mirror of
https://github.com/TREX-CoE/trexio.git
synced 2024-11-03 20:54:07 +01:00
More documentation in TREX JSON
This commit is contained in:
parent
9ec75c2892
commit
32a44df569
316
trex.org
316
trex.org
@ -1,6 +1,11 @@
|
||||
#+TITLE: TREX Configuration file
|
||||
|
||||
All the quantities are saved in atomic units.
|
||||
The dimensions of the arrays in the tables below are given in
|
||||
column-major order (as in Fortran), and the ordering of the dimensions
|
||||
is reversed in the produces JSON configuration file as the library is
|
||||
written in C.
|
||||
|
||||
#+begin_src python :tangle trex.json
|
||||
{
|
||||
#+end_src
|
||||
@ -8,9 +13,15 @@ All the quantities are saved in atomic units.
|
||||
|
||||
* Metadata
|
||||
|
||||
As we expect our files to be archived in open-data repositories, we
|
||||
need to give the possibility to the users to store some metadata
|
||||
inside the files. We propose to store the list of names of the codes
|
||||
which have participated to the creation of the file, a list of
|
||||
authors of the file, and a textual description.
|
||||
|
||||
#+NAME: metadata
|
||||
| ~code_num~ | ~int~ | | Number of codes used to produce the file |
|
||||
| ~code ~ | ~str~ | ~(metadata.code_num)~ | Names of the codes used |
|
||||
| ~code~ | ~str~ | ~(metadata.code_num)~ | Names of the codes used |
|
||||
| ~author_num~ | ~int~ | | Number of authors of the file |
|
||||
| ~author~ | ~str~ | ~(metadata.author_num)~ | Names of the authors of the file |
|
||||
| ~description~ | ~str~ | | Text describing the content of file |
|
||||
@ -19,21 +30,24 @@ All the quantities are saved in atomic units.
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"metadata": {
|
||||
"code_num" : [ "int", [] ]
|
||||
, "code " : [ "str", [ "metadata.code_num" ] ]
|
||||
, "author_num" : [ "int", [] ]
|
||||
, "author" : [ "str", [ "metadata.author_num" ] ]
|
||||
, "description" : [ "str", [] ]
|
||||
} ,
|
||||
"metadata": {
|
||||
"code_num" : [ "int", [] ]
|
||||
, "code " : [ "str", [ "metadata.code_num" ] ]
|
||||
, "author_num" : [ "int", [] ]
|
||||
, "author" : [ "str", [ "metadata.author_num" ] ]
|
||||
, "description" : [ "str", [] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
|
||||
* Electron
|
||||
|
||||
We consider wave functions expressed in the spin-free formalism, where
|
||||
the number of \uparrow and \downarrow electrons is fixed.
|
||||
|
||||
#+NAME:electron
|
||||
| ~up_num~ | ~int~ | Number of $\uparrow$-spin electrons |
|
||||
| ~dn_num~ | ~int~ | Number of $\downarrow$-spin electrons |
|
||||
| ~up_num~ | ~int~ | Number of \uparrow-spin electrons |
|
||||
| ~dn_num~ | ~int~ | Number of \downarrow-spin electrons |
|
||||
|
||||
#+CALL: json(data=electron, title="electron")
|
||||
#+RESULTS:
|
||||
@ -48,12 +62,15 @@ All the quantities are saved in atomic units.
|
||||
|
||||
* Nucleus
|
||||
|
||||
The nuclei are considered as fixed point charges. Coordinates are
|
||||
given in Cartesian $(x,y,z)$ format.
