mirror of
https://github.com/TREX-CoE/trexio.git
synced 2025-01-08 20:33:36 +01:00
commit
44b81fbc8f
@ -1,7 +1,7 @@
|
|||||||
(lang dune 3.1)
|
(lang dune 3.1)
|
||||||
|
|
||||||
(name trexio)
|
(name trexio)
|
||||||
(version 2.5.0)
|
(version 2.5.1)
|
||||||
|
|
||||||
(generate_opam_files false)
|
(generate_opam_files false)
|
||||||
|
|
||||||
|
@ -8,10 +8,10 @@ ml_file = "trexio.ml"
|
|||||||
mli_file = ml_file+"i"
|
mli_file = ml_file+"i"
|
||||||
|
|
||||||
def check_version():
|
def check_version():
|
||||||
with open('trexio.opam','r') as f:
|
with open('dune-project','r') as f:
|
||||||
for line in f:
|
for line in f:
|
||||||
if line.startswith("version"):
|
if line.startswith("(version"):
|
||||||
ocaml_version = line.split(':')[1].strip()[1:-1]
|
ocaml_version = line.split()[1].strip().replace(')','')
|
||||||
break
|
break
|
||||||
with open('../../configure.ac','r') as f:
|
with open('../../configure.ac','r') as f:
|
||||||
for line in f:
|
for line in f:
|
||||||
|
16
trex.org
16
trex.org
@ -684,13 +684,19 @@ power = [
|
|||||||
\]
|
\]
|
||||||
|
|
||||||
where $i$ is the atomic orbital index, $P$ refers to either
|
where $i$ is the atomic orbital index, $P$ refers to either
|
||||||
polynomials or spherical harmonics, and $s(i)$ specifies the shell
|
polynomials in $x,y,z$ or real solid harmonics
|
||||||
on which the AO is expanded.
|
\[
|
||||||
|
S^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}}\; r^\ell
|
||||||
|
Y^m_{\ell}(\theta,\varphi)
|
||||||
|
\]
|
||||||
|
(see [[https://en.wikipedia.org/wiki/Solid_harmonics][Wikipedia]]), and $s(i)$
|
||||||
|
specifies the shell on which the AO is expanded.
|
||||||
|
|
||||||
|
|
||||||
$\eta(i)$ denotes the chosen angular function. The AOs can be
|
$\eta(i)$ denotes the chosen angular function. The AOs can be
|
||||||
expressed using real spherical harmonics or polynomials in Cartesian
|
expressed using real solid harmonics or polynomials in Cartesian
|
||||||
coordinates. In the case of real spherical harmonics, the AOs are
|
coordinates. In the case of real solid harmonics, the AOs are
|
||||||
ordered as $0, +1, -1, +2, -2, \dots, + m, -m$ (see [[https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Real_spherical_harmonics][Wikipedia]]). In
|
ordered as $0, +1, -1, +2, -2, \dots, + m, -m$). In
|
||||||
the case of polynomials, the canonical (or alphabetical) ordering is
|
the case of polynomials, the canonical (or alphabetical) ordering is
|
||||||
used,
|
used,
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user