mirror of
https://github.com/TREX-CoE/trexio.git
synced 2025-01-03 10:06:01 +01:00
commit
b13fac2012
28
configure.ac
28
configure.ac
@ -98,6 +98,31 @@ case $CC in
|
||||
;;
|
||||
esac
|
||||
|
||||
# Check if `cp -r -n` works, otherwise use `cp -r`
|
||||
AC_CHECK_PROGS(CP_PROG, [cp])
|
||||
|
||||
AC_MSG_CHECKING([for cp -r -n option])
|
||||
AC_RUN_IFELSE(
|
||||
[AC_LANG_PROGRAM([
|
||||
#include <unistd.h>
|
||||
],[
|
||||
execl("/bin/sh", "sh", "-c", "mkdir tmpdir1 && \
|
||||
touch tmpdir1/test_file && \
|
||||
$CP_PROG -r -n tmpdir1 tmpdir2 && \
|
||||
exec ls tmpdir2/test_file", NULL);
|
||||
])],
|
||||
[ rm -rf tmpdir1 tmpdir2
|
||||
CP_COMMAND="\"$CP_PROG\", \"-r\", \"-n\""
|
||||
AC_MSG_RESULT([yes])],
|
||||
[ rm -rf tmpdir1 tmpdir2
|
||||
CP_COMMAND="\"$CP_PROG\", \"-r\""
|
||||
AC_MSG_RESULT([no])],
|
||||
[ rm -rf tmpdir1 tmpdir2
|
||||
CP_COMMAND="\"$CP_PROG\", \"-r\""
|
||||
AC_MSG_RESULT([no])]
|
||||
)
|
||||
AC_DEFINE_UNQUOTED([CP_COMMAND], [$CP_COMMAND], [Command used for trexio_cp])
|
||||
|
||||
|
||||
## ---------
|
||||
## Libraries
|
||||
@ -175,6 +200,9 @@ AC_TYPE_INT64_T
|
||||
AC_TYPE_SIZE_T
|
||||
AC_TYPE_UINT32_T
|
||||
AC_TYPE_UINT64_T
|
||||
AC_TYPE_PID_T
|
||||
AC_C_CONST
|
||||
AC_C_INLINE
|
||||
|
||||
# Checks for library functions.
|
||||
# AC_FUNC_MALLOC
|
||||
|
@ -1590,7 +1590,7 @@ def _inquire(file_name: str) -> bool:
|
||||
|
||||
** File copy
|
||||
|
||||
~trexio_cp~ copies a TREXIO file using =/bin/cp=.
|
||||
~trexio_cp~ copies a TREXIO file using =cp=.
|
||||
|
||||
**Input parameters:**
|
||||
1) ~source_file_name~ - string containing the name of the source file
|
||||
@ -1650,24 +1650,14 @@ trexio_cp(const char* source, const char* dest)
|
||||
|
||||
/* Call cp */
|
||||
|
||||
#ifndef CP_COMMAND
|
||||
#define CP_COMMAND "cp", "-r"
|
||||
#endif
|
||||
|
||||
|
||||
pid_t pid = fork();
|
||||
if (pid == 0) {
|
||||
switch (back_end_local) {
|
||||
case TREXIO_TEXT:
|
||||
execl("/bin/cp", "/bin/cp", "-r", "-n", source, dest, (char *)0);
|
||||
case TREXIO_HDF5:
|
||||
#ifdef HAVE_HDF5
|
||||
execl("/bin/cp", "/bin/cp", "-n", source, dest, (char *)0);
|
||||
#else
|
||||
return TREXIO_FILE_ERROR;
|
||||
#endif
|
||||
/*
|
||||
case TREXIO_JSON:
|
||||
execl("/bin/cp", "/bin/cp", source, dest, (char *)0);
|
||||
,*/
|
||||
default:
|
||||
return TREXIO_FILE_ERROR;
|
||||
}
|
||||
execlp("cp", CP_COMMAND, source, dest, (char *)0);
|
||||
} else if (pid < 0) {
|
||||
return TREXIO_FILE_ERROR;
|
||||
} else {
|
||||
|
80
trex.org
80
trex.org
@ -1132,11 +1132,6 @@ power = [
|
||||
|
||||
The Jastrow factor is an $N$-electron function to which the CI
|
||||
expansion is multiplied: $\Psi = \Phi \times \exp(J)$,
|
||||
where
|
||||
|
||||
\[
|
||||
J(\mathbf{r},\mathbf{R}) = J_{\text{eN}}(\mathbf{r},\mathbf{R}) + J_{\text{ee}}(\mathbf{r}) + J_{\text{eeN}}(\mathbf{r},\mathbf{R})
|
||||
\]
|
||||
|
||||
In the following, we use the notations $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ and
|
||||
$R_{i\alpha} = |\mathbf{r}_i - \mathbf{R}_\alpha|$, where indices
|
||||
@ -1152,7 +1147,12 @@ power = [
|
||||
*** CHAMP
|
||||
|
||||
The first form of Jastrow factor is the one used in
|
||||
the [[https://trex-coe.eu/trex-quantum-chemistry-codes/champ][CHAMP]] program.
