mirror of
https://github.com/TREX-CoE/trexio.git
synced 2024-12-31 16:45:59 +01:00
Fixed documentation
This commit is contained in:
parent
d63bc67892
commit
2465293581
210
trex.org
210
trex.org
@ -144,8 +144,18 @@
|
||||
|
||||
** Electron (electron group)
|
||||
|
||||
We consider wave functions expressed in the spin-free formalism, where
|
||||
the number of \uparrow and \downarrow electrons is fixed.
|
||||
The chemical system consists of nuclei and electrons, where the
|
||||
nuclei are considered as fixed point charges with Cartesian
|
||||
coordinates. The wave function is stored in the spin-free
|
||||
formalism, and therefore, it is necessary for the user to
|
||||
explicitly store the number of electrons with spin up
|
||||
($N_\uparrow$) and spin down ($N_\downarrow$). These numbers
|
||||
correspond to the normalization of the spin-up and spin-down
|
||||
single-particle reduced density matrices.
|
||||
|
||||
We consider wave functions expressed in the spin-free formalism, where
|
||||
the number of \uparrow and \downarrow electrons is fixed.
|
||||
|
||||
|
||||
#+NAME:electron
|
||||
| Variable | Type | Dimensions | Description |
|
||||
@ -208,9 +218,9 @@
|
||||
|
||||
*** Gaussian and Slater-type orbitals
|
||||
|
||||
We consider here basis functions centered on nuclei. Hence, we enable
|
||||
the possibility to define /dummy atoms/ to place basis functions in
|
||||
random positions.
|
||||
We consider here basis functions centered on nuclei. Hence, it is
|
||||
possibile to define /dummy atoms/ to place basis functions in
|
||||
arbitrary positions.
|
||||
|
||||
The atomic basis set is defined as a list of shells. Each shell $s$ is
|
||||
centered on a center $A$, possesses a given angular momentum $l$ and a
|
||||
@ -553,50 +563,42 @@ power = [
|
||||
* Orbitals
|
||||
** Atomic orbitals (ao group)
|
||||
|
||||
Going from the atomic basis set to AOs implies a systematic
|
||||
construction of all the angular functions of each shell. We
|
||||
consider two cases for the angular functions: the real-valued
|
||||
spherical harmonics, and the polynomials in Cartesian coordinates.
|
||||
In the case of real spherical harmonics, the AOs are ordered as
|
||||
$0, +1, -1, +2, -2, \dots, +m, -m$ (see [[https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Real_spherical_harmonics][Wikipedia]]).
|
||||
In the case of polynomials we
|
||||
impose the canonical (or alphabetical) ordering), i.e
|
||||
|
||||
\begin{eqnarray}
|
||||
p & : & p_x, p_y, p_z \nonumber \\
|
||||
d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\
|
||||
f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, …f_{zzz} \nonumber \\
|
||||
{\rm etc.} \nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
Note that there is no exception for $p$ orbitals in spherical
|
||||
coordinates: the ordering is $0,+1,-1$ which corresponds $p_z, p_x, p_y$.
|
||||
|
||||
AOs are defined as
|
||||
|
||||
\[
|
||||
\chi_i (\mathbf{r}) = \mathcal{N}_i\, P_{\eta(i)}(\mathbf{r})\, R_{s(i)} (\mathbf{r})
|
||||
\chi_i (\mathbf{r}) = \mathcal{N}_i'\, P_{\eta(i)}(\mathbf{r})\, R_{s(i)} (\mathbf{r})
|
||||
\]
|
||||
|
||||
where $i$ is the atomic orbital index,
|
||||
$P$ encodes for either the
|
||||
polynomials or the spherical harmonics, $s(i)$ returns the
|
||||
shell on which the AO is expanded, and $\eta(i)$ denotes which
|
||||
angular function is chosen.
