TREX Configuration file
Table of Contents
- 1. Metadata (metadata group)
- 2. Electron (electron group)
- 3. Nucleus (nucleus group)
- 4. Effective core potentials (ecp group)
- 5. Basis set (basis group)
- 6. Atomic orbitals (ao group)
- 7. Molecular orbitals (mo group)
- 8. TODO Slater determinants
- 9. TODO Reduced density matrices (rdm group)
- 10. Appendix
This page contains information about the general structure of the
TREXIO library. The source code of the library can be automatically
generated based on the contents of the trex.json
configuration file,
which itself is compiled from different sections (groups) presented below.
For more information about the automatic generation on the source code or regarding possible modifications, please contact the TREXIO developers.
All quantities are saved in TREXIO file in atomic units.
The dimensions of the arrays in the tables below are given in
column-major order (as in Fortran), and the ordering of the dimensions
is reversed in the produced trex.json
configuration file as the library is
written in C.
In Fortran, the arrays are 1-based and in most other languages the
arrays are 0-based. Hence, we introduce the index
type which is an
1-based int
in the Fortran interface and 0-based otherwise.
1 Metadata (metadata group)
As we expect our files to be archived in open-data repositories, we need to give the possibility to the users to store some metadata inside the files. We propose to store the list of names of the codes which have participated to the creation of the file, a list of authors of the file, and a textual description.
Variable | Type | Dimensions (for arrays) | Description |
---|---|---|---|
code_num |
int |
Number of codes used to produce the file | |
code |
str |
(metadata.code_num) |
Names of the codes used |
author_num |
int |
Number of authors of the file | |
author |
str |
(metadata.author_num) |
Names of the authors of the file |
package_version |
str |
TREXIO version used to produce the file | |
description |
str |
Text describing the content of file |
2 Electron (electron group)
We consider wave functions expressed in the spin-free formalism, where the number of ↑ and ↓ electrons is fixed.
Variable | Type | Dimensions | Description |
---|---|---|---|
up_num |
int |
Number of ↑-spin electrons | |
dn_num |
int |
Number of ↓-spin electrons |
3 Nucleus (nucleus group)
The nuclei are considered as fixed point charges. Coordinates are given in Cartesian \((x,y,z)\) format.
Variable | Type | Dimensions | Description |
---|---|---|---|
num |
int |
Number of nuclei | |
charge |
float |
(nucleus.num) |
Charges of the nuclei |
coord |
float |
(3,nucleus.num) |
Coordinates of the atoms |
label |
str |
(nucleus.num) |
Atom labels |
point_group |
str |
Symmetry point group |
4 Effective core potentials (ecp group)
An effective core potential (ECP) \(V_A^{\text{ECP}}\) replacing the core electrons of atom \(A\) is expressed as \[ V_A^{\text{ECP}} = V_{A \ell_{\max}} + \sum_{\ell=0}^{\ell_{\max} -1} \sum_{m=-\ell}^{\ell} | Y_{\ell m} \rangle \left[ V_{A \ell} - V_{A \ell_{\max}} \right] \langle Y_{\ell m} | \]
The functions \(V_{A\ell}\) are parameterized as: \[ V_{A \ell}(\mathbf{r}) = \sum_{q=1}^{N_{q \ell}} \beta_{A q \ell}\, |\mathbf{r}-\mathbf{R}_{A}|^{n_{A q \ell}}\, e^{-\alpha_{A q \ell} |\mathbf{r}-\mathbf{R}_{A}|^2 } \]
See http://dx.doi.org/10.1063/1.4984046 for more info.
