TREX Configuration file
Table of Contents
-
-
- 1. Metadata -
- 2. Electron -
- 3. Nucleus -
- 4. TODO Effective core potentials -
- 5. Basis set -
- 6. Atomic orbitals +
- 1. Metadata +
- 2. Electron +
- 3. Nucleus +
- 4. TODO Effective core potentials +
- 5. Basis set +
- 6. Atomic orbitals -
- 7. Molecular orbitals +
- 7. Molecular orbitals -
- 8. TODO Slater determinants -
- 9. TODO Reduced density matrices -
- 10. Appendix +
- 8. TODO Slater determinants +
- 9. TODO Reduced density matrices +
- 10. Appendix
index
type which is an
1 Metadata
+1 Metadata
As we expect our files to be archived in open-data repositories, we @@ -312,7 +390,7 @@ which have participated to the creation of the file, a list of authors of the file, and a textual description.
-"metadata": { - "code_num" : [ "int", [] ] - , "code" : [ "str", [ "metadata.code_num" ] ] - , "author_num" : [ "int", [] ] - , "author" : [ "str", [ "metadata.author_num" ] ] - , "description" : [ "str", [] ] -} , --
2 Electron
+2 Electron
We consider wave functions expressed in the spin-free formalism, where the number of ↑ and ↓ electrons is fixed.
-"electron": { - "up_num" : [ "int", [] ] - , "dn_num" : [ "int", [] ] -} , --
3 Nucleus
+3 Nucleus
The nuclei are considered as fixed point charges. Coordinates are given in Cartesian \((x,y,z)\) format.
-"nucleus": { - "num" : [ "int" , [] ] - , "charge" : [ "float", [ "nucleus.num" ] ] - , "coord" : [ "float", [ "nucleus.num", "3" ] ] - , "label" : [ "str" , [ "nucleus.num" ] ] - , "point_group" : [ "str" , [] ] -} , --
4 TODO Effective core potentials
+4 TODO Effective core potentials
An effective core potential (ECP) \(V_A^{\text{pp}}\) replacing the @@ -539,7 +587,7 @@ letters are parameters.
"ecp": { - "lmax_plus_1" : [ "int" , [ "nucleus.num" ] ] - , "z_core" : [ "float", [ "nucleus.num" ] ] - , "local_n" : [ "int" , [ "nucleus.num" ] ] - , "local_num_n_max" : [ "int" , [] ] - , "local_exponent" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ] ] - , "local_coef" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ] ] - , "local_power" : [ "int" , [ "nucleus.num", "ecp.local_num_n_max" ] ] - , "non_local_n" : [ "int" , [ "nucleus.num" ] ] - , "non_local_num_n_max" : [ "int" , [] ] - , "non_local_exponent" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ] - , "non_local_coef" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ] - , "non_local_power" : [ "int" , [ "nucleus.num", "ecp.non_local_num_n_max" ] ] -} , --
5 Basis set
+5 Basis set
We consider here basis functions centered on nuclei. Hence, we enable @@ -712,7 +742,7 @@ If the the basis function is not considered normalized, \(\mathcal{N}_s=1\). All the basis set parameters are stored in one-dimensional arrays:
-"basis": { - "type" : [ "str" , [] ] - , "num" : [ "int" , [] ] - , "prim_num" : [ "int" , [] ] - , "nucleus_index" : [ "index", [ "nucleus.num" ] ] - , "nucleus_shell_num" : [ "int" , [ "nucleus.num" ] ] - , "shell_ang_mom" : [ "int" , [ "basis.num" ] ] - , "shell_prim_num" : [ "int" , [ "basis.num" ] ] - , "shell_factor" : [ "float", [ "basis.num" ] ] - , "shell_prim_index" : [ "index", [ "basis.num" ] ] - , "exponent" : [ "float", [ "basis.prim_num" ] ] - , "coefficient" : [ "float", [ "basis.prim_num" ] ] - , "prim_factor" : [ "float", [ "basis.prim_num" ] ] -} , --
For example, consider H2 with the following basis set (in GAMESS format), where both the AOs and primitives are considered normalized: @@ -891,8 +903,8 @@ prim_factor = -
6 Atomic orbitals
+6 Atomic orbitals
Going from the atomic basis set to AOs implies a systematic @@ -940,13 +952,13 @@ shell, as in the GAMESS convention where
In such a case, one should set the normalization of the shell (in -the Basis set section) to \(\mathcal{N}_{z^2}\), which is the +the Basis set section) to \(\mathcal{N}_{z^2}\), which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the \(xy\) function which should be introduced here should be \(\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}\).
-