|
||||
$\mathcal{N}_i$ is a normalization factor that enables the
|
||||
possibility to have different normalization coefficients within a
|
||||
shell, as in the GAMESS convention where
|
||||
$\mathcal{N}_{x^2} \ne \mathcal{N}_{xy}$ because
|
||||
\[ \left[ \iiint \left(x-X_A \right)^2 R_{s(i)}
|
||||
(\mathbf{r}) dx\, dy\, dz \right]^{-1/2} \ne
|
||||
\left[ \iiint \left( x-X_A \right) \left( y-Y_A \right) R_{s(i)}
|
||||
(\mathbf{r}) dx\, dy\, dz \right]^{-1/2}. \]
|
||||
where $i$ is the atomic orbital index, $P$ refers to either
|
||||
polynomials or spherical harmonics, and $s(i)$ specifies the shell
|
||||
on which the AO is expanded.
|
||||
|
||||
$\eta(i)$ denotes the chosen angular function. The AOs can be
|
||||
expressed using real spherical harmonics or polynomials in Cartesian
|
||||
coordinates. In the case of real spherical harmonics, the AOs are
|
||||
ordered as $0, +1, -1, +2, -2, \dots, + m, -m$ (see [[https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Real_spherical_harmonics][Wikipedia]]). In
|
||||
the case of polynomials, the canonical (or alphabetical) ordering is
|
||||
used,
|
||||
|
||||
| $p$ | $p_x, p_y, p_z$ |
|
||||
| $d$ | $d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz}$ |
|
||||
| $f$ | $f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}$, |
|
||||
| | $f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, f_{zzz}$ |
|
||||
| $\vdots$ | |
|
||||
|
||||
Note that for \(p\) orbitals in spherical coordinates, the ordering
|
||||
is $0,+1,-1$ which corresponds to $p_z, p_x, p_y$.
|
||||
|
||||
$\mathcal{N}_i'$ is a normalization factor that allows for different
|
||||
normalization coefficients within a single shell, as in the GAMESS
|
||||
convention where each individual function is unit-normalized.
|
||||
Using GAMESS convention, the normalization factor of the shell
|
||||
$\mathcal{N}_d$ in the ~basis~ group is appropriate for instance
|
||||
for the $d_z^2$ function (i.e.
|
||||
$\mathcal{N}_{d}\equiv\mathcal{N}_{z^2}$) but not for the $d_{xy}$
|
||||
AO, so the correction factor $\mathcal{N}_i'$ for $d_{xy}$ in the
|
||||
~ao~ groups is the ratio $\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}$.
|
||||
|
||||
In such a case, one should set the normalization of the shell (in
|
||||
the [[Basis set (basis group)][Basis set]] section) to $\mathcal{N}_{z^2}$, which is the
|
||||
normalization factor of the atomic orbitals in spherical coordinates.
|
||||
The normalization factor of the $xy$ function which should be
|
||||
introduced here should be $\frac{\mathcal{N}_{xy}}{\mathcal{N}_{z^2}}$.
|
||||
|
||||
#+NAME: ao
|
||||
| Variable | Type | Dimensions | Description |
|
||||
@ -637,18 +639,18 @@ power = [
|
||||
over atomic orbitals.
|
||||
|
||||
#+NAME: ao_1e_int
|
||||
| Variable | Type | Dimensions | Description |
|
||||
|-----------------------+---------+--------------------+--------------------------------------------------------------------------|
|
||||
| ~overlap~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert q \rangle$ |
|
||||
| ~kinetic~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{T}_e \vert q \rangle$ |
|
||||
| ~potential_n_e~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$ |
|
||||
| ~ecp~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ecp}} \vert q \rangle$ |
|
||||
| ~core_hamiltonian~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{h} \vert q \rangle$ |
|
||||
| ~overlap_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert q \rangle$ (imaginary part) |
|
||||
| ~kinetic_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{T}_e \vert q \rangle$ (imaginary part) |
|
||||
| ~potential_n_e_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$ (imaginary part) |
|
||||
| ~ecp_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ECP}} \vert q \rangle$ (imaginary part) |
|
||||
| ~core_hamiltonian_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{h} \vert q \rangle$ (imaginary part) |
|
||||
| Variable | Type | Dimensions | Description |
|
||||
|-----------------------+---------+--------------------+--------------------------------------------------------------------------|
|
||||
| ~overlap~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert q \rangle$ |
|
||||
| ~kinetic~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{T}_e \vert q \rangle$ |
|
||||
| ~potential_n_e~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$ |
|
||||
| ~ecp~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ecp}} \vert q \rangle$ |
|
||||
| ~core_hamiltonian~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{h} \vert q \rangle$ |
|
||||
| ~overlap_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert q \rangle$ (imaginary part) |
|
||||
| ~kinetic_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{T}_e \vert q \rangle$ (imaginary part) |
|
||||
| ~potential_n_e_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ne}} \vert q \rangle$ (imaginary part) |
|
||||
| ~ecp_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{V}_{\text{ECP}} \vert q \rangle$ (imaginary part) |
|
||||
| ~core_hamiltonian_im~ | ~float~ | ~(ao.num, ao.num)~ | $\langle p \vert \hat{h} \vert q \rangle$ (imaginary part) |
|
||||
|
||||
#+CALL: json(data=ao_1e_int, title="ao_1e_int")
|
||||
|
||||
@ -679,9 +681,9 @@ power = [
|
||||
\[ \langle p q \vert \hat{O} \vert r s \rangle \] in physicists
|
||||
notation, where $p,q,r,s$ are indices over atomic orbitals.
