50 KiB
BLAS functions
Matrix operations
qmckl_dgemm
Matrix multiply: $C_{ij} = \beta C_{ij} + \alpha \sum_{k} A_{ik} \cdot B_{kj}$ using Fortran matmul
function.
TODO: Add description about the external library dependence.
qmckl_context | context | in | Global state |
bool | TransA | in | Number of rows of the input matrix |
bool | TransB | in | Number of rows of the input matrix |
int64_t | m | in | Number of rows of the input matrix |
int64_t | n | in | Number of columns of the input matrix |
int64_t | k | in | Number of columns of the input matrix |
double | alpha | in | Number of columns of the input matrix |
double | A[][lda] | in | Array containing the matrix $A$ |
int64_t | lda | in | Leading dimension of array A |
double | B[][ldb] | in | Array containing the matrix $B$ |
int64_t | ldb | in | Leading dimension of array B |
double | beta | in | Array containing the matrix $B$ |
double | C[][ldc] | out | Array containing the matrix $B$ |
int64_t | ldc | in | Leading dimension of array B |
Requirements
context
is notQMCKL_NULL_CONTEXT
m > 0
n > 0
k > 0
lda >= m
ldb >= n
ldc >= n
A
is allocated with at least $m \times k \times 8$ bytesB
is allocated with at least $k \times n \times 8$ bytesC
is allocated with at least $m \times n \times 8$ bytes
C header
qmckl_exit_code qmckl_dgemm (
const qmckl_context context,
const bool TransA,
const bool TransB,
const int64_t m,
const int64_t n,
const int64_t k,
const double alpha,
const double* A,
const int64_t lda,
const double* B,
const int64_t ldb,
const double beta,
double* const C,
const int64_t ldc );
Source
integer function qmckl_dgemm_f(context, TransA, TransB, m, n, k, alpha, A, LDA, B, LDB, beta, C, LDC) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
logical*8 , intent(in) :: TransA, TransB
integer*8 , intent(in) :: m, n, k
real*8 , intent(in) :: alpha, beta
integer*8 , intent(in) :: lda
real*8 , intent(in) :: A(lda,*)
integer*8 , intent(in) :: ldb
real*8 , intent(in) :: B(ldb,*)
integer*8 , intent(in) :: ldc
real*8 , intent(out) :: C(ldc,*)
real*8, allocatable :: AT(:,:), BT(:,:), CT(:,:)
integer*4 :: qmckl_dgemm_N_N_f
integer*8 :: i,j,l, LDA_2, LDB_2
info = QMCKL_SUCCESS
if (TransA) then
allocate(AT(m,k))
do i = 1, k
do j = 1, m
AT(j,i) = A(i,j)
end do
end do
LDA_2 = M
else
LDA_2 = LDA
endif
if (TransB) then
allocate(BT(k,n))
do i = 1, n
do j = 1, k
BT(j,i) = B(i,j)
end do
end do
LDB_2 = K
else
LDB_2 = LDB
endif
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (m <= 0_8) then
info = QMCKL_INVALID_ARG_4
return
endif
if (n <= 0_8) then
info = QMCKL_INVALID_ARG_5
return
endif
if (k <= 0_8) then
info = QMCKL_INVALID_ARG_6
return
endif
if (LDA_2 /= m) then
info = QMCKL_INVALID_ARG_9
return
endif
if (LDB_2 /= k) then
info = QMCKL_INVALID_ARG_10
return
endif
if (LDC /= m) then
info = QMCKL_INVALID_ARG_13
return
endif
if (TransA) then
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, AT, LDA_2, B, LDB_2, beta, c, LDC)
else if (TransB) then
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, A, LDA_2, BT, LDB_2, beta, c, LDC)
else if (TransA .and. TransB) then
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, AT, LDA_2, BT, LDB_2, beta, c, LDC)
else
info = qmckl_dgemm_N_N_f(context, m, n, k, alpha, A, LDA_2, B, LDB_2, beta, c, LDC)
endif
end function qmckl_dgemm_f
integer function qmckl_dgemm_N_N_f(context, m, n, k, alpha, A, LDA, B, LDB, beta, C, LDC) &
result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in) :: m, n, k
real*8 , intent(in) :: alpha, beta
integer*8 , intent(in) :: lda
real*8 , intent(in) :: A(lda,k)
integer*8 , intent(in) :: ldb
real*8 , intent(in) :: B(ldb,n)
integer*8 , intent(in) :: ldc
real*8 , intent(out) :: C(ldc,n)
integer*8 :: i,j,l, LDA_2, LDB_2
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (m <= 0_8) then
info = QMCKL_INVALID_ARG_2
return
endif
if (n <= 0_8) then
info = QMCKL_INVALID_ARG_3
return
endif
if (k <= 0_8) then
info = QMCKL_INVALID_ARG_4
return
endif
if (LDA /= m) then
info = QMCKL_INVALID_ARG_7
return
endif
if (LDB /= k) then
info = QMCKL_INVALID_ARG_8
return
endif
if (LDC /= m) then
info = QMCKL_INVALID_ARG_11
return
endif
if (alpha == 1.0d0 .and. beta == 0.0d0) then
C = matmul(A,B)
else
C = beta*C + alpha*matmul(A,B)
endif
end function qmckl_dgemm_N_N_f
qmckl_adjugate
Given a matrix $\mathbf{A}$, the adjugate matrix $\text{adj}(\mathbf{A})$ is the transpose of the cofactors matrix of $\mathbf{A}$.
