1
0
mirror of https://github.com/TREX-CoE/trexio.git synced 2024-12-22 20:35:44 +01:00

Merge branch 'master' into cppcheck

This commit is contained in:
Anthony Scemama 2023-05-05 12:55:12 +02:00
commit bb90e6b159

View File

@ -200,7 +200,7 @@ program print_energy
#+begin_src f90
call getarg(1, filename)
f = trexio_open (filename, 'r', TREXIO_HDF5, rc)
f = trexio_open (filename, 'r', TREXIO_AUTO, rc)
if (rc /= TREXIO_SUCCESS) then
call trexio_string_of_error(rc, err_msg)
print *, 'Error opening TREXIO file: '//trim(err_msg)
@ -410,6 +410,139 @@ program print_energy
end program
#+end_src
** Python
:PROPERTIES:
:header-args: :tangle print_energy.py
:END:
#+begin_src python
import sys
import trexio
import numpy as np
BUFSIZE = 100000
#+end_src
This program computes the energy as:
\[
E = E_{\text{NN}} + \sum_{ij} \gamma_{ij}\, \langle j | h | i \rangle\,
+\, \frac{1}{2} \sum_{ijkl} \Gamma_{ijkl}\, \langle k l | i j
\rangle\; \textrm{ with } \; 0 < i,j,k,l \le n
\]
One needs to read from the TREXIO file:
- $n$ :: The number of molecular orbitals
- $E_{\text{NN}}$ :: The nuclear repulsion energy
- $\gamma_{ij}$ :: The one-body reduced density matrix
- $\langle j |h| i \rangle$ :: The one-electron Hamiltonian integrals
- $\Gamma_{ijkl}$ :: The two-body reduced density matrix
- $\langle k l | i j \rangle$ :: The electron repulsion integrals
*** Obtain the name of the TREXIO file from the command line, and open it for reading
#+begin_src python
filename = sys.argv[1]
f = trexio.File(filename, 'r', trexio.TREXIO_AUTO)
#+end_src
*** Read the nuclear repulsion energy
#+begin_src python
E_nn = trexio.read_nucleus_repulsion(f)
#+end_src
*** Read the number of molecular orbitals
#+begin_src python
n = trexio.read_mo_num(f)
#+end_src
*** Read one-electron quantities
#+begin_src python
if not trexio.has_mo_1e_int_core_hamiltonian(f):
print("No core hamiltonian in file")
sys.exit(-1)
h0 = trexio.read_mo_1e_int_core_hamiltonian(f)
if not trexio.has_rdm_1e(f):
print("No 1e RDM in file")
sys.exit(-1)
D = trexio.read_rdm_1e(f)
#+end_src
*** Read two-electron quantities
**** Electron repulsion integrals
#+begin_src python
if not trexio.has_mo_2e_int_eri(f):
print("No electron repulsion integrals in file")
sys.exit(-1)
size_max = trexio.read_mo_2e_int_eri_size(f)
offset = 0
icount = BUFSIZE
feof = False
W = np.zeros( (n,n,n,n) )
while not feof:
buffer_index, buffer_values, icount, feof = trexio.read_mo_2e_int_eri(f, offset, icount)
for m in range(icount):
i, j, k, l = buffer_index[m]
W[i,j,k,l] = buffer_values[m]
W[k,j,i,l] = buffer_values[m]
W[i,l,k,j] = buffer_values[m]
W[k,l,i,j] = buffer_values[m]
W[j,i,l,k] = buffer_values[m]
W[j,k,l,i] = buffer_values[m]
W[l,i,j,k] = buffer_values[m]
W[l,k,j,i] = buffer_values[m]
#+end_src
**** Reduced density matrix
#+begin_src python
if not trexio.has_rdm_2e(f):
print("No two-body density matrix in file")
offset = 0
icount = BUFSIZE
feof = False
G = np.zeros( (n,n,n,n) )
while not feof:
buffer_index, buffer_values, icount, feof = trexio.read_rdm_2e(f, offset, icount)
for m in range(icount):
i, j, k, l = buffer_index[m]
G[i,j,k,l] = buffer_values[m]
#+end_src
*** Compute the energy
When the orbitals are real, we can use
\begin{eqnarray*}
E &=& E_{\text{NN}} + \sum_{ij} \gamma_{ij}\, \langle j | h | i \rangle\,
+\, \frac{1}{2} \sum_{ijkl} \Gamma_{ijkl}\, \langle k l | i j
\rangle \\
&=& E_{\text{NN}} + \sum_{ij} \gamma_{ij}\, \langle i | h | j \rangle\,
+\, \frac{1}{2} \sum_{ijkl} \Gamma_{ijkl}\, \langle i j | k l
\rangle \\
\end{eqnarray*}
#+begin_src python
G = np.reshape(G, (n*n, n*n) )
W = np.reshape(W, (n*n, n*n) )
E = E_nn
E += 0.5*sum( [ np.dot(G[:,l], W[:,l]) for l in range(n*n) ] )
E += sum( [ np.dot(D[:,l], h0[:,l]) for l in range(n) ] )
print (f"Energy: {E}")
#+end_src
* Reading determinants
** Fortran