|
||||
|
||||
# TODO: Physicist / Chemist functions
|
||||
# Functions are provided to get the indices in physicists or chemists
|
||||
# notation.
|
||||
# TODO: Physicist / Chemist functions
|
||||
# Functions are provided to get the indices in physicists or chemists
|
||||
# notation.
|
||||
|
||||
- \[ \hat{W}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}} \sum_{j=1}^{i-1} \frac{1}{\vert \mathbf{r}_i - \mathbf{r}_j \vert} \] : electron-electron repulsive potential operator.
|
||||
- \[ \hat{W}^{lr}_{\text{ee}} = \sum_{i=2}^{N_\text{elec}}
|
||||
@ -695,14 +697,14 @@ power = [
|
||||
\]
|
||||
|
||||
#+NAME: ao_2e_int
|
||||
| Variable | Type | Dimensions | Description |
|
||||
|-----------------------+----------------+---------------------------------------------------+-----------------------------------------------|
|
||||
| ~eri~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Electron repulsion integrals |
|
||||
| ~eri_lr~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Long-range electron repulsion integrals |
|
||||
| ~eri_cholesky_num~ | ~dim~ | | Number of Cholesky vectors for ERI |
|
||||
| ~eri_cholesky~ | ~float sparse~ | ~(ao.num, ao.num, ao_2e_int.eri_cholesky_num)~ | Cholesky decomposition of the ERI |
|
||||
| ~eri_lr_cholesky_num~ | ~dim~ | | Number of Cholesky vectors for long range ERI |
|
||||
| ~eri_lr_cholesky~ | ~float sparse~ | ~(ao.num, ao.num, ao_2e_int.eri_lr_cholesky_num)~ | Cholesky decomposition of the long range ERI |
|
||||
| Variable | Type | Dimensions | Description |
|
||||
|-----------------------+----------------+---------------------------------------------------+-----------------------------------------------|
|
||||
| ~eri~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Electron repulsion integrals |
|
||||
| ~eri_lr~ | ~float sparse~ | ~(ao.num, ao.num, ao.num, ao.num)~ | Long-range electron repulsion integrals |
|
||||
| ~eri_cholesky_num~ | ~dim~ | | Number of Cholesky vectors for ERI |
|
||||
| ~eri_cholesky~ | ~float sparse~ | ~(ao.num, ao.num, ao_2e_int.eri_cholesky_num)~ | Cholesky decomposition of the ERI |
|
||||
| ~eri_lr_cholesky_num~ | ~dim~ | | Number of Cholesky vectors for long range ERI |
|
||||
| ~eri_lr_cholesky~ | ~float sparse~ | ~(ao.num, ao.num, ao_2e_int.eri_lr_cholesky_num)~ | Cholesky decomposition of the long range ERI |
|
||||
|
||||
#+CALL: json(data=ao_2e_int, title="ao_2e_int")
|
||||
|
||||
@ -1085,12 +1087,12 @@ power = [
|
||||
* Correlation factors
|
||||
** Jastrow factor (jastrow group)
|
||||
|
||||
The Jastrow factor is an $N$-electron function to which the CI
|
||||
expansion is multiplied: $\Psi = \Phi \times \exp(J)$,
|
||||
The Jastrow factor is an $N$-electron function which multiplies the CI
|
||||
expansion: $\Psi = \Phi \times \exp(J)$,
|
||||
|
||||
In the following, we use the notations $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ and
|
||||
$R_{i\alpha} = |\mathbf{r}_i - \mathbf{R}_\alpha|$, where indices
|
||||
$i$ and $j$ correspond to electrons and $\alpha$ to nuclei.