\[ \text{adj}(\mathbf{A}) = \text{det}(\mathbf{A}) \, \mathbf{A}^{-1} \]
See also: https://en.wikipedia.org/wiki/Adjugate_matrix
qmckl_context | context | in | Global state |
int64_t | n | in | Number of rows and columns of the input matrix |
int64_t | lda | in | Leading dimension of array A |
double | A[][lda] | inout | Array containing the $n \times n$ matrix $A$ |
double | det_l | inout | determinant of $A$ |
Requirements
context
is notQMCKL_NULL_CONTEXT
n > 0
lda >= m
A
is allocated with at least $m \times m \times 8$ bytes
C header
qmckl_exit_code qmckl_adjugate (
const qmckl_context context,
const int64_t n,
const int64_t lda,
double* A,
double det_l );
Source
For small matrices (≤ 5× 5), we use specialized routines for performance motivations. For larger sizes, we rely on the LAPACK library.
integer function qmckl_adjugate_f(context, na, LDA, A, det_l) &
result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
double precision, intent(inout) :: A (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
integer :: i,j
!TODO CHECK ARGUMENTS
info = QMCKL_SUCCESS
select case (na)
case default
call adjugate_general(context, na, LDA, A, det_l)
case (5)
call adjugate5(a,LDA,na,det_l)
case (4)
call adjugate4(a,LDA,na,det_l)
case (3)
call adjugate3(a,LDA,na,det_l)
case (2)
call adjugate2(a,LDA,na,det_l)
case (1)
call adjugate1(a,LDA,na,det_l)
case (0)
det_l=1.d0
end select
end function qmckl_adjugate_f
subroutine adjugate1(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
call cofactor1(a,LDA,na,det_l)
end subroutine adjugate1
subroutine adjugate2(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(2,2)
call cofactor2(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
a(1,1) = b(1,1)
a(1,2) = b(1,2)
a(2,1) = b(2,1)
a(2,2) = b(2,2)
end subroutine adjugate2
subroutine adjugate3(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(3,3)
call cofactor3(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(1,3) = a(3,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
b(2,3) = a(3,2)
b(3,1) = a(1,3)
b(3,2) = a(2,3)
b(3,3) = a(3,3)
! copy
a(1,1) = b(1,1)
a(2,1) = b(2,1)
a(3,1) = b(3,1)
a(1,2) = b(1,2)
a(2,2) = b(2,2)
a(3,2) = b(3,2)
a(1,3) = b(1,3)
a(2,3) = b(2,3)
a(3,3) = b(3,3)
end subroutine adjugate3
subroutine adjugate4(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(4,4)
call cofactor4(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(1,3) = a(3,1)
b(1,4) = a(4,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
b(2,3) = a(3,2)
b(2,4) = a(4,2)
b(3,1) = a(1,3)
b(3,2) = a(2,3)
b(3,3) = a(3,3)
b(3,4) = a(4,3)
b(4,1) = a(1,4)
b(4,2) = a(2,4)
b(4,3) = a(3,4)
b(4,4) = a(4,4)
! copy
a(1,1) = b(1,1)
a(2,1) = b(2,1)
a(3,1) = b(3,1)
a(4,1) = b(4,1)
a(1,2) = b(1,2)
a(2,2) = b(2,2)
a(3,2) = b(3,2)
a(4,2) = b(4,2)
a(1,3) = b(1,3)
a(2,3) = b(2,3)
a(3,3) = b(3,3)
a(4,3) = b(4,3)
a(1,4) = b(1,4)
a(2,4) = b(2,4)
a(3,4) = b(3,4)
a(4,4) = b(4,4)
end subroutine adjugate4
subroutine adjugate5(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(5,5)
call cofactor5(a,LDA,na,det_l)
! Calculate the transpose
b(1,1) = a(1,1)
b(1,2) = a(2,1)
b(1,3) = a(3,1)
b(1,4) = a(4,1)
b(1,5) = a(5,1)
b(2,1) = a(1,2)
b(2,2) = a(2,2)
b(2,3) = a(3,2)
b(2,4) = a(4,2)
b(2,5) = a(5,2)
b(3,1) = a(1,3)
b(3,2) = a(2,3)
b(3,3) = a(3,3)
b(3,4) = a(4,3)
b(3,5) = a(5,3)
b(4,1) = a(1,4)
b(4,2) = a(2,4)
b(4,3) = a(3,4)
b(4,4) = a(4,4)
b(4,5) = a(5,4)
b(5,1) = a(1,5)
b(5,2) = a(2,5)
b(5,3) = a(3,5)
b(5,4) = a(4,5)
b(5,5) = a(5,5)
! copy
a(1,1) = b(1,1)
a(2,1) = b(2,1)
a(3,1) = b(3,1)
a(4,1) = b(4,1)
a(5,1) = b(5,1)
a(1,2) = b(1,2)
a(2,2) = b(2,2)
a(3,2) = b(3,2)
a(4,2) = b(4,2)
a(5,2) = b(5,2)
a(1,3) = b(1,3)
