UP | HOME

TREX Configuration file

Table of Contents

This page contains information about the general structure of the TREXIO library. The source code of the library can be automatically generated based on the contents of the trex.json configuration file, which itself is compiled from different sections (groups) presented below.

For more information about the automatic generation on the source code or regarding possible modifications, please contact the TREXIO developers.

All quantities are saved in TREXIO file in atomic units. The dimensions of the arrays in the tables below are given in column-major order (as in Fortran), and the ordering of the dimensions is reversed in the produced trex.json configuration file as the library is written in C.

TREXIO currently supports int, float and str types for both single attributes and arrays. Note, that some attributes might have dim type (e.g. num of the nucleus group). This type is treated exactly the same as int with the only difference that dim variables cannot be negative or zero. This additional constraint is required because dim attributes are used internally to allocate memory and to check array boundaries in the memory-safe API. Most of the times, the dim variables contain num suffix.

In Fortran, the arrays are 1-based and in most other languages the arrays are 0-based. Hence, we introduce the index type which is an 1-based int in the Fortran interface and 0-based otherwise.

1 Metadata (metadata group)

As we expect our files to be archived in open-data repositories, we need to give the possibility to the users to store some metadata inside the files. We propose to store the list of names of the codes which have participated to the creation of the file, a list of authors of the file, and a textual description.

Variable Type Dimensions (for arrays) Description
code_num dim   Number of codes used to produce the file
code str (metadata.code_num) Names of the codes used
author_num dim   Number of authors of the file
author str (metadata.author_num) Names of the authors of the file
package_version str   TREXIO version used to produce the file
description str   Text describing the content of file

2 Electron (electron group)

We consider wave functions expressed in the spin-free formalism, where the number of ↑ and ↓ electrons is fixed.

Variable Type Dimensions Description
up_num dim   Number of ↑-spin electrons
dn_num dim   Number of ↓-spin electrons

3 Nucleus (nucleus group)

The nuclei are considered as fixed point charges. Coordinates are given in Cartesian \((x,y,z)\) format.

Variable Type Dimensions Description
num dim   Number of nuclei
charge float (nucleus.num) Charges of the nuclei
coord float (3,nucleus.num) Coordinates of the atoms
label str (nucleus.num) Atom labels
point_group str   Symmetry point group

4 Effective core potentials (ecp group)

An effective core potential (ECP) \(V_A^{\text{ECP}}\) replacing the core electrons of atom \(A\) is expressed as \[ V_A^{\text{ECP}} = V_{A \ell_{\max}} + \sum_{\ell=0}^{\ell_{\max} -1} \sum_{m=-\ell}^{\ell} | Y_{\ell m} \rangle \left[ V_{A \ell} - V_{A \ell_{\max}} \right] \langle Y_{\ell m} | \]

The functions \(V_{A\ell}\) are parameterized as: \[ V_{A \ell}(\mathbf{r}) = \sum_{q=1}^{N_{q \ell}} \beta_{A q \ell}\, |\mathbf{r}-\mathbf{R}_{A}|^{n_{A q \ell}}\, e^{-\alpha_{A q \ell} |\mathbf{r}-\mathbf{R}_{A}|^2 } \]

See http://dx.doi.org/10.1063/1.4984046 for more info.

Variable Type Dimensions Description
lmax_plus_1 int (nucleus.num) \(\ell_{\max} + 1\), one higher than the maximum angular momentum in the removed core orbitals
z_core float (nucleus.num) Charges to remove
local_n int (nucleus.num) Number of local functions \(N_{q \ell}\)
local_num_n_max dim   Maximum value of local_n, used for dimensioning arrays
local_exponent float (ecp.local_num_n_max, nucleus.num) \(\alpha_{A q \ell_{\max}}\)
local_coef float (ecp.local_num_n_max, nucleus.num) \(\beta_{A q \ell_{\max}}\)
local_power int (ecp.local_num_n_max, nucleus.num) \(n_{A q \ell_{\max}}\)
non_local_n int (nucleus.num) \(N_{q \ell_{\max}}\)
non_local_num_n_max dim   Maximum value of non_local_n, used for dimensioning arrays
non_local_exponent float (ecp.non_local_num_n_max, nucleus.num) \(\alpha_{A q \ell}\)
non_local_coef float (ecp.non_local_num_n_max, nucleus.num) \(\beta_{A q \ell}\)
non_local_power int (ecp.non_local_num_n_max, nucleus.num) \(n_{A q \ell}\)

5 Basis set (basis group)

We consider here basis functions centered on nuclei. Hence, we enable the possibility to define dummy atoms to place basis functions in random positions.