|
||||
|
||||
#+NAME: nucleus
|
||||
| ~num~ | ~int~ | | Number of nuclei |
|
||||
| ~charge~ | ~float~ | ~(nucleus.num)~ | Charges of the nuclei |
|
||||
| ~coord~ | ~float~ | ~(nucleus.num, 3)~ | Coordinates of the atoms |
|
||||
| ~label~ | ~str~ | ~(nucleus.num)~ | Atom labels |
|
||||
| ~point_group~ | ~str~ | | Symmetry point group |
|
||||
| ~num~ | ~int~ | | Number of nuclei |
|
||||
| ~charge~ | ~float~ | ~(nucleus.num)~ | Charges of the nuclei |
|
||||
| ~coord~ | ~float~ | ~(3,nucleus.num)~ | Coordinates of the atoms |
|
||||
| ~label~ | ~str~ | ~(nucleus.num)~ | Atom labels |
|
||||
| ~point_group~ | ~str~ | | Symmetry point group |
|
||||
|
||||
#+CALL: json(data=nucleus, title="nucleus")
|
||||
#+RESULTS:
|
||||
@ -71,47 +88,101 @@ All the quantities are saved in atomic units.
|
||||
|
||||
* TODO Effective core potentials
|
||||
|
||||
- $\hat{V}_\text{ecp,l} =$ : local component
|
||||
- $\hat{V}_\text{ecp,nl} =$ : non-local component
|
||||
An effective core potential (ECP) $V_A^{\text{pp}}$ replacing the
|
||||
core electrons of atom $A$ is the sum of a local component
|
||||
$V_A^{\text{l}}$ and a non-local component $V_A^{\text{nl}}$.
|
||||
The local component is given by
|
||||
|
||||
\[
|
||||
\hat{V}_A^{\text{l}}(r) = -\frac{Z_A^{\text{eff}}}{r} +
|
||||
\frac{Z_A^{\text{eff}}}{r}\, \exp\left( -\alpha_A\, r^2\right) +
|
||||
Z_{\text{eff}}\, \alpha_A\, r\, \exp\left( -\beta_A\, r^2\right) +
|
||||
\gamma_A \exp\left( -\delta_A\, r^2\right),
|
||||
\]
|
||||
|
||||
and the component obtained after localizing the non-local operator is
|
||||
|
||||
\[
|
||||
\hat{V}_A^{\text{nl}}(r) =
|
||||
\zeta_A\, \exp\left( -\eta_A\, r^2\right) |0\rangle \langle 0| +
|
||||
\mu_A \, \exp\left( -\nu_A \, r^2\right) |1\rangle \langle 1|
|
||||
\]
|
||||
|
||||
where $r=|\mathbf{r-R}_A|$ is the distance to the nucleus on which the
|
||||
potential is centered, $Z_A^{\text{eff}}$ is the effective charge
|
||||
due to the removed electrons, $|0\rangle \langle 0|$
|
||||
and $|1\rangle \langle 1|$ are projections over zero and one principal angular
|
||||
momenta, respectively (generalization to higher angular momenta is
|
||||
straightforward), and all the parameters labeled by Greek
|
||||
letters are parameters.