a(2,3) = b(2,3)
a(3,3) = b(3,3)
a(4,3) = b(4,3)
a(5,3) = b(5,3)
a(1,4) = b(1,4)
a(2,4) = b(2,4)
a(3,4) = b(3,4)
a(4,4) = b(4,4)
a(5,4) = b(5,4)
a(1,5) = b(1,5)
a(2,5) = b(2,5)
a(3,5) = b(3,5)
a(4,5) = b(4,5)
a(5,5) = b(5,5)
end subroutine adjugate5
subroutine cofactor1(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
det_l = a(1,1)
a(1,1) = 1.d0
end subroutine cofactor1
subroutine cofactor2(a,LDA,na,det_l)
implicit none
double precision :: a (LDA,na)
integer*8 :: LDA
integer*8 :: na
double precision :: det_l
double precision :: b(2,2)
b(1,1) = a(1,1)
b(2,1) = a(2,1)
b(1,2) = a(1,2)
b(2,2) = a(2,2)
det_l = a(1,1)*a(2,2) - a(1,2)*a(2,1)
a(1,1) = b(2,2)
a(2,1) = -b(2,1)
a(1,2) = -b(1,2)
a(2,2) = b(1,1)
end subroutine cofactor2
subroutine cofactor3(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(4,3)
integer :: i
det_l = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) &
-a(1,2)*(a(2,1)*a(3,3)-a(2,3)*a(3,1)) &
+a(1,3)*(a(2,1)*a(3,2)-a(2,2)*a(3,1))
do i=1,4
b(i,1) = a(i,1)
b(i,2) = a(i,2)
b(i,3) = a(i,3)
end do
a(1,1) = b(2,2)*b(3,3) - b(2,3)*b(3,2)
a(2,1) = b(2,3)*b(3,1) - b(2,1)*b(3,3)
a(3,1) = b(2,1)*b(3,2) - b(2,2)*b(3,1)
a(1,2) = b(1,3)*b(3,2) - b(1,2)*b(3,3)
a(2,2) = b(1,1)*b(3,3) - b(1,3)*b(3,1)
a(3,2) = b(1,2)*b(3,1) - b(1,1)*b(3,2)
a(1,3) = b(1,2)*b(2,3) - b(1,3)*b(2,2)
a(2,3) = b(1,3)*b(2,1) - b(1,1)*b(2,3)
a(3,3) = b(1,1)*b(2,2) - b(1,2)*b(2,1)
end subroutine cofactor3
subroutine cofactor4(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(4,4)
integer :: i,j
det_l = a(1,1)*(a(2,2)*(a(3,3)*a(4,4)-a(3,4)*a(4,3)) &
-a(2,3)*(a(3,2)*a(4,4)-a(3,4)*a(4,2)) &
+a(2,4)*(a(3,2)*a(4,3)-a(3,3)*a(4,2))) &
-a(1,2)*(a(2,1)*(a(3,3)*a(4,4)-a(3,4)*a(4,3)) &
-a(2,3)*(a(3,1)*a(4,4)-a(3,4)*a(4,1)) &
+a(2,4)*(a(3,1)*a(4,3)-a(3,3)*a(4,1))) &
+a(1,3)*(a(2,1)*(a(3,2)*a(4,4)-a(3,4)*a(4,2)) &
-a(2,2)*(a(3,1)*a(4,4)-a(3,4)*a(4,1)) &
+a(2,4)*(a(3,1)*a(4,2)-a(3,2)*a(4,1))) &
-a(1,4)*(a(2,1)*(a(3,2)*a(4,3)-a(3,3)*a(4,2)) &
-a(2,2)*(a(3,1)*a(4,3)-a(3,3)*a(4,1)) &
+a(2,3)*(a(3,1)*a(4,2)-a(3,2)*a(4,1)))
do i=1,4
b(1,i) = a(1,i)
b(2,i) = a(2,i)
b(3,i) = a(3,i)
b(4,i) = a(4,i)
end do
a(1,1) = b(2,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(2,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))
a(2,1) = -b(2,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))+b(2,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))-b(2,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))
a(3,1) = b(2,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(2,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
a(4,1) = -b(2,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))+b(2,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))-b(2,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
a(1,2) = -b(1,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))+b(1,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(1,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))
a(2,2) = b(1,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(1,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(1,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))
a(3,2) = -b(1,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(1,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))-b(1,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
a(4,2) = b(1,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))-b(1,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))+b(1,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))
a(1,3) = b(1,2)*(b(2,3)*b(4,4)-b(2,4)*b(4,3))-b(1,3)*(b(2,2)*b(4,4)-b(2,4)*b(4,2))+b(1,4)*(b(2,2)*b(4,3)-b(2,3)*b(4,2))
