TREXIO source code documentation
+ + +-
@@ -343,7 +347,7 @@ and bug reports should be submitted at
From 25e6a12497211b1e0b00d457b23b52b5a6fdf72b Mon Sep 17 00:00:00 2001 From: q-posev <45995097+q-posev@users.noreply.github.com> Date: Fri, 19 Nov 2021 11:51:20 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20TREX-CoE?= =?UTF-8?q?/trexio@d44883f0ea0d615a20a89cf6a11a1d6aa2514087=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.html | 8 +- Sparse.html | 16 +- index.html | 8 +- templator_front.html | 380 +++++++++++++++++++++---------------------- templator_hdf5.html | 52 +++--- templator_text.html | 112 ++++++------- trex.html | 116 ++++++------- 7 files changed, 350 insertions(+), 342 deletions(-) diff --git a/README.html b/README.html index 601640a..b1fc645 100644 --- a/README.html +++ b/README.html @@ -3,9 +3,10 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- + +
As the size of the dataset should be extensible, the simplest
@@ -256,8 +256,8 @@ The offset can be used with fseek(69L*offset, SEEK_SET)
We need to declare the number of rows of the dataset as @@ -278,7 +278,7 @@ If the offset+num > nmax, we need to extend the dataset.
stdint.h
Memory allocation of structures can be facilitated by using the @@ -502,8 +502,8 @@ The maximum string size for the filenames is 4096 characters.
All calls to TREXIO are thread-safe. @@ -511,10 +511,10 @@ TREXIO front end is modular, which simplifies implementation of new back ends.
For example, consider H2 with the following basis set (in GAMESS @@ -1015,8 +1015,8 @@ prim_factor =
Going from the atomic basis set to AOs implies a systematic @@ -1064,13 +1064,13 @@ shell, as in the GAMESS convention where
In such a case, one should set the normalization of the shell (in -the Basis set section) to \(\mathcal{N}_{z^2}\), which is the +the Basis set section) to \(\mathcal{N}_{z^2}\), which is the normalization factor of the atomic orbitals in spherical coordinates. The normalization factor of the \(xy\) function which should be introduced here should be \(\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}\).
-