|
||||
$i$ and $j$ refer to electrons and $\alpha$ to nuclei.
|
||||
|
||||
Parameters for multiple forms of Jastrow factors can be saved in
|
||||
TREXIO files, and are described in the following sections. These
|
||||
@ -1109,54 +1111,74 @@ power = [
|
||||
\]
|
||||
|
||||
|
||||
$J_{\text{eN}}$ contains electron-nucleus terms:
|
||||
$J_{\text{eN}}$ contains electron-nucleus terms:
|
||||
|
||||
\[
|
||||
J_{\text{eN}}(\mathbf{r},\mathbf{R}) = \sum_{i=1}^{N_\text{elec}} \sum_{\alpha=1}^{N_\text{nucl}}
|
||||
\frac{a_{1,\alpha}\, g_\alpha(R_{i\alpha})}{1+a_{2,\alpha}\, g_\alpha(R_{i\alpha})} +
|
||||
\sum_{p=2}^{N_\text{ord}^a} a_{p+1,\alpha}\, [g_\alpha(R_{i\alpha})]^p - J_{eN}^\infty
|
||||
J_{\text{eN}}(\mathbf{r},\mathbf{R}) = \sum_{i=1}^{N_\text{elec}} \sum_{\alpha=1}^{N_\text{nucl}}\left[
|
||||
\frac{a_{1,\alpha}\, f_\alpha(R_{i\alpha})}{1+a_{2,\alpha}\,
|
||||
f_\alpha(R_{i\alpha})} + \sum_{p=2}^{N_\text{ord}^a} a_{p+1,\alpha}\, [f_\alpha(R_{i\alpha})]^p - J_{\text{eN}}^\infty
|
||||
\right]
|
||||
\]
|
||||
|
||||
$J_{\text{ee}}$ contains electron-electron terms:
|
||||
|
||||
\[
|
||||
J_{\text{ee}}(\mathbf{r}) =
|
||||
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1}
|
||||
\frac{b_1\, f(r_{ij})}{1+b_2\, f(r_{ij})} +
|
||||
\sum_{p=2}^{N_\text{ord}^b} a_{p+1}\, [f(r_{ij})]^p - J_{ee}^\infty
|
||||
\left[
|
||||
\frac{\frac{1}{2}\big(1 + \delta^{\uparrow\downarrow}_{ij}\big)\,b_1\, f_{\text{ee}}(r_{ij})}{1+b_2\, f_{\text{ee}}(r_{ij})} +
|
||||
\sum_{p=2}^{N_\text{ord}^b} b_{p+1}\, [f_{\text{ee}}(r_{ij})]^p - J_{\text{ee},ij}^\infty
|
||||
\right]
|
||||
\]
|
||||
|
||||
and $J_{\text{eeN}}$ contains electron-electron-Nucleus terms:
|
||||
$\delta^{\uparrow\downarrow}_{ij}$ is zero when the electrons $i$ and
|
||||
$j$ have the same spin, and one otherwise.