a(2,3) = -b(1,1)*(b(2,3)*b(4,4)-b(2,4)*b(4,3))+b(1,3)*(b(2,1)*b(4,4)-b(2,4)*b(4,1))-b(1,4)*(b(2,1)*b(4,3)-b(2,3)*b(4,1))
a(3,3) = b(1,1)*(b(2,2)*b(4,4)-b(2,4)*b(4,2))-b(1,2)*(b(2,1)*b(4,4)-b(2,4)*b(4,1))+b(1,4)*(b(2,1)*b(4,2)-b(2,2)*b(4,1))
a(4,3) = -b(1,1)*(b(2,2)*b(4,3)-b(2,3)*b(4,2))+b(1,2)*(b(2,1)*b(4,3)-b(2,3)*b(4,1))-b(1,3)*(b(2,1)*b(4,2)-b(2,2)*b(4,1))
a(1,4) = -b(1,2)*(b(2,3)*b(3,4)-b(2,4)*b(3,3))+b(1,3)*(b(2,2)*b(3,4)-b(2,4)*b(3,2))-b(1,4)*(b(2,2)*b(3,3)-b(2,3)*b(3,2))
a(2,4) = b(1,1)*(b(2,3)*b(3,4)-b(2,4)*b(3,3))-b(1,3)*(b(2,1)*b(3,4)-b(2,4)*b(3,1))+b(1,4)*(b(2,1)*b(3,3)-b(2,3)*b(3,1))
a(3,4) = -b(1,1)*(b(2,2)*b(3,4)-b(2,4)*b(3,2))+b(1,2)*(b(2,1)*b(3,4)-b(2,4)*b(3,1))-b(1,4)*(b(2,1)*b(3,2)-b(2,2)*b(3,1))
a(4,4) = b(1,1)*(b(2,2)*b(3,3)-b(2,3)*b(3,2))-b(1,2)*(b(2,1)*b(3,3)-b(2,3)*b(3,1))+b(1,3)*(b(2,1)*b(3,2)-b(2,2)*b(3,1))
end subroutine cofactor4
subroutine cofactor5(a,LDA,na,det_l)
implicit none
double precision, intent(inout) :: a (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: b(5,5)
integer :: i,j
det_l = a(1,1)*(a(2,2)*(a(3,3)*(a(4,4)*a(5,5)-a(4,5)*a(5,4))-a(3,4)*( &
a(4,3)*a(5,5)-a(4,5)*a(5,3))+a(3,5)*(a(4,3)*a(5,4)-a(4,4)*a(5,3)))- &
a(2,3)*(a(3,2)*(a(4,4)*a(5,5)-a(4,5)*a(5,4))-a(3,4)*(a(4,2)*a(5,5)- &
a(4,5)*a(5,2))+a(3,5)*(a(4,2)*a(5,4)-a(4,4)*a(5,2)))+a(2,4)*(a(3,2)*( &
a(4,3)*a(5,5)-a(4,5)*a(5,3))-a(3,3)*(a(4,2)*a(5,5)-a(4,5)*a(5,2))+ &
a(3,5)*(a(4,2)*a(5,3)-a(4,3)*a(5,2)))-a(2,5)*(a(3,2)*(a(4,3)*a(5,4)- &
a(4,4)*a(5,3))-a(3,3)*(a(4,2)*a(5,4)-a(4,4)*a(5,2))+a(3,4)*(a(4,2)* &
a(5,3)-a(4,3)*a(5,2))))-a(1,2)*(a(2,1)*(a(3,3)*(a(4,4)*a(5,5)-a(4,5)* &
a(5,4))-a(3,4)*(a(4,3)*a(5,5)-a(4,5)*a(5,3))+a(3,5)*(a(4,3)*a(5,4)- &
a(4,4)*a(5,3)))-a(2,3)*(a(3,1)*(a(4,4)*a(5,5)-a(4,5)*a(5,4))-a(3,4)*( &
a(4,1)*a(5,5)-a(4,5)*a(5,1))+a(3,5)*(a(4,1)*a(5,4)-a(4,4)*a(5,1)))+ &
a(2,4)*(a(3,1)*(a(4,3)*a(5,5)-a(4,5)*a(5,3))-a(3,3)*(a(4,1)*a(5,5)- &
a(4,5)*a(5,1))+a(3,5)*(a(4,1)*a(5,3)-a(4,3)*a(5,1)))-a(2,5)*(a(3,1)*( &
a(4,3)*a(5,4)-a(4,4)*a(5,3))-a(3,3)*(a(4,1)*a(5,4)-a(4,4)*a(5,1))+ &
a(3,4)*(a(4,1)*a(5,3)-a(4,3)*a(5,1))))+a(1,3)*(a(2,1)*(a(3,2)*(a(4,4)* &
a(5,5)-a(4,5)*a(5,4))-a(3,4)*(a(4,2)*a(5,5)-a(4,5)*a(5,2))+a(3,5)*( &
a(4,2)*a(5,4)-a(4,4)*a(5,2)))-a(2,2)*(a(3,1)*(a(4,4)*a(5,5)-a(4,5)* &
a(5,4))-a(3,4)*(a(4,1)*a(5,5)-a(4,5)*a(5,1))+a(3,5)*(a(4,1)*a(5,4)- &
a(4,4)*a(5,1)))+a(2,4)*(a(3,1)*(a(4,2)*a(5,5)-a(4,5)*a(5,2))-a(3,2)*( &
a(4,1)*a(5,5)-a(4,5)*a(5,1))+a(3,5)*(a(4,1)*a(5,2)-a(4,2)*a(5,1)))- &
a(2,5)*(a(3,1)*(a(4,2)*a(5,4)-a(4,4)*a(5,2))-a(3,2)*(a(4,1)*a(5,4)- &
a(4,4)*a(5,1))+a(3,4)*(a(4,1)*a(5,2)-a(4,2)*a(5,1))))-a(1,4)*(a(2,1)*( &
a(3,2)*(a(4,3)*a(5,5)-a(4,5)*a(5,3))-a(3,3)*(a(4,2)*a(5,5)-a(4,5)* &
a(5,2))+a(3,5)*(a(4,2)*a(5,3)-a(4,3)*a(5,2)))-a(2,2)*(a(3,1)*(a(4,3)* &
a(5,5)-a(4,5)*a(5,3))-a(3,3)*(a(4,1)*a(5,5)-a(4,5)*a(5,1))+a(3,5)*( &
a(4,1)*a(5,3)-a(4,3)*a(5,1)))+a(2,3)*(a(3,1)*(a(4,2)*a(5,5)-a(4,5)* &
a(5,2))-a(3,2)*(a(4,1)*a(5,5)-a(4,5)*a(5,1))+a(3,5)*(a(4,1)*a(5,2)- &
a(4,2)*a(5,1)))-a(2,5)*(a(3,1)*(a(4,2)*a(5,3)-a(4,3)*a(5,2))-a(3,2)*( &
a(4,1)*a(5,3)-a(4,3)*a(5,1))+a(3,3)*(a(4,1)*a(5,2)-a(4,2)*a(5,1))))+ &
a(1,5)*(a(2,1)*(a(3,2)*(a(4,3)*a(5,4)-a(4,4)*a(5,3))-a(3,3)*(a(4,2)* &
a(5,4)-a(4,4)*a(5,2))+a(3,4)*(a(4,2)*a(5,3)-a(4,3)*a(5,2)))-a(2,2)*( &
a(3,1)*(a(4,3)*a(5,4)-a(4,4)*a(5,3))-a(3,3)*(a(4,1)*a(5,4)-a(4,4)* &
a(5,1))+a(3,4)*(a(4,1)*a(5,3)-a(4,3)*a(5,1)))+a(2,3)*(a(3,1)*(a(4,2)* &
a(5,4)-a(4,4)*a(5,2))-a(3,2)*(a(4,1)*a(5,4)-a(4,4)*a(5,1))+a(3,4)*( &
a(4,1)*a(5,2)-a(4,2)*a(5,1)))-a(2,4)*(a(3,1)*(a(4,2)*a(5,3)-a(4,3)* &
a(5,2))-a(3,2)*(a(4,1)*a(5,3)-a(4,3)*a(5,1))+a(3,3)*(a(4,1)*a(5,2)- &
a(4,2)*a(5,1))))
do i=1,5
b(1,i) = a(1,i)
b(2,i) = a(2,i)
b(3,i) = a(3,i)
b(4,i) = a(4,i)
b(5,i) = a(5,i)
end do
