1
0
mirror of https://github.com/TREX-CoE/trexio.git synced 2024-12-23 04:43:57 +01:00

More documentation in TREX JSON

This commit is contained in:
Anthony Scemama 2021-05-21 14:04:19 +02:00
parent 9ec75c2892
commit 32a44df569

144
trex.org
View File

@ -1,6 +1,11 @@
#+TITLE: TREX Configuration file
All the quantities are saved in atomic units.
The dimensions of the arrays in the tables below are given in
column-major order (as in Fortran), and the ordering of the dimensions
is reversed in the produces JSON configuration file as the library is
written in C.
#+begin_src python :tangle trex.json
{
#+end_src
@ -8,6 +13,12 @@ All the quantities are saved in atomic units.
* Metadata
As we expect our files to be archived in open-data repositories, we
need to give the possibility to the users to store some metadata
inside the files. We propose to store the list of names of the codes
which have participated to the creation of the file, a list of
authors of the file, and a textual description.
#+NAME: metadata
| ~code_num~ | ~int~ | | Number of codes used to produce the file |
| ~code~ | ~str~ | ~(metadata.code_num)~ | Names of the codes used |
@ -31,9 +42,12 @@ All the quantities are saved in atomic units.
* Electron
We consider wave functions expressed in the spin-free formalism, where
the number of \uparrow and \downarrow electrons is fixed.
#+NAME:electron
| ~up_num~ | ~int~ | Number of $\uparrow$-spin electrons |
| ~dn_num~ | ~int~ | Number of $\downarrow$-spin electrons |
| ~up_num~ | ~int~ | Number of \uparrow-spin electrons |
| ~dn_num~ | ~int~ | Number of \downarrow-spin electrons |
#+CALL: json(data=electron, title="electron")
#+RESULTS:
@ -48,10 +62,13 @@ All the quantities are saved in atomic units.
* Nucleus
The nuclei are considered as fixed point charges. Coordinates are
given in Cartesian $(x,y,z)$ format.
#+NAME: nucleus
| ~num~ | ~int~ | | Number of nuclei |
| ~charge~ | ~float~ | ~(nucleus.num)~ | Charges of the nuclei |
| ~coord~ | ~float~ | ~(nucleus.num, 3)~ | Coordinates of the atoms |
| ~coord~ | ~float~ | ~(3,nucleus.num)~ | Coordinates of the atoms |
| ~label~ | ~str~ | ~(nucleus.num)~ | Atom labels |
| ~point_group~ | ~str~ | | Symmetry point group |
@ -71,22 +88,50 @@ All the quantities are saved in atomic units.
* TODO Effective core potentials
- $\hat{V}_\text{ecp,l} =$ : local component
- $\hat{V}_\text{ecp,nl} =$ : non-local component
An effective core potential (ECP) $V_A^{\text{pp}}$ replacing the
core electrons of atom $A$ is the sum of a local component
$V_A^{\text{l}}$ and a non-local component $V_A^{\text{nl}}$.
The local component is given by
\[
\hat{V}_A^{\text{l}}(r) = -\frac{Z_A^{\text{eff}}}{r} +
\frac{Z_A^{\text{eff}}}{r}\, \exp\left( -\alpha_A\, r^2\right) +
Z_{\text{eff}}\, \alpha_A\, r\, \exp\left( -\beta_A\, r^2\right) +
\gamma_A \exp\left( -\delta_A\, r^2\right),
\]
and the component obtained after localizing the non-local operator is
\[
\hat{V}_A^{\text{nl}}(r) =
\zeta_A\, \exp\left( -\eta_A\, r^2\right) |0\rangle \langle 0| +
\mu_A \, \exp\left( -\nu_A \, r^2\right) |1\rangle \langle 1|
\]
where $r=|\mathbf{r-R}_A|$ is the distance to the nucleus on which the
potential is centered, $Z_A^{\text{eff}}$ is the effective charge
due to the removed electrons, $|0\rangle \langle 0|$
and $|1\rangle \langle 1|$ are projections over zero and one principal angular
momenta, respectively (generalization to higher angular momenta is
straightforward), and all the parameters labeled by Greek
letters are parameters.
- $\hat{V}_\text{ecp,l} = \sum_A \hat{V}_A^{\text{l}}$ : local component
- $\hat{V}_\text{ecp,nl} = \sum_A \hat{V}_A^{\text{nl}}$ : non-local component
#+NAME: ecp
| ~lmax_plus_1~ | ~int~ | ~(nucleus.num)~ | $l_{\max} + 1$ |
| ~z_core~ | ~float~ | ~(nucleus.num)~ | Charges to remove |
| ~local_n~ | ~int~ | ~(nucleus.num)~ | Number of local function |
| ~local_num_n_max~ | ~int~ | | Maximum value of ~local_n~ |
| ~local_exponent~ | ~float~ | ~(nucleus.num, ecp.local_num_n_max)~ | |
| ~local_coef~ | ~float~ | ~(nucleus.num, ecp.local_num_n_max)~ | |
| ~local_power~ | ~int~ | ~(nucleus.num, ecp.local_num_n_max)~ | |
| ~local_exponent~ | ~float~ | ~(ecp.local_num_n_max, nucleus.num)~ | |
| ~local_coef~ | ~float~ | ~(ecp.local_num_n_max, nucleus.num)~ | |
| ~local_power~ | ~int~ | ~(ecp.local_num_n_max, nucleus.num)~ | |
| ~non_local_n~ | ~int~ | ~(nucleus.num)~ | |
| ~non_local_num_n_max~ | ~int~ | | |
| ~non_local_exponent~ | ~float~ | ~(nucleus.num, ecp.non_local_num_n_max)~ | |
| ~non_local_coef~ | ~float~ | ~(nucleus.num, ecp.non_local_num_n_max)~ | |
| ~non_local_power~ | ~int~ | ~(nucleus.num, ecp.non_local_num_n_max)~ | |