Variable | Type | Dimensions | Description |
---|---|---|---|
lmax_plus_1 |
int |
(nucleus.num) |
\(\ell_{\max} + 1\), one higher than the maximum angular momentum in the removed core orbitals |
z_core |
float |
(nucleus.num) |
Charges to remove |
local_n |
int |
(nucleus.num) |
Number of local functions \(N_{q \ell}\) |
local_num_n_max |
int |
Maximum value of local_n , used for dimensioning arrays |
|
local_exponent |
float |
(ecp.local_num_n_max, nucleus.num) |
\(\alpha_{A q \ell_{\max}}\) |
local_coef |
float |
(ecp.local_num_n_max, nucleus.num) |
\(\beta_{A q \ell_{\max}}\) |
local_power |
int |
(ecp.local_num_n_max, nucleus.num) |
\(n_{A q \ell_{\max}}\) |
non_local_n |
int |
(nucleus.num) |
\(N_{q \ell_{\max}}\) |
non_local_num_n_max |
int |
Maximum value of non_local_n , used for dimensioning arrays |
|
non_local_exponent |
float |
(ecp.non_local_num_n_max, nucleus.num) |
\(\alpha_{A q \ell}\) |
non_local_coef |
float |
(ecp.non_local_num_n_max, nucleus.num) |
\(\beta_{A q \ell}\) |
non_local_power |
int |
(ecp.non_local_num_n_max, nucleus.num) |
\(n_{A q \ell}\) |
5 Basis set (basis group)
We consider here basis functions centered on nuclei. Hence, we enable the possibility to define dummy atoms to place basis functions in random positions.
The atomic basis set is defined as a list of shells. Each shell \(s\) is centered on a center \(A\), possesses a given angular momentum \(l\) and a radial function \(R_s\). The radial function is a linear combination of \(N_{\text{prim}}\) primitive functions that can be of type Slater (\(p=1\)) or Gaussian (\(p=2\)), parameterized by exponents \(\gamma_{ks}\) and coefficients \(a_{ks}\): \[ R_s(\mathbf{r}) = \mathcal{N}_s \vert\mathbf{r}-\mathbf{R}_A\vert^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks}(\gamma_{ks},p)\, \exp \left( - \gamma_{ks} \vert \mathbf{r}-\mathbf{R}_A \vert ^p \right). \]
In the case of Gaussian functions, \(n_s\) is always zero.
Different codes normalize functions at different levels. Computing normalization factors requires the ability to compute overlap integrals, so the normalization factors should be written in the file to ensure that the file is self-contained and does not need the client program to have the ability to compute such integrals.
Some codes assume that the contraction coefficients are for a linear combination of normalized primitives. This implies that a normalization constant for the primitive \(ks\) needs to be computed and stored. If this normalization factor is not required, \(f_{ks}=1\).
Some codes assume that the basis function are normalized. This implies the computation of an extra normalization factor, \(\mathcal{N}_s\). If the the basis function is not considered normalized, \(\mathcal{N}_s=1\).
All the basis set parameters are stored in one-dimensional arrays:
Variable | Type | Dimensions | Description |
---|---|---|---|
type |
str |
Type of basis set: "Gaussian" or "Slater" | |
num |
int |
Total Number of shells | |
prim_num |
int |
Total number of primitives | |
nucleus_index |
index |
(nucleus.num) |
Index of the first shell of each nucleus (\(A\)) |
nucleus_shell_num |
int |
(nucleus.num) |
Number of shells for each nucleus |
shell_ang_mom |
int |
(basis.num) |
Angular momentum 0:S, 1:P, 2:D, ... |
shell_prim_num |
int |
(basis.num) |
Number of primitives in the shell (\(N_{\text{prim}}\)) |
shell_factor |
float |
(basis.num) |
Normalization factor of the shell (\(\mathcal{N}_s\)) |
shell_prim_index |
index |
(basis.num) |
Index of the first primitive in the complete list |
exponent |
float |
(basis.prim_num) |
Exponents of the primitives (\(\gamma_{ks}\)) |
coefficient |
float |
(basis.prim_num) |
Coefficients of the primitives (\(a_{ks}\)) |
prim_factor |
float |
(basis.prim_num) |
Normalization coefficients for the primitives (\(f_{ks}\)) |
For example, consider H2 with the following basis set (in GAMESS format), where both the AOs and primitives are considered normalized:
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = "Gaussian" num = 12 prim_num = 20 nucleus_index = [0 , 6] shell_ang_mom = [0 , 0 , 0 , 1 , 1 , 2 , 0 , 0 , 0 , 1 , 1 , 2 ] shell_prim_num = [5 , 1 , 1 , 1 , 1 , 1 , 5 , 1 , 1 , 1 , 1 , 1 ] shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19] shell_factor = [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.] exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0] prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00 ]
6 Atomic orbitals (ao group)
Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical harmonics, the AOs are ordered in increasing magnetic quantum number (\(-l \le m \le l\)), and in the case of polynomials we impose the canonical ordering of the Libint2 library, i.e
\begin{eqnarray} p & : & p_x, p_y, p_z \nonumber \\ d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, …f_{zzz} \nonumber \\ {\rm etc.} \nonumber \end{eqnarray}AOs are defined as
\[ \chi_i (\mathbf{r}) = \mathcal{N}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]
where \(i\) is the atomic orbital index, \(P\) encodes for either the polynomials or the spherical harmonics, \(\theta(i)\) returns the shell on which the AO is expanded, and \(\eta(i)\) denotes which angular function is chosen. \(\mathcal{N}_i\) is a normalization factor that enables the possibility to have different normalization coefficients within a shell, as in the GAMESS convention where \(\mathcal{N}_{x^2} \ne \mathcal{N}_{xy}\) because \[ \left[ \iiint \left(x-X_A \right)^2 R_{\theta(i)} (\mathbf{r}) dx\, dy\, dz \right]^{-1/2} \ne \left[ \iiint \left( x-X_A \right) \left( y-Y_A \right) R_{\theta(i)} (\mathbf{r}) dx\, dy\, dz \right]^{-1/2}. \]
In such a case, one should set the normalization of the shell (in the Basis set section) to \(\mathcal{N}_{z^2}\), which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the \(xy\) function which should be introduced here should be \(\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}\).
Variable | Type | Dimensions | Description |
---|---|---|---|
cartesian |
int |
1 : true, 0 : false |
|
num |
int |
Total number of atomic orbitals | |
shell |
index |
(ao.num) |
basis set shell for each AO |
normalization |
float |
(ao.num) |
Normalization factors |
6.1 One-electron integrals (ao_1e_int
group)
- \[ \hat{V}_{\text{ne}} = \sum_{A=1}^{N_\text{nucl}} \sum_{i=1}^{N_\text{elec}} \frac{-Z_A }{\vert \mathbf{R}_A - \mathbf{r}_i \vert} \] : electron-nucleus attractive potential,
- \[ \hat{T}_{\text{e}} = \sum_{i=1}^{N_\text{elec}} -\frac{1}{2}\hat{\Delta}_i \] : electronic kinetic energy
- \(\hat{h} = \hat{T}_\text{e} + \hat{V}_\text{ne} + \hat{V}_\text{ecp,l} + \hat{V}_\text{ecp,nl}\) : core electronic Hamiltonian
The one-electron integrals for a one-electron operator \(\hat{O}\) are \[ \langle p \vert \hat{O} \vert q \rangle \], returned as a matrix over atomic orbitals.
Variable | Type | Dimensions | Description |
---|---|---|---|
overlap |
float |
(ao.num, ao.num) |
\(\langle p \vert q \rangle\) |
kinetic |
float |
(ao.num, ao.num) |
\(\langle p \vert \hat{T}_e \vert q \rangle\) |
potential_n_e |
float |
(ao.num, ao.num) |
\(\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle\) |
ecp_local |
float |
(ao.num, ao.num) |
\(\langle p \vert \hat{V}_{\text{ecp,l}} \vert q \rangle\) |
ecp_non_local |
float |
(ao.num, ao.num) |
\(\langle p \vert \hat{V}_{\text{ecp,nl}} \vert q \rangle\) |
core_hamiltonian |
float |
(ao.num, ao.num) |
\(\langle p \vert \hat{h} \vert q \rangle\) |
6.2 Two-electron integrals (ao_2e_int
group)
The two-electron integrals for a two-electron operator \(\hat{O}\) are \[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists notation or \[ ( pr \vert \hat{O} \vert qs ) \] in chemists notation, where \(p,q,r,s\) are indices over atomic orbitals.
Functions are provided to get the indices in physicists or chemists notation.
- \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator.