a(1,1) = &
(b(2,2)*(b(3,3)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))+b(3,5)*(b(4,3)*b(5,4)-b(4,4)*b(5,3)))-b(2,3)* &
(b(3,2)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,4)-b(4,4)*b(5,2)))+b(2,4)* &
(b(3,2)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))-b(2,5)* &
(b(3,2)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))+b(3,4)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))))
a(2,1) = &
(-b(2,1)*(b(3,3)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))+b(3,5)*(b(4,3)*b(5,4)-b(4,4)*b(5,3)))+b(2,3)* &
(b(3,1)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,4)-b(4,4)*b(5,1)))-b(2,4)* &
(b(3,1)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))+b(2,5)* &
(b(3,1)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))))
a(3,1) = &
(b(2,1)*(b(3,2)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,4)-b(4,4)*b(5,2)))-b(2,2)* &
(b(3,1)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,4)-b(4,4)*b(5,1)))+b(2,4)* &
(b(3,1)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))-b(3,2)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))-b(2,5)* &
(b(3,1)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))-b(3,2)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(4,1) = &
(-b(2,1)*(b(3,2)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))+b(2,2)* &
(b(3,1)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))-b(2,3)* &
(b(3,1)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))-b(3,2)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))+b(2,5)* &
(b(3,1)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))-b(3,2)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))+b(3,3)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(5,1) = &
(b(2,1)*(b(3,2)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))+b(3,4)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))-b(2,2)* &
(b(3,1)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))+b(2,3)* &
(b(3,1)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))-b(3,2)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))-b(2,4)* &
(b(3,1)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))-b(3,2)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))+b(3,3)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(1,2) = &
(-b(1,2)*(b(3,3)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))+b(3,5)*(b(4,3)*b(5,4)-b(4,4)*b(5,3)))+b(1,3)* &
(b(3,2)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,4)-b(4,4)*b(5,2)))-b(1,4)* &
(b(3,2)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))+b(1,5)* &
(b(3,2)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))+b(3,4)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))))
a(2,2) = &
(b(1,1)*(b(3,3)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))+b(3,5)*(b(4,3)*b(5,4)-b(4,4)*b(5,3)))-b(1,3)* &
(b(3,1)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,4)-b(4,4)*b(5,1)))+b(1,4)* &
(b(3,1)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))-b(1,5)* &
(b(3,1)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))))
a(3,2) = &
(-b(1,1)*(b(3,2)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,4)-b(4,4)*b(5,2)))+b(1,2)* &
(b(3,1)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(3,4)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,4)-b(4,4)*b(5,1)))-b(1,4)* &
(b(3,1)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))-b(3,2)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))+b(1,5)* &
(b(3,1)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))-b(3,2)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(4,2) = &
(b(1,1)*(b(3,2)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(3,5)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))-b(1,2)* &