|
||||
|
||||
$J_{\text{eeN}}$ contains electron-electron-Nucleus terms:
|
||||
|
||||
\[
|
||||
J_{\text{eeN}}(\mathbf{r},\mathbf{R}) =
|
||||
J_{\text{eeN}}(\mathbf{r},\mathbf{R}) =
|
||||
\sum_{\alpha=1}^{N_{\text{nucl}}}
|
||||
\sum_{i=1}^{N_{\text{elec}}}
|
||||
\sum_{j=1}^{i-1}
|
||||
\sum_{p=2}^{N_{\text{ord}}}
|
||||
\sum_{k=0}^{p-1}
|
||||
\sum_{l=0}^{p-k-2\delta_{k,0}}
|
||||
c_{lkp\alpha} \left[ f({r}_{ij}) \right]^k
|
||||
\left[ \left[ g_\alpha({R}_{i\alpha}) \right]^l + \left[ g_\alpha({R}_{j\alpha}) \right]^l \right]
|
||||
\left[ g_\alpha({R}_{i\,\alpha}) \, g_\alpha({R}_{j\alpha}) \right]^{(p-k-l)/2}
|
||||
c_{lkp\alpha} \left[ g_{\text{ee}}({r}_{ij}) \right]^k \nonumber \\
|
||||
\left[ \left[ g_\alpha({R}_{i\alpha}) \right]^l + \left[ g_\alpha({R}_{j\alpha}) \right]^l \right]
|
||||
\left[ g_\alpha({R}_{i\,\alpha}) \,
|
||||
g_\alpha({R}_{j\alpha}) \right]^{(p-k-l)/2}
|
||||
\]
|
||||
|
||||
$c_{lkp\alpha}$ are non-zero only when $p-k-l$ is even.
|
||||
|
||||
The terms $J_{\text{ee}}^\infty$ and $J_{\text{eN}}^\infty$ are shifts to ensure that
|
||||
$J_{\text{ee}}$ and $J_{\text{eN}}$ have an asymptotic value of zero.
|
||||
The terms $J_{\text{ee},ij}^\infty$ and $J_{\text{eN}}^\infty$ are shifts to ensure that
|
||||
$J_{\text{eN}}$ and $J_{\text{ee}}$ have an asymptotic value of zero:
|
||||
|
||||
\[
|
||||
J_{\text{eN}}^{\infty} =
|
||||
\frac{a_{1,\alpha}\, \kappa_\alpha^{-1}}{1+a_{2,\alpha}\,
|
||||
\kappa_\alpha^{-1}} + \sum_{p=2}^{N_\text{ord}^a} a_{p+1,\alpha}\, \kappa_\alpha^{-p}
|
||||
\]
|
||||
\[
|
||||
J_{\text{ee},ij}^{\infty} =
|
||||
\frac{\frac{1}{2}\big(1 + \delta^{\uparrow\downarrow}_{ij}\big)\,b_1\,
|
||||
\kappa_{\text{ee}}^{-1}}{1+b_2\, \kappa_{\text{ee}}^{-1}} +
|
||||
\sum_{p=2}^{N_\text{ord}^b} b_{p+1}\, \kappa_{\text{ee}}^{-p}
|
||||
\]
|
||||
|
||||
$f$ and $g$ are scaling function defined as
|
||||
|
||||
\[
|
||||
f(r) = \frac{1-e^{-\kappa\, r}}{\kappa} \text{ and }
|
||||
g_\alpha(r) = e^{-\kappa_\alpha\, r}.
|
||||
f_\alpha(r) = \frac{1-e^{-\kappa_\alpha\, r}}{\kappa_\alpha} \text{ and }
|
||||
g_\alpha(r) = e^{-\kappa_\alpha\, r},
|
||||
\]
|
||||
|
||||
|
||||
*** Mu
|
||||
|
||||
[[https://aip.scitation.org/doi/10.1063/5.0044683][Mu-Jastrow]] is based on a one-parameter correlation factor that has
|
||||
been introduced in the context of transcorrelated methods. This
|
||||
correlation factor imposes the electron-electron cusp and it is
|
||||
correlation factor imposes the electron-electron cusp, and it is
|
||||
built such that the leading order in $1/r_{12}$ of the effective
|
||||
two-electron potential reproduces the long-range interaction of the
|
||||
range-separated density functional theory. Its analytical
|
||||
@ -1167,15 +1189,15 @@ power = [
|
||||
J_{\text{eN}}(\mathbf{r}, \mathbf{R})
|
||||
\].
