Examples
Table of Contents
- 1. Accessing sparse quantities
- 1.1. Fortran
- 1.1.1. Declare Temporary variables
- 1.1.2. Obtain the name of the TREXIO file from the command line, and open it for reading
- 1.1.3. Read the nuclear repulsion energy
- 1.1.4. Read the number of molecular orbitals
- 1.1.5. Allocate memory
- 1.1.6. Read one-electron quantities
- 1.1.7. Read two-electron quantities
- 1.1.8. Compute the energy
- 1.1.9. Terminate
- 1.1. Fortran
1 Accessing sparse quantities
1.1 Fortran
program print_energy use trexio implicit none character*(128) :: filename ! Name of the input file integer :: rc ! Return code for error checking integer(8) :: f ! TREXIO file handle character*(128) :: err_msg ! Error message
This program computes the energy as:
\[ E = E_{\text{NN}} + \sum_{ij} \gamma_{ij}\, \langle j | h | i \rangle\, +\, \frac{1}{2} \sum_{ijkl} \Gamma_{ijkl}\, \langle k l | i j \rangle\; \textrm{ with } \; 0 < i,j,k,l \le n \] One needs to read from the TREXIO file:
- \(n\)
- The number of molecular orbitals
- \(E_{\text{NN}}\)
- The nuclear repulsion energy
- \(\gamma_{ij}\)
- The one-body reduced density matrix
- \(\langle j |h| i \rangle\)
- The one-electron Hamiltonian integrals
- \(\Gamma_{ijkl}\)
- The two-body reduced density matrix
- \(\langle k l | i j \rangle\)
- The electron repulsion integrals
integer :: n double precision :: E, E_nn double precision, allocatable :: D(:,:), h0(:,:) double precision, allocatable :: G(:,:,:,:), W(:,:,:,:)
1.1.1 Declare Temporary variables
integer :: i, j, k, l, m integer(8), parameter :: BUFSIZE = 100000_8 integer(8) :: offset, icount, size_max integer :: buffer_index(4,BUFSIZE) double precision :: buffer_values(BUFSIZE) double precision, external :: ddot ! BLAS dot product
1.1.2 Obtain the name of the TREXIO file from the command line, and open it for reading
call getarg(1, filename) f = trexio_open (filename, 'r', TREXIO_HDF5, rc) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error opening TREXIO file: '//trim(err_msg) stop end if
1.1.3 Read the nuclear repulsion energy
rc = trexio_read_nucleus_repulsion(f, E_nn) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error reading nuclear repulsion: '//trim(err_msg) stop end if
1.1.4 Read the number of molecular orbitals
rc = trexio_read_mo_num(f, n) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error reading number of MOs: '//trim(err_msg) stop end if
1.1.5 Allocate memory
allocate( D(n,n), h0(n,n) ) allocate( G(n,n,n,n), W(n,n,n,n) ) G(:,:,:,:) = 0.d0 W(:,:,:,:) = 0.d0
1.1.6 Read one-electron quantities
rc = trexio_has_mo_1e_int_core_hamiltonian(f) if (rc /= TREXIO_SUCCESS) then stop 'No core hamiltonian in file' end if rc = trexio_read_mo_1e_int_core_hamiltonian(f, h0) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error reading core Hamiltonian: '//trim(err_msg) stop end if rc = trexio_has_rdm_1e(f) if (rc /= TREXIO_SUCCESS) then stop 'No 1e RDM in file' end if rc = trexio_read_rdm_1e(f, D) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error reading one-body RDM: '//trim(err_msg) stop end if
1.1.7 Read two-electron quantities
Reading is done with OpenMP. Each thread reads its own buffer, and the buffers are then processed in parallel.
Reading the file requires a lock, so it is done in a critical
section. The offset
variable is shared, and it is incremented in
the critical section. For each read, the function returns in
icount
the number of read integrals, so this variable needs also
to be protected in the critical section when modified.