The atomic basis set is defined as a list of shells. Each shell \(s\) is centered on a center \(A\), possesses a given angular momentum \(l\) and a radial function \(R_s\). The radial function is a linear combination of \(N_{\text{prim}}\) primitive functions that can be of type Slater (\(p=1\)) or Gaussian (\(p=2\)), parameterized by exponents \(\gamma_{ks}\) and coefficients \(a_{ks}\): \[ R_s(\mathbf{r}) = \mathcal{N}_s \vert\mathbf{r}-\mathbf{R}_A\vert^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks}(\gamma_{ks},p)\, \exp \left( - \gamma_{ks} \vert \mathbf{r}-\mathbf{R}_A \vert ^p \right). \]

In the case of Gaussian functions, \(n_s\) is always zero.

Different codes normalize functions at different levels. Computing normalization factors requires the ability to compute overlap integrals, so the normalization factors should be written in the file to ensure that the file is self-contained and does not need the client program to have the ability to compute such integrals.

Some codes assume that the contraction coefficients are for a linear combination of normalized primitives. This implies that a normalization constant for the primitive \(ks\) needs to be computed and stored. If this normalization factor is not required, \(f_{ks}=1\).

Some codes assume that the basis function are normalized. This implies the computation of an extra normalization factor, \(\mathcal{N}_s\). If the the basis function is not considered normalized, \(\mathcal{N}_s=1\).

All the basis set parameters are stored in one-dimensional arrays:

Variable Type Dimensions Description
type str   Type of basis set: "Gaussian" or "Slater"
num dim   Total Number of shells
prim_num dim   Total number of primitives
nucleus_index index (nucleus.num) Index of the first shell of each nucleus (\(A\))
nucleus_shell_num int (nucleus.num) Number of shells for each nucleus
shell_ang_mom int (basis.num) Angular momentum 0:S, 1:P, 2:D, ...
shell_prim_num int (basis.num) Number of primitives in the shell (\(N_{\text{prim}}\))
shell_factor float (basis.num) Normalization factor of the shell (\(\mathcal{N}_s\))
shell_prim_index index (basis.num) Index of the first primitive in the complete list
exponent float (basis.prim_num) Exponents of the primitives (\(\gamma_{ks}\))
coefficient float (basis.prim_num) Coefficients of the primitives (\(a_{ks}\))
prim_factor float (basis.prim_num) Normalization coefficients for the primitives (\(f_{ks}\))

For example, consider H2 with the following basis set (in GAMESS format), where both the AOs and primitives are considered normalized:

HYDROGEN
S   5
1         3.387000E+01           6.068000E-03
2         5.095000E+00           4.530800E-02
3         1.159000E+00           2.028220E-01
4         3.258000E-01           5.039030E-01
5         1.027000E-01           3.834210E-01
S   1
1         3.258000E-01           1.000000E+00
S   1
1         1.027000E-01           1.000000E+00
P   1
1         1.407000E+00           1.000000E+00
P   1
1         3.880000E-01           1.000000E+00
D   1
1         1.057000E+00           1.0000000

we have:

type     = "Gaussian"
num      = 12
prim_num = 20

nucleus_index    = [0 , 6]
shell_ang_mom    = [0 , 0 , 0 , 1 , 1 , 2 , 0 , 0 , 0 , 1 , 1 , 2 ]
shell_prim_num   = [5 , 1 , 1 , 1 , 1 , 1 , 5 , 1 , 1 , 1 , 1 , 1 ]
shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19]
shell_factor     = [1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]

exponent =
[ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407,
  0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407,
  0.388, 1.057]

coefficient =
[ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0,
  1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0,
  1.0, 1.0, 1.0]

prim_factor =
[ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01
  3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01,
  1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01,
  1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00,
  7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01,
  3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00,
  4.3649547399719840e-01, 1.8135965626177861e+00 ]