|
||||
|
||||
- $\hat{V}_\text{ecp,l} = \sum_A \hat{V}_A^{\text{l}}$ : local component
|
||||
- $\hat{V}_\text{ecp,nl} = \sum_A \hat{V}_A^{\text{nl}}$ : non-local component
|
||||
|
||||
#+NAME: ecp
|
||||
| ~lmax_plus_1~ | ~int~ | ~(nucleus.num)~ | $l_{\max} + 1$ |
|
||||
| ~z_core~ | ~float~ | ~(nucleus.num)~ | Charges to remove |
|
||||
| ~local_n~ | ~int~ | ~(nucleus.num)~ | Number of local function |
|
||||
| ~local_num_n_max~ | ~int~ | | Maximum value of ~local_n~ |
|
||||
| ~local_exponent~ | ~float~ | ~(nucleus.num, ecp.local_num_n_max)~ | |
|
||||
| ~local_coef~ | ~float~ | ~(nucleus.num, ecp.local_num_n_max)~ | |
|
||||
| ~local_power~ | ~int~ | ~(nucleus.num, ecp.local_num_n_max)~ | |
|
||||
| ~local_exponent~ | ~float~ | ~(ecp.local_num_n_max, nucleus.num)~ | |
|
||||
| ~local_coef~ | ~float~ | ~(ecp.local_num_n_max, nucleus.num)~ | |
|
||||
| ~local_power~ | ~int~ | ~(ecp.local_num_n_max, nucleus.num)~ | |
|
||||
| ~non_local_n~ | ~int~ | ~(nucleus.num)~ | |
|
||||
| ~non_local_num_n_max~ | ~int~ | | |
|
||||
| ~non_local_exponent~ | ~float~ | ~(nucleus.num, ecp.non_local_num_n_max)~ | |
|
||||
| ~non_local_coef~ | ~float~ | ~(nucleus.num, ecp.non_local_num_n_max)~ | |
|
||||
| ~non_local_power~ | ~int~ | ~(nucleus.num, ecp.non_local_num_n_max)~ | |
|
||||
| ~non_local_exponent~ | ~float~ | ~(ecp.non_local_num_n_max, nucleus.num)~ | |
|
||||
| ~non_local_coef~ | ~float~ | ~(ecp.non_local_num_n_max, nucleus.num)~ | |
|
||||
| ~non_local_power~ | ~int~ | ~(ecp.non_local_num_n_max, nucleus.num)~ | |
|
||||
|
||||
#+CALL: json(data=ecp, title="ecp")
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"ecp": {
|
||||
"lmax_plus_1" : [ "int" , [ "nucleus.num" ] ]
|
||||
, "z_core" : [ "float", [ "nucleus.num" ] ]
|
||||
, "local_n" : [ "int" , [ "nucleus.num" ] ]
|
||||
, "local_num_n_max" : [ "int" , [] ]
|
||||
, "local_exponent" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ] ]
|
||||
, "local_coef" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ] ]
|
||||
, "local_power" : [ "int" , [ "nucleus.num", "ecp.local_num_n_max" ] ]
|
||||
, "non_local_n" : [ "int" , [ "nucleus.num" ] ]
|
||||
, "non_local_num_n_max" : [ "int" , [] ]
|
||||
, "non_local_exponent" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
|
||||
, "non_local_coef" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
|
||||
, "non_local_power" : [ "int" , [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
|
||||
} ,
|
||||
"ecp": {
|
||||
"lmax_plus_1" : [ "int" , [ "nucleus.num" ] ]
|
||||
, "z_core" : [ "float", [ "nucleus.num" ] ]
|
||||
, "local_n" : [ "int" , [ "nucleus.num" ] ]
|
||||
, "local_num_n_max" : [ "int" , [] ]
|
||||
, "local_exponent" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ] ]
|
||||
, "local_coef" : [ "float", [ "nucleus.num", "ecp.local_num_n_max" ] ]
|
||||
, "local_power" : [ "int" , [ "nucleus.num", "ecp.local_num_n_max" ] ]
|
||||
, "non_local_n" : [ "int" , [ "nucleus.num" ] ]
|
||||
, "non_local_num_n_max" : [ "int" , [] ]
|
||||
, "non_local_exponent" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
|
||||
, "non_local_coef" : [ "float", [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
|
||||
, "non_local_power" : [ "int" , [ "nucleus.num", "ecp.non_local_num_n_max" ] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
|
||||
* Basis set
|
||||
|
||||
We consider here basis functions centered on nuclei. Hence, we enable
|
||||
the possibility to define \emph{dummy atoms} to place basis functions
|
||||
in random positions.
|
||||
|
||||
The atomic basis set is defined as a list of shells. Each shell $s$ is
|
||||
centered on a center $A$, possesses a given angular momentum $l$ and a
|
||||
radial function $R_s$. The radial function is a linear combination of
|
||||
$N_{\text{prim}}$ /primitive/ functions that can be of type
|
||||
Slater ($p=1$) or Gaussian ($p=2$),
|
||||
parameterized by exponents $\gamma_{ks}$ and coefficients $a_{ks}$:
|
||||
\[
|
||||
R_s(\mathbf{r}) = \mathcal{N}_s \vert\mathbf{r}-\mathbf{R}_A\vert^{n_s}
|
||||
\sum_{k=1}^{N_{\text{prim}}} a_{ks}
|
||||
\exp \left( - \gamma_{ks}
|
||||
\vert \mathbf{r}-\mathbf{R}_A \vert ^p \right).