1.1.7.1 Electron repulsion integrals
rc = trexio_has_mo_2e_int_eri(f) if (rc /= TREXIO_SUCCESS) then stop 'No electron repulsion integrals in file' end if rc = trexio_read_mo_2e_int_eri_size (f, size_max) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error reading number of ERIs: '//trim(err_msg) stop end if offset = 0_8 !$OMP PARALLEL DEFAULT(SHARED) PRIVATE(icount, i, j, k, l, & !$OMP buffer_index, buffer_values, m) icount = BUFSIZE do while (icount == BUFSIZE) !$OMP CRITICAL if (offset < size_max) then rc = trexio_read_mo_2e_int_eri(f, offset, icount, buffer_index, buffer_values) offset = offset + icount else icount = 0 end if !$OMP END CRITICAL do m=1,icount i = buffer_index(1,m) j = buffer_index(2,m) k = buffer_index(3,m) l = buffer_index(4,m) W(i,j,k,l) = buffer_values(m) W(k,j,i,l) = buffer_values(m) W(i,l,k,j) = buffer_values(m) W(k,l,i,j) = buffer_values(m) W(j,i,l,k) = buffer_values(m) W(j,k,l,i) = buffer_values(m) W(l,i,j,k) = buffer_values(m) W(l,k,j,i) = buffer_values(m) end do end do !$OMP END PARALLEL
1.1.7.2 Reduced density matrix
rc = trexio_has_rdm_2e(f) if (rc /= TREXIO_SUCCESS) then stop 'No two-body density matrix in file' end if rc = trexio_read_rdm_2e_size (f, size_max) if (rc /= TREXIO_SUCCESS) then call trexio_string_of_error(rc, err_msg) print *, 'Error reading number of 2-RDM elements: '//trim(err_msg) stop end if offset = 0_8 !$OMP PARALLEL DEFAULT(SHARED) PRIVATE(icount, i, j, k, l, & !$OMP buffer_index, buffer_values, m) icount = bufsize do while (offset < size_max) !$OMP CRITICAL if (offset < size_max) then rc = trexio_read_rdm_2e(f, offset, icount, buffer_index, buffer_values) offset = offset + icount else icount = 0 end if !$OMP END CRITICAL do m=1,icount i = buffer_index(1,m) j = buffer_index(2,m) k = buffer_index(3,m) l = buffer_index(4,m) G(i,j,k,l) = buffer_values(m) end do end do !$OMP END PARALLEL
1.1.8 Compute the energy
When the orbitals are real, we can use
\begin{eqnarray*} E &=& E_{\text{NN}} + \sum_{ij} \gamma_{ij}\, \langle j | h | i \rangle\, +\, \frac{1}{2} \sum_{ijkl} \Gamma_{ijkl}\, \langle k l | i j \rangle \\ &=& E_{\text{NN}} + \sum_{ij} \gamma_{ij}\, \langle i | h | j \rangle\, +\, \frac{1}{2} \sum_{ijkl} \Gamma_{ijkl}\, \langle i j | k l \rangle \\ \end{eqnarray*}
As \((n,m)\) 2D arrays are stored in memory as \((n \times m)\) 1D
arrays, we could pass the matrices to the ddot
BLAS function to
perform the summations in a single call for the 1-electron quantities.
Instead, we prefer to interleave the 1-electron (negative) and
2-electron (positive) summations to have a better cancellation of
numerical errors.
Here \(n^4\) can be larger than the largest possible 32-bit integer,
so it is not safe to pass \(n^4\) to the ddot
BLAS
function. Hence, we perform \(n^2\) loops, using vectors of size \(n^2\).
E = 0.d0 do l=1,n E = E + ddot( n, D(1,l), 1, h0(1,l), 1 ) do k=1,n E = E + 0.5d0 * ddot( n*n, G(1,1,k,l), 1, W(1,1,k,l), 1 ) end do end do E = E + E_nn print *, 'Energy: ', E
1.1.9 Terminate
deallocate( D, h0, G, W ) end program