|write]_nucleus_num and trexio_[has|read|write]_mo_num, respectively.

Python API

For more details regarding the installation and usage of the TREXIO Python API, see this page.

Tutorial

TREXIO tutorials in Jupyter notebook format can be found in the corresponding GitHub repository or on Binder.

For example, the tutorial covering TREXIO basics using benzene molecule as an example can be viewed and executed online by clicking on this badge: Binder

Documentation

Documentation generated from TREXIO org-mode files.

Miscellaneous

Note: The code should be compliant with the C99 CERT C coding standard. This can be checked with the cppcheck tool.


European flag TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Unions Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.