|
||||
\]
|
||||
|
||||
In the case of Gaussian functions, $n_s$ is always zero. The
|
||||
normalization factor $\mathcal{N}_s$ ensures that all the functions
|
||||
of the shell are normalized to unity. As this normalization requires
|
||||
the ability to compute overlap integrals, the normalization factors
|
||||
should be written in the file to ensure that the file is
|
||||
self-contained and does not require the client program to have the
|
||||
ability to compute such integrals.
|
||||
|
||||
|
||||
#+NAME: basis
|
||||
| ~type~ | ~str~ | | Type of basis set: "Gaussian" or "Slater" |
|
||||
| ~shell_num~ | ~int~ | | Total Number of shells |
|
||||
@ -146,96 +217,138 @@ All the quantities are saved in atomic units.
|
||||
|
||||
* Atomic orbitals
|
||||
|
||||
Going from the atomic basis set to AOs implies a systematic
|
||||
construction of all the angular functions of each shell. We
|
||||
consider two cases for the angular functions: the real-valued
|
||||
spherical harmonics, and the polynomials in Cartesian coordinates.
|
||||
In the case of spherical harmonics, the AOs are ordered in
|
||||
increasing magnetic quantum number ($-l \le m \le l$), and in the case
|
||||
of polynomials we impose the canonical ordering of the
|
||||
Libint2 library, i.e
|
||||
|
||||
\begin{eqnarray}
|
||||
p & : & p_x, p_y, p_z \nonumber \\
|
||||
d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\
|
||||
f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, …f_{zzz} \nonumber \\
|
||||
{\rm etc.} \nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
AOs are defined as
|
||||
|
||||
\[
|
||||
\chi_i (\mathbf{r}) = \mathcal{N}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r})
|
||||
\]
|
||||
|
||||
where $i$ is the atomic orbital index,
|
||||
$P$ encodes for either the
|
||||
polynomials or the spherical harmonics, $\theta(i)$ returns the
|
||||
shell on which the AO is expanded, and $\eta(i)$ denotes which
|
||||
angular function is chosen.
|
||||
$\mathcal{N}_i$ is a normalization factor that enables the
|
||||
possibility to have different normalization coefficients within a
|
||||
shell, as in the GAMESS convention where
|
||||
$\mathcal{N}_{x^2} \ne \mathcal{N}_{xy}$ because
|
||||
\[ \left[ \iiint \left(x-X_A \right)^2 R_{\theta(i)}
|
||||
(\mathbf{r}) dx\, dy\, dz \right]^{-1/2} \ne
|
||||
\left[ \iiint \left( x-X_A \right) \left( y-Y_A \right) R_{\theta(i)}
|
||||
(\mathbf{r}) dx\, dy\, dz \right]^{-1/2}. \]
|
||||
|
||||
In such a case, one should set the normalization of the shell (in
|
||||
the [[Basis set][Basis set]] section) to $\mathcal{N}_{z^2}$, which is the
|
||||
normalization factor of the atomic orbitals in spherical coordinates.
|
||||
The normalization factor of the $xy$ function which should be
|
||||
introduced here should be $\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}$.
