diff --git a/src/README.org b/src/README.org index e7c8328..8480790 100644 --- a/src/README.org +++ b/src/README.org @@ -30,7 +30,7 @@ variety of platforms and has interfaces for Fortran, Python, and OCaml. - [[./lib.html][The TREXIO library]] - [[./trex.html][Data stored with TREXIO]] - [[./tutorial_benzene.html][Tutorial]] - - [[./examples.html][How-to guide]] + - [[./examples.html][Examples]] - [[./templator_front.html][Front end API]] - [[./templator_hdf5.html][HDF5 back end]] - [[./templator_text.html][TEXT back end]] diff --git a/trex.org b/trex.org index fca943d..fb039b6 100644 --- a/trex.org +++ b/trex.org @@ -677,23 +677,21 @@ power = [ The two-electron integrals for a two-electron operator $\hat{O}$ are \[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists - notation or \[ ( pr \vert \hat{O} \vert qs ) \] in chemists notation, where $p,q,r,s$ are indices over atomic orbitals. - Functions are provided to get the indices in physicists or chemists - notation. - - # TODO: Physicist / Chemist functions +# TODO: Physicist / Chemist functions +# Functions are provided to get the indices in physicists or chemists +# notation. - \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator. - \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} - \sum_{j=1}^{i-1} \frac{\text{erf}(\vert \mathbf{r}_i - + \sum_{j=1}^{i-1} \frac{\text{erf}(\mu\, \vert \mathbf{r}_i - \mathbf{r}_j \vert)}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron long range potential The Cholesky decomposition of the integrals can also be stored: \[ - A_{ijkl} = \sum_{\alpha} G_{il\alpha} G_{jl\alpha} + \langle ij | kl \rangle = \sum_{\alpha} G_{ik\alpha} G_{jl\alpha} \] #+NAME: ao_2e_int @@ -1009,20 +1007,14 @@ power = [ \Gamma_{ijkl}^{\downarrow \downarrow} &=& \langle \Psi | \hat{a}^{\dagger}_{k\beta}\, \hat{a}^{\dagger}_{l\beta} \hat{a}_{j\beta}\, \hat{a}_{i\beta} | \Psi \rangle \\ \Gamma_{ijkl}^{\uparrow \downarrow} &=& - \langle \Psi | \hat{a}^{\dagger}_{k\alpha}\, \hat{a}^{\dagger}_{l\beta} \hat{a}_{j\beta}\, \hat{a}_{i\alpha} | \Psi \rangle \\ + \langle \Psi | \hat{a}^{\dagger}_{k\alpha}\, \hat{a}^{\dagger}_{l\beta} \hat{a}_{j\beta}\, \hat{a}_{i\alpha} | \Psi \rangle + + \langle \Psi | \hat{a}^{\dagger}_{l\alpha}\, \hat{a}^{\dagger}_{k\beta} \hat{a}_{i\beta}\, \hat{a}_{j\alpha} | \Psi \rangle \\ \end{eqnarray*} and the spin-summed one-body density matrix is \[ \Gamma_{ijkl} = \Gamma_{ijkl}^{\uparrow \uparrow} + \Gamma_{ijkl}^{\downarrow \downarrow} + \Gamma_{ijkl}^{\uparrow \downarrow}. \] - The density matrices are normalized such that - \begin{eqnarray*} - \sum_{ij} \Gamma_{ijij}^{\uparrow \uparrow} & = & N_\uparrow\, (N_\uparrow-1)/2 \\ - \sum_{ij} \Gamma_{ijij}^{\downarrow \downarrow} & = & N_\downarrow\, (N_\downarrow-1)/2 \\ - \sum_{ij} \Gamma_{ijij}^{\uparrow \downarrow} & = & N_\uparrow\, N_\downarrow \\ - \sum_{ij} \Gamma_{ijij} & = & (N_\uparrow+N_\downarrow)\, (N_\uparrow+N_\downarrow-1)/2. - \end{eqnarray*} The total energy can be computed as: \[