diff --git a/README.html b/README.html index 432b903..2fa9b83 100644 --- a/README.html +++ b/README.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +program print_energy @@ -411,8 +411,8 @@ One needs to read from the TREXIO file:
integer :: i, j, k, l, m @@ -427,8 +427,8 @@ One needs to read from the TREXIO file:
call getarg(1, filename) @@ -444,8 +444,8 @@ f = trexio_open (filename, 'r', TREXIO_HDF5
rc = trexio_read_nucleus_repulsion(f, E_nn)
@@ -459,8 +459,8 @@ f = trexio_open (filename, 'r', TREXIO_HDF5
rc = trexio_read_mo_num(f, n)
@@ -474,8 +474,8 @@ f = trexio_open (filename, 'r', TREXIO_HDF5
allocate( D(n,n), h0(n,n) )
@@ -487,8 +487,8 @@ W(:,:,:,:) = 0.d0
rc = trexio_has_mo_1e_int_core_hamiltonian(f) @@ -520,8 +520,8 @@ rc = trexio_read_rdm_1e(f, D)
Reading is done with OpenMP. Each thread reads its own buffer, and @@ -537,8 +537,8 @@ to be protected in the critical section when modified.
rc = trexio_has_mo_2e_int_eri(f) @@ -587,8 +587,8 @@ icount = BUFSIZE
rc = trexio_has_rdm_2e(f) @@ -632,8 +632,8 @@ icount = bufsize
When the orbitals are real, we can use @@ -679,8 +679,8 @@ E = E + E_nn
deallocate( D, h0, G, W )
@@ -695,7 +695,7 @@ E = E + E_nn
stdint.h
Memory allocation of structures can be facilitated by using the @@ -536,8 +536,8 @@ The maximum string size for the filenames is 4096 characters.
All calls to TREXIO are thread-safe. @@ -545,10 +545,10 @@ TREXIO front end is modular, which simplifies implementation of new back ends.
TREXIO_FILE_ERROR |
18 | -'Invalid file handle' | +'Invalid file' |
For example, consider H2 with the following basis set (in GAMESS @@ -1046,8 +1046,8 @@ prim_factor =
Going from the atomic basis set to AOs implies a systematic @@ -1100,13 +1100,13 @@ shell, as in the GAMESS convention where
In such a case, one should set the normalization of the shell (in -the Basis set section) to \(\mathcal{N}_{z^2}\), which is the +the Basis set section) to \(\mathcal{N}_{z^2}\), which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the \(xy\) function which should be introduced here should be \(\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}\).
-