|
||||
|
||||
#+NAME: ao
|
||||
| ~num~ | ~int~ | | Number of atomic orbitals |
|
||||
| ~cartesian~ | ~int~ | | ~1~: true, ~0~: false |
|
||||
| ~shell~ | ~int~ | ~ao.num~ | ID of the basis set shell |
|
||||
| ~normalization~ | ~float~ | ~ao.num~ | Normalization factor of the AOs |
|
||||
| ~num~ | ~int~ | | Total number of atomic orbitals |
|
||||
| ~shell~ | ~int~ | ~ao.num~ | basis set shell for each AO |
|
||||
| ~normalization~ | ~float~ | ~ao.num~ | Normalization factors |
|
||||
|
||||
#+CALL: json(data=ao, title="ao")
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"ao": {
|
||||
"num" : [ "int" , [] ]
|
||||
, "cartesian" : [ "int" , [] ]
|
||||
, "shell" : [ "int" , [] ]
|
||||
, "normalization" : [ "float", [] ]
|
||||
} ,
|
||||
"ao": {
|
||||
"num" : [ "int" , [] ]
|
||||
, "cartesian" : [ "int" , [] ]
|
||||
, "shell" : [ "int" , [] ]
|
||||
, "normalization" : [ "float", [] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
|
||||
** One-electron integrals
|
||||
|
||||
- \[ \hat{V}_{\text{ne}} = \sum_{A=1}^{N_\text{nucl}}
|
||||
\sum_{i=1}^{N_\text{elec}} \frac{-Q_A }{\vert \mathbf{R}_A -
|
||||
\mathbf{r}_i \vert} \] : electron-nucleus attractive potential,
|
||||
- \[ \hat{T}_{\text{e}} =
|
||||
\sum_{i=1}^{N_\text{elec}} -\frac{1}{2}\hat{\Delta}_i \] : electronic kinetic energy
|
||||
- $\hat{h} = \hat{T}_\text{e} + \hat{V}_\text{ne} +
|
||||
\hat{V}_\text{ecp,l} + \hat{V}_\text{ecp,nl}$ : core electronic Hamiltonian
|
||||
- \[ \hat{V}_{\text{ne}} = \sum_{A=1}^{N_\text{nucl}}
|
||||
\sum_{i=1}^{N_\text{elec}} \frac{-Z_A }{\vert \mathbf{R}_A -
|
||||
\mathbf{r}_i \vert} \] : electron-nucleus attractive potential,
|
||||
- \[ \hat{T}_{\text{e}} =
|
||||
\sum_{i=1}^{N_\text{elec}} -\frac{1}{2}\hat{\Delta}_i \] : electronic kinetic energy
|
||||
- $\hat{h} = \hat{T}_\text{e} + \hat{V}_\text{ne} +
|
||||
\hat{V}_\text{ecp,l} + \hat{V}_\text{ecp,nl}$ : core electronic Hamiltonian
|
||||
|
||||
The one-electron integrals for a one-electron operator $\hat{O}$ are
|
||||
\[ \langle p \vert \hat{O} \vert q \rangle \], returned as a matrix
|
||||
over atomic orbitals.
|
||||
The one-electron integrals for a one-electron operator $\hat{O}$ are
|
||||
\[ \langle p \vert \hat{O} \vert q \rangle \], returned as a matrix
|
||||
over atomic orbitals.
