diff --git a/README.html b/README.html index 6d910e3..653ddc1 100644 --- a/README.html +++ b/README.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- + @@ -348,7 +348,7 @@ and bug reports should be submitted at diff --git a/examples.html b/examples.html index 98f2159..850ee63 100644 --- a/examples.html +++ b/examples.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + -program print_energy @@ -413,8 +413,8 @@ One needs to read from the TREXIO file:
integer :: i, j, k, l, m @@ -429,8 +429,8 @@ One needs to read from the TREXIO file:
call getarg(1, filename) @@ -446,8 +446,8 @@ f = trexio_open (filename, 'r', TREXIO_HDF5
rc = trexio_read_nucleus_repulsion(f, E_nn)
@@ -461,8 +461,8 @@ f = trexio_open (filename, 'r', TREXIO_HDF5
rc = trexio_read_mo_num(f, n)
@@ -476,8 +476,8 @@ f = trexio_open (filename, 'r', TREXIO_HDF5
allocate( D(n,n), h0(n,n) )
@@ -489,8 +489,8 @@ W(:,:,:,:) = 0.d0
rc = trexio_has_mo_1e_int_core_hamiltonian(f) @@ -522,8 +522,8 @@ rc = trexio_read_rdm_1e(f, D)
Reading is done with OpenMP. Each thread reads its own buffer, and @@ -539,8 +539,8 @@ to be protected in the critical section when modified.
rc = trexio_has_mo_2e_int_eri(f) @@ -589,8 +589,8 @@ icount = BUFSIZE
rc = trexio_has_rdm_2e(f) @@ -634,8 +634,8 @@ icount = bufsize
As \((n,m)\) 2D arrays are stored in memory as \((\n times m)\) 1D @@ -669,8 +669,8 @@ E = E + E_nn
deallocate( D, h0, G, W )
@@ -685,7 +685,7 @@ E = E + E_nn
stdint.h
Memory allocation of structures can be facilitated by using the @@ -517,8 +517,8 @@ The maximum string size for the filenames is 4096 characters.
All calls to TREXIO are thread-safe. @@ -526,10 +526,10 @@ TREXIO front end is modular, which simplifies implementation of new back ends.
For example, consider H2 with the following basis set (in GAMESS @@ -1032,18 +1032,17 @@ prim_factor =
Going from the atomic basis set to AOs implies a systematic construction of all the angular functions of each shell. We consider two cases for the angular functions: the real-valued spherical harmonics, and the polynomials in Cartesian coordinates. -In the case of spherical harmonics, the AOs are ordered in -increasing magnetic quantum number (\(-l \le m \le l\)), and in the case -of polynomials we impose the canonical ordering of the -Libint2 library, i.e +In the case of spherical harmonics, the AOs are ordered as +\(0, +1, -1, +2, -2, \dots, +m, -m\) and in the case of polynomials we +impose the canonical (or alphabetical) ordering), i.e
\begin{eqnarray} @@ -1053,6 +1052,11 @@ f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, {\rm etc.} \nonumber \end{eqnarray} ++Note that there is no exception for \(p\) orbitals in spherical +coordinates: the ordering is \(0,+1,-1\) which corresponds \(p_z, p_x, p_y\). +
+AOs are defined as
@@ -1081,13 +1085,13 @@ shell, as in the GAMESS convention whereIn such a case, one should set the normalization of the shell (in -the Basis set section) to \(\mathcal{N}_{z^2}\), which is the +the Basis set section) to \(\mathcal{N}_{z^2}\), which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the \(xy\) function which should be introduced here should be \(\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}\).
-