6 Atomic orbitals (ao group)

Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. In the case of spherical harmonics, the AOs are ordered in increasing magnetic quantum number (\(-l \le m \le l\)), and in the case of polynomials we impose the canonical ordering of the Libint2 library, i.e

\begin{eqnarray} p & : & p_x, p_y, p_z \nonumber \\ d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, …f_{zzz} \nonumber \\ {\rm etc.} \nonumber \end{eqnarray}

AOs are defined as

\[ \chi_i (\mathbf{r}) = \mathcal{N}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]

where \(i\) is the atomic orbital index, \(P\) encodes for either the polynomials or the spherical harmonics, \(\theta(i)\) returns the shell on which the AO is expanded, and \(\eta(i)\) denotes which angular function is chosen. \(\mathcal{N}_i\) is a normalization factor that enables the possibility to have different normalization coefficients within a shell, as in the GAMESS convention where \(\mathcal{N}_{x^2} \ne \mathcal{N}_{xy}\) because \[ \left[ \iiint \left(x-X_A \right)^2 R_{\theta(i)} (\mathbf{r}) dx\, dy\, dz \right]^{-1/2} \ne \left[ \iiint \left( x-X_A \right) \left( y-Y_A \right) R_{\theta(i)} (\mathbf{r}) dx\, dy\, dz \right]^{-1/2}. \]

In such a case, one should set the normalization of the shell (in the Basis set section) to \(\mathcal{N}_{z^2}\), which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the \(xy\) function which should be introduced here should be \(\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}\).

Variable Type Dimensions Description
cartesian int   1: true, 0: false
num dim   Total number of atomic orbitals
shell index (ao.num) basis set shell for each AO
normalization float (ao.num) Normalization factors

6.1 One-electron integrals (ao_1e_int group)

  • \[ \hat{V}_{\text{ne}} = \sum_{A=1}^{N_\text{nucl}} \sum_{i=1}^{N_\text{elec}} \frac{-Z_A }{\vert \mathbf{R}_A - \mathbf{r}_i \vert} \] : electron-nucleus attractive potential,
  • \[ \hat{T}_{\text{e}} = \sum_{i=1}^{N_\text{elec}} -\frac{1}{2}\hat{\Delta}_i \] : electronic kinetic energy
  • \(\hat{h} = \hat{T}_\text{e} + \hat{V}_\text{ne} + \hat{V}_\text{ecp,l} + \hat{V}_\text{ecp,nl}\) : core electronic Hamiltonian

The one-electron integrals for a one-electron operator \(\hat{O}\) are \[ \langle p \vert \hat{O} \vert q \rangle \], returned as a matrix over atomic orbitals.

Variable Type Dimensions Description
overlap float (ao.num, ao.num) \(\langle p \vert q \rangle\)
kinetic float (ao.num, ao.num) \(\langle p \vert \hat{T}_e \vert q \rangle\)
potential_n_e float (ao.num, ao.num) \(\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle\)
ecp_local float (ao.num, ao.num) \(\langle p \vert \hat{V}_{\text{ecp,l}} \vert q \rangle\)
ecp_non_local float (ao.num, ao.num) \(\langle p \vert \hat{V}_{\text{ecp,nl}} \vert q \rangle\)
core_hamiltonian float (ao.num, ao.num) \(\langle p \vert \hat{h} \vert q \rangle\)

6.2 Two-electron integrals (ao_2e_int group)

The two-electron integrals for a two-electron operator \(\hat{O}\) are \[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists notation or \[ ( pr \vert \hat{O} \vert qs ) \] in chemists notation, where \(p,q,r,s\) are indices over atomic orbitals.

Functions are provided to get the indices in physicists or chemists notation.