|
||||
|
||||
The electron-electron cusp is incorporated in the three-body term.
|
||||
The electron-electron cusp is incorporated in the three-body term
|
||||
|
||||
\[
|
||||
J_\text{eeN} (\mathbf{r}, \mathbf{R}) =
|
||||
\sum_{i=1}^{N_\text{elec}} \sum_{j=1}^{i-1} \, u\left(\mu, r_{ij}\right) \,
|
||||
\Pi_{\alpha=1}^{N_{\text{nucl}}} \, E_\alpha({R}_{i\alpha}) \, E_\alpha({R}_{j\alpha})
|
||||
\Pi_{\alpha=1}^{N_{\text{nucl}}} \, E_\alpha({R}_{i\alpha}) \, E_\alpha({R}_{j\alpha}),
|
||||
\]
|
||||
|
||||
$u$ is an electron-electron function given by the symmetric function
|
||||
where ww$u$ is an electron-electron function
|
||||
|
||||
\[
|
||||
u\left(\mu, r\right) = \frac{r}{2} \, \left[ 1 - \text{erf}(\mu\, r) \right] - \frac{1}{2 \, \mu \, \sqrt{\pi}} \exp \left[ -(\mu \, r)^2 \right].
|
||||
@ -1186,7 +1208,7 @@ power = [
|
||||
electrons.
|
||||
|
||||
An envelope function has been introduced to cancel out the Jastrow
|
||||
effects between two-electrons when they are both close to a nucleus
|
||||
effects between two-electrons when at least one is close to a nucleus
|
||||
(to perform a frozen-core calculation). The envelope function is
|
||||
given by
|
||||
|
||||
@ -1223,11 +1245,11 @@ power = [
|
||||
| Variable | Type | Dimensions | Description |
|
||||
|---------------+----------+---------------------+-----------------------------------------------------------------|
|
||||
| ~type~ | ~string~ | | Type of Jastrow factor: ~CHAMP~ or ~Mu~ |
|
||||
| ~ee_num~ | ~dim~ | | Number of Electron-electron parameters |
|
||||
| ~en_num~ | ~dim~ | | Number of Electron-nucleus parameters |
|
||||
| ~ee_num~ | ~dim~ | | Number of Electron-electron parameters |
|
||||
| ~een_num~ | ~dim~ | | Number of Electron-electron-nucleus parameters |
|
||||
| ~ee~ | ~float~ | ~(jastrow.ee_num)~ | Electron-electron parameters |
|
||||
| ~en~ | ~float~ | ~(jastrow.en_num)~ | Electron-nucleus parameters |
|
||||
| ~ee~ | ~float~ | ~(jastrow.ee_num)~ | Electron-electron parameters |
|
||||
| ~een~ | ~float~ | ~(jastrow.een_num)~ | Electron-electron-nucleus parameters |
|
||||
| ~en_nucleus~ | ~index~ | ~(jastrow.en_num)~ | Nucleus relative to the eN parameter |
|
||||
| ~een_nucleus~ | ~index~ | ~(jastrow.een_num)~ | Nucleus relative to the eeN parameter |
|
||||
@ -1241,11 +1263,11 @@ power = [
|
||||
#+begin_src python :tangle trex.json
|
||||
"jastrow": {
|
||||
"type" : [ "string", [] ]
|
||||
, "ee_num" : [ "dim" , [] ]
|
||||
, "en_num" : [ "dim" , [] ]
|
||||
, "ee_num" : [ "dim" , [] ]
|
||||
, "een_num" : [ "dim" , [] ]
|
||||
, "ee" : [ "float" , [ "jastrow.ee_num" ] ]
|
||||
, "en" : [ "float" , [ "jastrow.en_num" ] ]
|
||||
, "ee" : [ "float" , [ "jastrow.ee_num" ] ]
|
||||
, "een" : [ "float" , [ "jastrow.een_num" ] ]
|
||||
, "en_nucleus" : [ "index" , [ "jastrow.en_num" ] ]
|
||||
, "een_nucleus" : [ "index" , [ "jastrow.een_num" ] ]
|
||||
|
Loading…
Reference in New Issue
Block a user