(b(3,1)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(3,3)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))+b(1,3)* &
(b(3,1)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))-b(3,2)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(3,5)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))-b(1,5)* &
(b(3,1)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))-b(3,2)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))+b(3,3)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(5,2) = &
(-b(1,1)*(b(3,2)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))+b(3,4)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))+b(1,2)* &
(b(3,1)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(3,3)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))-b(1,3)* &
(b(3,1)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))-b(3,2)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(3,4)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))+b(1,4)* &
(b(3,1)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))-b(3,2)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))+b(3,3)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(1,3) = &
(b(1,2)*(b(2,3)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(2,4)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))+b(2,5)*(b(4,3)*b(5,4)-b(4,4)*b(5,3)))-b(1,3)* &
(b(2,2)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(2,4)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(2,5)*(b(4,2)*b(5,4)-b(4,4)*b(5,2)))+b(1,4)* &
(b(2,2)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(2,3)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(2,5)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))-b(1,5)* &
(b(2,2)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(2,3)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))+b(2,4)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))))
a(2,3) = &
(-b(1,1)*(b(2,3)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(2,4)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))+b(2,5)*(b(4,3)*b(5,4)-b(4,4)*b(5,3)))+b(1,3)* &
(b(2,1)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(2,4)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(2,5)*(b(4,1)*b(5,4)-b(4,4)*b(5,1)))-b(1,4)* &
(b(2,1)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(2,3)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(2,5)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))+b(1,5)* &
(b(2,1)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(2,3)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(2,4)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))))
a(3,3) = &
(b(1,1)*(b(2,2)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(2,4)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(2,5)*(b(4,2)*b(5,4)-b(4,4)*b(5,2)))-b(1,2)* &
(b(2,1)*(b(4,4)*b(5,5)-b(4,5)*b(5,4))-b(2,4)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(2,5)*(b(4,1)*b(5,4)-b(4,4)*b(5,1)))+b(1,4)* &
(b(2,1)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))-b(2,2)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(2,5)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))-b(1,5)* &
(b(2,1)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))-b(2,2)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(2,4)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(4,3) = &
(-b(1,1)*(b(2,2)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(2,3)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))+b(2,5)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))+b(1,2)* &