  • \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator.
  • \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{\text{erf}(\vert \mathbf{r}_i - \mathbf{r}_j \vert)}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron long range potential
Variable Type Dimensions Description
eri float sparse (ao.num, ao.num, ao.num, ao.num) Electron repulsion integrals
eri_lr float sparse (ao.num, ao.num, ao.num, ao.num) Long-range Electron repulsion integrals

7 Molecular orbitals (mo group)

Variable Type Dimensions Description
type str   Free text to identify the set of MOs (HF, Natural, Local, CASSCF, etc)
num dim   Number of MOs
coefficient float (ao.num, mo.num) MO coefficients
class str (mo.num) Choose among: Core, Inactive, Active, Virtual, Deleted
symmetry str (mo.num) Symmetry in the point group
occupation float (mo.num) Occupation number

7.1 One-electron integrals (mo_1e_int group)

The operators as the same as those defined in the AO one-electron integrals section. Here, the integrals are given in the basis of molecular orbitals.

Variable Type Dimensions Description
overlap float (mo.num, mo.num) \(\langle i \vert j \rangle\)
kinetic float (mo.num, mo.num) \(\langle i \vert \hat{T}_e \vert j \rangle\)
potential_n_e float (mo.num, mo.num) \(\langle i \vert \hat{V}_{\text{ne}} \vert j \rangle\)
ecp_local float (mo.num, mo.num) \(\langle i \vert \hat{V}_{\text{ecp,l}} \vert j \rangle\)
ecp_non_local float (mo.num, mo.num) \(\langle i \vert \hat{V}_{\text{ecp,nl}} \vert j \rangle\)
core_hamiltonian float (mo.num, mo.num) \(\langle i \vert \hat{h} \vert j \rangle\)

7.2 Two-electron integrals (mo_2e_int group)

The operators as the same as those defined in the AO two-electron integrals section. Here, the integrals are given in the basis of molecular orbitals.

Variable Type Dimensions Description
eri float sparse (mo.num, mo.num, mo.num, mo.num) Electron repulsion integrals
eri_lr float sparse (mo.num, mo.num, mo.num, mo.num) Long-range Electron repulsion integrals

8 TODO Slater determinants

9 TODO Reduced density matrices (rdm group)

Variable Type Dimensions Description
one_e float (mo.num, mo.num)  
one_e_up float (mo.num, mo.num)  
one_e_dn float (mo.num, mo.num)  
two_e float sparse (mo.num, mo.num, mo.num, mo.num)  

10 Appendix

10.1 Python script from table to json

print("""#+begin_src python :tangle trex.json""")
print("""    "%s": {"""%(title))
indent = "        "
f1 = 0 ; f2 = 0 ; f3 = 0
for line in data:
    line = [ x.replace("~","") for x in line ]
    name = '"'+line[0]+'"'
    typ  = '"'+line[1]+'"'
    dims = line[2]
    if '(' in dims:
        dims = dims.strip()[1:-1]
        dims = [ '"'+x.strip()+'"' for x in dims.split(',') ]
        dims = "[ " + ", ".join(dims) + " ]"
    else:
        dims = "[ ]"
    f1 = max(f1, len(name))
    f2 = max(f2, len(typ))
    f3 = max(f3, len(dims))

fmt = "%%s%%%ds : [ %%%ds, %%%ds ]" % (f1, f2, f3)
for line in data:
    line = [ x.replace("~","") for x in line ]
    name = '"'+line[0]+'"'
    typ  = '"'+line[1]+'"'
    dims = line[2]
    if '(' in dims:
        dims = dims.strip()[1:-1]
        dims = [ '"'+x.strip()+'"' for x in dims.split(',') ]
        dims.reverse()
        dims = "[ " + ", ".join(dims) + " ]"
    else:
        if dims.strip() != "":
            dims = "ERROR"
        else:
            dims = "[]"
    buffer = fmt % (indent, name, typ.ljust(f2), dims.ljust(f3))
    indent = "      , "
    print(buffer)

if last == 0:
    print("    } ,")
else:
    print("    }")
print("""#+end_src""")

Author: TREX-CoE

Created: 2021-10-08 Fri 11:57

Validate