- \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{\text{erf}(\vert \mathbf{r}_i - \mathbf{r}_j \vert)}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron long range potential
Variable | Type | Dimensions | Description |
---|---|---|---|
eri |
float sparse |
(ao.num, ao.num, ao.num, ao.num) |
Electron repulsion integrals |
eri_lr |
float sparse |
(ao.num, ao.num, ao.num, ao.num) |
Long-range Electron repulsion integrals |
7 Molecular orbitals (mo group)
Variable | Type | Dimensions | Description |
---|---|---|---|
type |
str |
Free text to identify the set of MOs (HF, Natural, Local, CASSCF, etc) | |
num |
int |
Number of MOs | |
coefficient |
float |
(ao.num, mo.num) |
MO coefficients |
class |
str |
(mo.num) |
Choose among: Core, Inactive, Active, Virtual, Deleted |
symmetry |
str |
(mo.num) |
Symmetry in the point group |
occupation |
float |
(mo.num) |
Occupation number |
7.1 One-electron integrals (mo_1e_int
group)
The operators as the same as those defined in the AO one-electron integrals section. Here, the integrals are given in the basis of molecular orbitals.
Variable | Type | Dimensions | Description |
---|---|---|---|
overlap |
float |
(mo.num, mo.num) |
\(\langle i \vert j \rangle\) |
kinetic |
float |
(mo.num, mo.num) |
\(\langle i \vert \hat{T}_e \vert j \rangle\) |
potential_n_e |
float |
(mo.num, mo.num) |
\(\langle i \vert \hat{V}_{\text{ne}} \vert j \rangle\) |
ecp_local |
float |
(mo.num, mo.num) |
\(\langle i \vert \hat{V}_{\text{ecp,l}} \vert j \rangle\) |
ecp_non_local |
float |
(mo.num, mo.num) |
\(\langle i \vert \hat{V}_{\text{ecp,nl}} \vert j \rangle\) |
core_hamiltonian |
float |
(mo.num, mo.num) |
\(\langle i \vert \hat{h} \vert j \rangle\) |
7.2 Two-electron integrals (mo_2e_int
group)
The operators as the same as those defined in the AO two-electron integrals section. Here, the integrals are given in the basis of molecular orbitals.
Variable | Type | Dimensions | Description |
---|---|---|---|
eri |
float sparse |
(mo.num, mo.num, mo.num, mo.num) |
Electron repulsion integrals |
eri_lr |
float sparse |
(mo.num, mo.num, mo.num, mo.num) |
Long-range Electron repulsion integrals |
8 TODO Slater determinants
9 TODO Reduced density matrices (rdm group)
Variable | Type | Dimensions | Description |
---|---|---|---|
one_e |
float |
(mo.num, mo.num) |
|
one_e_up |
float |
(mo.num, mo.num) |
|
one_e_dn |
float |
(mo.num, mo.num) |
|
two_e |
float sparse |
(mo.num, mo.num, mo.num, mo.num) |
10 Appendix
10.1 Python script from table to json
print("""#+begin_src python :tangle trex.json""") print(""" "%s": {"""%(title)) indent = " " f1 = 0 ; f2 = 0 ; f3 = 0 for line in data: line = [ x.replace("~","") for x in line ] name = '"'+line[0]+'"' typ = '"'+line[1]+'"' dims = line[2] if '(' in dims: dims = dims.strip()[1:-1] dims = [ '"'+x.strip()+'"' for x in dims.split(',') ] dims = "[ " + ", ".join(dims) + " ]" else: dims = "[ ]" f1 = max(f1, len(name)) f2 = max(f2, len(typ)) f3 = max(f3, len(dims)) fmt = "%%s%%%ds : [ %%%ds, %%%ds ]" % (f1, f2, f3) for line in data: line = [ x.replace("~","") for x in line ] name = '"'+line[0]+'"' typ = '"'+line[1]+'"' dims = line[2] if '(' in dims: dims = dims.strip()[1:-1] dims = [ '"'+x.strip()+'"' for x in dims.split(',') ] dims.reverse() dims = "[ " + ", ".join(dims) + " ]" else: if dims.strip() != "": dims = "ERROR" else: dims = "[]" buffer = fmt % (indent, name, typ.ljust(f2), dims.ljust(f3)) indent = " , " print(buffer) if last == 0: print(" } ,") else: print(" }") print("""#+end_src""")