(b(2,1)*(b(4,3)*b(5,5)-b(4,5)*b(5,3))-b(2,3)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(2,5)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))-b(1,3)* &
(b(2,1)*(b(4,2)*b(5,5)-b(4,5)*b(5,2))-b(2,2)*(b(4,1)*b(5,5)-b(4,5)*b(5,1))+b(2,5)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))+b(1,5)* &
(b(2,1)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))-b(2,2)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))+b(2,3)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(5,3) = &
(b(1,1)*(b(2,2)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(2,3)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))+b(2,4)*(b(4,2)*b(5,3)-b(4,3)*b(5,2)))-b(1,2)* &
(b(2,1)*(b(4,3)*b(5,4)-b(4,4)*b(5,3))-b(2,3)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(2,4)*(b(4,1)*b(5,3)-b(4,3)*b(5,1)))+b(1,3)* &
(b(2,1)*(b(4,2)*b(5,4)-b(4,4)*b(5,2))-b(2,2)*(b(4,1)*b(5,4)-b(4,4)*b(5,1))+b(2,4)*(b(4,1)*b(5,2)-b(4,2)*b(5,1)))-b(1,4)* &
(b(2,1)*(b(4,2)*b(5,3)-b(4,3)*b(5,2))-b(2,2)*(b(4,1)*b(5,3)-b(4,3)*b(5,1))+b(2,3)*(b(4,1)*b(5,2)-b(4,2)*b(5,1))))
a(1,4) = &
(-b(1,2)*(b(2,3)*(b(3,4)*b(5,5)-b(3,5)*b(5,4))-b(2,4)*(b(3,3)*b(5,5)-b(3,5)*b(5,3))+b(2,5)*(b(3,3)*b(5,4)-b(3,4)*b(5,3)))+b(1,3)* &
(b(2,2)*(b(3,4)*b(5,5)-b(3,5)*b(5,4))-b(2,4)*(b(3,2)*b(5,5)-b(3,5)*b(5,2))+b(2,5)*(b(3,2)*b(5,4)-b(3,4)*b(5,2)))-b(1,4)* &
(b(2,2)*(b(3,3)*b(5,5)-b(3,5)*b(5,3))-b(2,3)*(b(3,2)*b(5,5)-b(3,5)*b(5,2))+b(2,5)*(b(3,2)*b(5,3)-b(3,3)*b(5,2)))+b(1,5)* &
(b(2,2)*(b(3,3)*b(5,4)-b(3,4)*b(5,3))-b(2,3)*(b(3,2)*b(5,4)-b(3,4)*b(5,2))+b(2,4)*(b(3,2)*b(5,3)-b(3,3)*b(5,2))))
a(2,4) = &
(b(1,1)*(b(2,3)*(b(3,4)*b(5,5)-b(3,5)*b(5,4))-b(2,4)*(b(3,3)*b(5,5)-b(3,5)*b(5,3))+b(2,5)*(b(3,3)*b(5,4)-b(3,4)*b(5,3)))-b(1,3)* &
(b(2,1)*(b(3,4)*b(5,5)-b(3,5)*b(5,4))-b(2,4)*(b(3,1)*b(5,5)-b(3,5)*b(5,1))+b(2,5)*(b(3,1)*b(5,4)-b(3,4)*b(5,1)))+b(1,4)* &
(b(2,1)*(b(3,3)*b(5,5)-b(3,5)*b(5,3))-b(2,3)*(b(3,1)*b(5,5)-b(3,5)*b(5,1))+b(2,5)*(b(3,1)*b(5,3)-b(3,3)*b(5,1)))-b(1,5)* &
(b(2,1)*(b(3,3)*b(5,4)-b(3,4)*b(5,3))-b(2,3)*(b(3,1)*b(5,4)-b(3,4)*b(5,1))+b(2,4)*(b(3,1)*b(5,3)-b(3,3)*b(5,1))))
a(3,4) = &
(-b(1,1)*(b(2,2)*(b(3,4)*b(5,5)-b(3,5)*b(5,4))-b(2,4)*(b(3,2)*b(5,5)-b(3,5)*b(5,2))+b(2,5)*(b(3,2)*b(5,4)-b(3,4)*b(5,2)))+b(1,2)* &
(b(2,1)*(b(3,4)*b(5,5)-b(3,5)*b(5,4))-b(2,4)*(b(3,1)*b(5,5)-b(3,5)*b(5,1))+b(2,5)*(b(3,1)*b(5,4)-b(3,4)*b(5,1)))-b(1,4)* &
(b(2,1)*(b(3,2)*b(5,5)-b(3,5)*b(5,2))-b(2,2)*(b(3,1)*b(5,5)-b(3,5)*b(5,1))+b(2,5)*(b(3,1)*b(5,2)-b(3,2)*b(5,1)))+b(1,5)* &
(b(2,1)*(b(3,2)*b(5,4)-b(3,4)*b(5,2))-b(2,2)*(b(3,1)*b(5,4)-b(3,4)*b(5,1))+b(2,4)*(b(3,1)*b(5,2)-b(3,2)*b(5,1))))
a(4,4) = &
(b(1,1)*(b(2,2)*(b(3,3)*b(5,5)-b(3,5)*b(5,3))-b(2,3)*(b(3,2)*b(5,5)-b(3,5)*b(5,2))+b(2,5)*(b(3,2)*b(5,3)-b(3,3)*b(5,2)))-b(1,2)* &
(b(2,1)*(b(3,3)*b(5,5)-b(3,5)*b(5,3))-b(2,3)*(b(3,1)*b(5,5)-b(3,5)*b(5,1))+b(2,5)*(b(3,1)*b(5,3)-b(3,3)*b(5,1)))+b(1,3)* &
(b(2,1)*(b(3,2)*b(5,5)-b(3,5)*b(5,2))-b(2,2)*(b(3,1)*b(5,5)-b(3,5)*b(5,1))+b(2,5)*(b(3,1)*b(5,2)-b(3,2)*b(5,1)))-b(1,5)* &
(b(2,1)*(b(3,2)*b(5,3)-b(3,3)*b(5,2))-b(2,2)*(b(3,1)*b(5,3)-b(3,3)*b(5,1))+b(2,3)*(b(3,1)*b(5,2)-b(3,2)*b(5,1))))
a(5,4) = &
(-b(1,1)*(b(2,2)*(b(3,3)*b(5,4)-b(3,4)*b(5,3))-b(2,3)*(b(3,2)*b(5,4)-b(3,4)*b(5,2))+b(2,4)*(b(3,2)*b(5,3)-b(3,3)*b(5,2)))+b(1,2)* &
(b(2,1)*(b(3,3)*b(5,4)-b(3,4)*b(5,3))-b(2,3)*(b(3,1)*b(5,4)-b(3,4)*b(5,1))+b(2,4)*(b(3,1)*b(5,3)-b(3,3)*b(5,1)))-b(1,3)* &
(b(2,1)*(b(3,2)*b(5,4)-b(3,4)*b(5,2))-b(2,2)*(b(3,1)*b(5,4)-b(3,4)*b(5,1))+b(2,4)*(b(3,1)*b(5,2)-b(3,2)*b(5,1)))+b(1,4)* &
(b(2,1)*(b(3,2)*b(5,3)-b(3,3)*b(5,2))-b(2,2)*(b(3,1)*b(5,3)-b(3,3)*b(5,1))+b(2,3)*(b(3,1)*b(5,2)-b(3,2)*b(5,1))))
a(1,5) = &
(b(1,2)*(b(2,3)*(b(3,4)*b(4,5)-b(3,5)*b(4,4))-b(2,4)*(b(3,3)*b(4,5)-b(3,5)*b(4,3))+b(2,5)*(b(3,3)*b(4,4)-b(3,4)*b(4,3)))-b(1,3)* &