|
||||
|
||||
#+NAME: ao_1e_int
|
||||
| ~overlap~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert q \rangle$ |
|
||||
| ~kinetic~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{T}_e \vert q \rangle$ |
|
||||
| ~potential_n_e~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$ |
|
||||
| ~ecp_local~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ecp,l} \vert q \rangle$ |
|
||||
| ~ecp_non_local~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ecp,nl} \vert q \rangle$ |
|
||||
| ~core_hamiltonian~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{h} \vert q \rangle$ |
|
||||
#+NAME: ao_1e_int
|
||||
| ~overlap~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert q \rangle$ |
|
||||
| ~kinetic~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{T}_e \vert q \rangle$ |
|
||||
| ~potential_n_e~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$ |
|
||||
| ~ecp_local~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ecp,l} \vert q \rangle$ |
|
||||
| ~ecp_non_local~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ecp,nl} \vert q \rangle$ |
|
||||
| ~core_hamiltonian~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{h} \vert q \rangle$ |
|
||||
|
||||
#+CALL: json(data=ao_1e_int, title="ao_1e_int")
|
||||
#+CALL: json(data=ao_1e_int, title="ao_1e_int")
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"ao_1e_int": {
|
||||
"overlap" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "kinetic" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "potential_n_e" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "ecp_local" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "ecp_non_local" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "core_hamiltonian" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"ao_1e_int": {
|
||||
"overlap" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "kinetic" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "potential_n_e" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "ecp_local" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "ecp_non_local" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
, "core_hamiltonian" : [ "float", [ "ao.num", "ao.num" ] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
|
||||
** Two-electron integrals
|
||||
|
||||
The two-electron integrals for a two-electron operator $\hat{O}$ are
|
||||
\[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists
|
||||
notation or \[ ( pr \vert \hat{O} \vert qs ) \] in chemists
|
||||
notation, where $p,q,r,s$ are indices over atomic orbitals.
|
||||
The two-electron integrals for a two-electron operator $\hat{O}$ are
|
||||
\[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists
|
||||
notation or \[ ( pr \vert \hat{O} \vert qs ) \] in chemists
|
||||
notation, where $p,q,r,s$ are indices over atomic orbitals.
|
||||
|
||||
Functions are provided to get the indices in physicists or chemists
|
||||
notation.
|
||||
Functions are provided to get the indices in physicists or chemists
|
||||
notation.
|
||||
|
||||
# TODO: Physicist / Chemist functions
|
||||
# TODO: Physicist / Chemist functions
|
||||
|
||||
- \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator.
|
||||
- \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}}
|
||||
\sum_{j=1}^{i-1} \frac{\text{erf}(\vert \mathbf{r}_i -
|
||||
\mathbf{r}_j \vert)}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron long range potential
|
||||
- \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator.
|
||||
- \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}}
|
||||
\sum_{j=1}^{i-1} \frac{\text{erf}(\vert \mathbf{r}_i -
|
||||
\mathbf{r}_j \vert)}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron long range potential
|
||||
|
||||
#+NAME: ao_2e_int
|
||||
| ~eri~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Electron repulsion integrals |
|
||||
| ~eri_lr~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Long-range Electron repulsion integrals |
|
||||
#+NAME: ao_2e_int
|
||||
| ~eri~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Electron repulsion integrals |
|
||||
| ~eri_lr~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Long-range Electron repulsion integrals |
|
||||
|
||||
#+CALL: json(data=ao_2e_int, title="ao_2e_int")
|
||||
#+CALL: json(data=ao_2e_int, title="ao_2e_int")
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"ao_2e_int": {
|
||||
"eri" : [ "float sparse", [ "ao.num", "ao.num", "ao.num", "ao.num" ] ]
|
||||
, "eri_lr" : [ "float sparse", [ "ao.num", "ao.num", "ao.num", "ao.num" ] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
#+RESULTS:
|
||||
:results:
|
||||
#+begin_src python :tangle trex.json
|
||||
"ao_2e_int": {
|
||||
"eri" : [ "float sparse", [ "ao.num", "ao.num", "ao.num", "ao.num" ] ]
|
||||
, "eri_lr" : [ "float sparse", [ "ao.num", "ao.num", "ao.num", "ao.num" ] ]
|
||||
} ,
|
||||
#+end_src
|
||||
:end:
|
||||
|
||||
* Molecular orbitals
|
||||
|
||||
@ -371,6 +484,7 @@ for line in data:
|
||||
if '(' in dims:
|
||||
dims = dims.strip()[1:-1]
|
||||
dims = [ '"'+x.strip()+'"' for x in dims.split(',') ]
|
||||
dims.reverse()
|
||||
dims = "[ " + ", ".join(dims) + " ]"
|
||||
else:
|
||||
dims = "[]"
|
||||
|
Loading…
Reference in New Issue
Block a user