| ~non_local_exponent~ | ~float~ | ~(ecp.non_local_num_n_max, nucleus.num)~ | |
| ~non_local_coef~ | ~float~ | ~(ecp.non_local_num_n_max, nucleus.num)~ | |
| ~non_local_power~ | ~int~ | ~(ecp.non_local_num_n_max, nucleus.num)~ | |
#+CALL: json(data=ecp, title="ecp")
@ -112,6 +157,32 @@ All the quantities are saved in atomic units.
* Basis set
We consider here basis functions centered on nuclei. Hence, we enable
the possibility to define \emph{dummy atoms} to place basis functions
in random positions.
The atomic basis set is defined as a list of shells. Each shell $s$ is
centered on a center $A$, possesses a given angular momentum $l$ and a
radial function $R_s$. The radial function is a linear combination of
$N_{\text{prim}}$ /primitive/ functions that can be of type
Slater ($p=1$) or Gaussian ($p=2$),
parameterized by exponents $\gamma_{ks}$ and coefficients $a_{ks}$:
\[
R_s(\mathbf{r}) = \mathcal{N}_s \vert\mathbf{r}-\mathbf{R}_A\vert^{n_s}
\sum_{k=1}^{N_{\text{prim}}} a_{ks}
\exp \left( - \gamma_{ks}
\vert \mathbf{r}-\mathbf{R}_A \vert ^p \right).
\]
In the case of Gaussian functions, $n_s$ is always zero. The
normalization factor $\mathcal{N}_s$ ensures that all the functions
of the shell are normalized to unity. As this normalization requires
the ability to compute overlap integrals, the normalization factors
should be written in the file to ensure that the file is
self-contained and does not require the client program to have the
ability to compute such integrals.
#+NAME: basis
| ~type~ | ~str~ | | Type of basis set: "Gaussian" or "Slater" |
| ~shell_num~ | ~int~ | | Total Number of shells |
@ -146,11 +217,53 @@ All the quantities are saved in atomic units.
* Atomic orbitals
Going from the atomic basis set to AOs implies a systematic
construction of all the angular functions of each shell. We
consider two cases for the angular functions: the real-valued
spherical harmonics, and the polynomials in Cartesian coordinates.
In the case of spherical harmonics, the AOs are ordered in
increasing magnetic quantum number ($-l \le m \le l$), and in the case
of polynomials we impose the canonical ordering of the
Libint2 library, i.e
\begin{eqnarray}
p & : & p_x, p_y, p_z \nonumber \\
d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\
f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, …f_{zzz} \nonumber \\
{\rm etc.} \nonumber
\end{eqnarray}
AOs are defined as
\[
\chi_i (\mathbf{r}) = \mathcal{N}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r})
\]
where $i$ is the atomic orbital index,
$P$ encodes for either the
polynomials or the spherical harmonics, $\theta(i)$ returns the
shell on which the AO is expanded, and $\eta(i)$ denotes which
angular function is chosen.
$\mathcal{N}_i$ is a normalization factor that enables the
possibility to have different normalization coefficients within a
shell, as in the GAMESS convention where
$\mathcal{N}_{x^2} \ne \mathcal{N}_{xy}$ because
\[ \left[ \iiint \left(x-X_A \right)^2 R_{\theta(i)}
(\mathbf{r}) dx\, dy\, dz \right]^{-1/2} \ne
\left[ \iiint \left( x-X_A \right) \left( y-Y_A \right) R_{\theta(i)}
(\mathbf{r}) dx\, dy\, dz \right]^{-1/2}. \]
In such a case, one should set the normalization of the shell (in
the [[Basis set][Basis set]] section) to $\mathcal{N}_{z^2}$, which is the
normalization factor of the atomic orbitals in spherical coordinates.
The normalization factor of the $xy$ function which should be
introduced here should be $\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}$.
#+NAME: ao
| ~num~ | ~int~ | | Number of atomic orbitals |
| ~cartesian~ | ~int~ | | ~1~: true, ~0~: false |
| ~shell~ | ~int~ | ~ao.num~ | ID of the basis set shell |
| ~normalization~ | ~float~ | ~ao.num~ | Normalization factor of the AOs |
| ~num~ | ~int~ | | Total number of atomic orbitals |
| ~shell~ | ~int~ | ~ao.num~ | basis set shell for each AO |
| ~normalization~ | ~float~ | ~ao.num~ | Normalization factors |
#+CALL: json(data=ao, title="ao")
@ -169,7 +282,7 @@ All the quantities are saved in atomic units.
** One-electron integrals
- \[ \hat{V}_{\text{ne}} = \sum_{A=1}^{N_\text{nucl}}
\sum_{i=1}^{N_\text{elec}} \frac{-Q_A }{\vert \mathbf{R}_A -
\sum_{i=1}^{N_\text{elec}} \frac{-Z_A }{\vert \mathbf{R}_A -
\mathbf{r}_i \vert} \] : electron-nucleus attractive potential,
- \[ \hat{T}_{\text{e}} =
\sum_{i=1}^{N_\text{elec}} -\frac{1}{2}\hat{\Delta}_i \] : electronic kinetic energy
@ -371,6 +484,7 @@ for line in data:
if '(' in dims:
dims = dims.strip()[1:-1]
dims = [ '"'+x.strip()+'"' for x in dims.split(',') ]
dims.reverse()
dims = "[ " + ", ".join(dims) + " ]"
else:
dims = "[]"