1
0
mirror of https://github.com/TREX-CoE/trexio.git synced 2024-12-22 12:23:54 +01:00

Documentation

This commit is contained in:
Anthony Scemama 2023-01-03 12:04:05 +01:00
parent 202fb0be1f
commit 484ef632e7

View File

@ -957,18 +957,18 @@ power = [
on a reference wave function $\Psi$, where $\hat{T}_1$ is the single excitation operator,
\[
\hat{T}_1 = \sum_{ia} t_{i}^{a}\, \hat{a}^\dagger_a \hat{a}_i
\],
\hat{T}_1 = \sum_{ia} t_{i}^{a}\, \hat{a}^\dagger_a \hat{a}_i,
\]
$\hat{T}_2$ is the double excitation operator,
\[
\hat{T}_2 = \frac{1}{4} \sum_{ijab} t_{ij}^{ab}\, \hat{a}^\dagger_a \hat{a}^\dagger_b \hat{a}_j \hat{a}_i
\],
\hat{T}_2 = \frac{1}{4} \sum_{ijab} t_{ij}^{ab}\, \hat{a}^\dagger_a \hat{a}^\dagger_b \hat{a}_j \hat{a}_i,
\]
/etc/. Indices $i,j,a,b$ denote molecular orbital indices.
/etc/. Indices $i$, $j$, $a$ and $b$ denote molecular orbital indices.
Wave functions obtained with perturbation theory of configuration
Wave functions obtained with perturbation theory or configuration
interaction are of the form
\[ |\Phi\rangle = \hat{T}|\Psi\rangle \]