(b(2,2)*(b(3,4)*b(4,5)-b(3,5)*b(4,4))-b(2,4)*(b(3,2)*b(4,5)-b(3,5)*b(4,2))+b(2,5)*(b(3,2)*b(4,4)-b(3,4)*b(4,2)))+b(1,4)* &
(b(2,2)*(b(3,3)*b(4,5)-b(3,5)*b(4,3))-b(2,3)*(b(3,2)*b(4,5)-b(3,5)*b(4,2))+b(2,5)*(b(3,2)*b(4,3)-b(3,3)*b(4,2)))-b(1,5)* &
(b(2,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(2,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))))
a(2,5) = &
(-b(1,1)*(b(2,3)*(b(3,4)*b(4,5)-b(3,5)*b(4,4))-b(2,4)*(b(3,3)*b(4,5)-b(3,5)*b(4,3))+b(2,5)*(b(3,3)*b(4,4)-b(3,4)*b(4,3)))+b(1,3)* &
(b(2,1)*(b(3,4)*b(4,5)-b(3,5)*b(4,4))-b(2,4)*(b(3,1)*b(4,5)-b(3,5)*b(4,1))+b(2,5)*(b(3,1)*b(4,4)-b(3,4)*b(4,1)))-b(1,4)* &
(b(2,1)*(b(3,3)*b(4,5)-b(3,5)*b(4,3))-b(2,3)*(b(3,1)*b(4,5)-b(3,5)*b(4,1))+b(2,5)*(b(3,1)*b(4,3)-b(3,3)*b(4,1)))+b(1,5)* &
(b(2,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))))
a(3,5) = &
(b(1,1)*(b(2,2)*(b(3,4)*b(4,5)-b(3,5)*b(4,4))-b(2,4)*(b(3,2)*b(4,5)-b(3,5)*b(4,2))+b(2,5)*(b(3,2)*b(4,4)-b(3,4)*b(4,2)))-b(1,2)* &
(b(2,1)*(b(3,4)*b(4,5)-b(3,5)*b(4,4))-b(2,4)*(b(3,1)*b(4,5)-b(3,5)*b(4,1))+b(2,5)*(b(3,1)*b(4,4)-b(3,4)*b(4,1)))+b(1,4)* &
(b(2,1)*(b(3,2)*b(4,5)-b(3,5)*b(4,2))-b(2,2)*(b(3,1)*b(4,5)-b(3,5)*b(4,1))+b(2,5)*(b(3,1)*b(4,2)-b(3,2)*b(4,1)))-b(1,5)* &
(b(2,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(2,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))))
a(4,5) = &
(-b(1,1)*(b(2,2)*(b(3,3)*b(4,5)-b(3,5)*b(4,3))-b(2,3)*(b(3,2)*b(4,5)-b(3,5)*b(4,2))+b(2,5)*(b(3,2)*b(4,3)-b(3,3)*b(4,2)))+b(1,2)* &
(b(2,1)*(b(3,3)*b(4,5)-b(3,5)*b(4,3))-b(2,3)*(b(3,1)*b(4,5)-b(3,5)*b(4,1))+b(2,5)*(b(3,1)*b(4,3)-b(3,3)*b(4,1)))-b(1,3)* &
(b(2,1)*(b(3,2)*b(4,5)-b(3,5)*b(4,2))-b(2,2)*(b(3,1)*b(4,5)-b(3,5)*b(4,1))+b(2,5)*(b(3,1)*b(4,2)-b(3,2)*b(4,1)))+b(1,5)* &
(b(2,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))-b(2,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))+b(2,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))))
a(5,5) = &
(b(1,1)*(b(2,2)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))+b(2,4)*(b(3,2)*b(4,3)-b(3,3)*b(4,2)))-b(1,2)* &
(b(2,1)*(b(3,3)*b(4,4)-b(3,4)*b(4,3))-b(2,3)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,3)-b(3,3)*b(4,1)))+b(1,3)* &
(b(2,1)*(b(3,2)*b(4,4)-b(3,4)*b(4,2))-b(2,2)*(b(3,1)*b(4,4)-b(3,4)*b(4,1))+b(2,4)*(b(3,1)*b(4,2)-b(3,2)*b(4,1)))-b(1,4)* &
(b(2,1)*(b(3,2)*b(4,3)-b(3,3)*b(4,2))-b(2,2)*(b(3,1)*b(4,3)-b(3,3)*b(4,1))+b(2,3)*(b(3,1)*b(4,2)-b(3,2)*b(4,1))))
end
subroutine adjugate_general(context, na, LDA, A, det_l)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
double precision, intent(inout) :: A (LDA,na)
integer*8, intent(in) :: LDA
integer*8, intent(in) :: na
double precision, intent(inout) :: det_l
double precision :: work(LDA*max(na,64))
integer :: inf
integer :: ipiv(LDA)
integer :: lwork
integer :: i, j
For larger matrices, we first compute the LU factorization $LU=A$
using the dgetrf
routine.
call dgetrf(na, na, a, LDA, ipiv, inf )
By convention, the determinant of $L$ is equal to one, so the determinant of $A$ is equal to the determinant of $U$, which is simply computed as the product of its diagonal elements.
det_l = 1.d0
j=0
do i=1,na
j = j+min(abs(ipiv(i)-i),1)
det_l = det_l*a(i,i)
enddo
As dgetrf
returns $PLU=A$ where $P$ is a permutation matrix, the
sign of the determinant is computed as $-1^m$ where $m$ is the
number of permutations.
if (iand(j,1) /= 0) then
det_l = -det_l
endif
Then, the inverse of $A$ is computed using dgetri
:
lwork = SIZE(work)
call dgetri(na, a, LDA, ipiv, work, lwork, inf )
and the adjugate matrix is computed as the product of the determinant with the inverse:
a(:,:) = a(:,:)*det_l
end subroutine adjugate_general