|
||||
the [[https://trex-coe.eu/trex-quantum-chemistry-codes/champ][CHAMP]] program:
|
||||
|
||||
\[
|
||||
J(\mathbf{r},\mathbf{R}) = J_{\text{eN}}(\mathbf{r},\mathbf{R}) + J_{\text{ee}}(\mathbf{r}) + J_{\text{eeN}}(\mathbf{r},\mathbf{R})
|
||||
\]
|
||||
|
||||
|
||||
$J_{\text{eN}}$ contains electron-nucleus terms:
|
||||
|
||||
@ -1197,24 +1197,70 @@ power = [
|
||||
g_\alpha(r) = e^{-\kappa_\alpha\, r}.
|
||||
\]
|
||||
|
||||
*** mu
|
||||
*** Mu
|
||||
|
||||
The "mu" Jastrow factor has only a single parameter $\mu$ for the
|
||||
[[https://doi.org/10.1063/5.0044683][electron-electron term]]:
|
||||
[[https://aip.scitation.org/doi/10.1063/5.0044683][Mu-Jastrow]] is based on a one-parameter correlation factor that has
|
||||
been introduced in the context of transcorrelated methods. This
|
||||
correlation factor imposes the electron-electron cusp and it is
|
||||
built such that the leading order in $1/r_{12}$ of the effective
|
||||
two-electron potential reproduces the long-range interaction of the
|
||||
range-separated density functional theory. Its analytical
|
||||
expression reads
|
||||
|
||||
\[
|
||||
J(\mathbf{r}, \mathbf{R}) = J_{\text{eeN}}(\mathbf{r}, \mathbf{R}) +
|
||||
J_{\text{eN}}(\mathbf{r}, \mathbf{R})
|
||||
\].
|
||||
|
||||
The electron-electron cusp is incorporated in the three-body term.
|
||||
|
||||
\[
|
||||
J_\text{eeN} (\mathbf{r}, \mathbf{R}) =
|
||||
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1} \, u\left(\mu, r_{ij}\right) \,
|
||||
\Pi_{\alpha=1}^{N_{\text{nucl}}} \, E_\alpha({R}_{i\alpha}) \, E_\alpha({R}_{j\alpha})
|
||||
\]
|
||||
|
||||
$u$ is an electron-electron function given by the symetric function
|
||||
|
||||
\[
|
||||
u\left(\mu, r\right) = \frac{r}{2} \, \left[ 1 - \text{erf}(\mu\, r) \right] - \frac{1}{2 \, \mu \, \sqrt{\pi}} \exp \left[ -(\mu \, r)^2 \right].
|
||||
\]
|
||||
|
||||
This electron-electron term is tuned by the parameter $\mu$ which
|
||||
controls the depth and the range of the Coulomb hole between
|
||||
electrons.
|
||||
|
||||
An envelope function has been introduced to cancel out the Jastrow
|
||||
effects between two-electrons when they are both close to a nucleus
|
||||
(to perform a frozen-core calculation). The envelope function is
|
||||
given by
|
||||
|
||||
\[
|
||||
E_\alpha(R) = 1 - \exp\left( - \gamma_{\alpha} \, R^2 \right).
|
||||
\]
|
||||
|
||||
In particular, if the parameters $\gamma_\alpha$ tend to zero, the
|
||||
Mu-Jastrow factor becomes a two-body Jastrow factor:
|
||||
|
||||
\[
|
||||
J_{\text{ee}}(\mathbf{r}) =
|
||||
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1} r_{ij}
|
||||
\left( 1 - \text{erf}(\mu\, r_{ij})\right) - \frac{1}{\mu\sqrt{\pi}}
|
||||
e^{-(\mu\,r_{ij})^2}
|
||||
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1} \, u\left(\mu, r_{ij}\right)
|
||||
\]
|
||||
|
||||
# It was then updated for frozen-core calculations by introducing a
|
||||
# set of electron-electron-nucleus terms with one parameter per nucleus:
|
||||
and for large $\gamma_\alpha$ it becomes zero.
|
||||
|
||||
# \[
|
||||
# J_{\text{eeN}}(\mathbf{r}) =
|
||||
# \]
|
||||
To increase the flexibility of the Jastrow and improve the
|
||||
electron density the following electron-nucleus term is added
|
||||
|
||||
\[
|
||||
J_{\text{eN}}(\mathbf{r},\mathbf{R}) = \sum_{i=1}^{N_\text{elec}} \sum_{\alpha=1}^{N_\text{nucl}} \,
|
||||
\left[ \exp\left( a_{\alpha} R_{i \alpha}^2 \right) - 1\right].
|
||||
\]
|
||||
|
||||
|
||||
The parameter $\mu$ is stored in the ~ee~ array, the parameters
|
||||
$\gamma_\alpha$ are stored in the ~een~ array, and the parameters
|
||||
$a_\alpha$ are stored in the ~en~ array.
|
||||
|
||||
*** Table of values
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user