1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2024-11-03 20:54:09 +01:00
qmckl/qmckl_ao.html

1207 lines
52 KiB
HTML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-03-19 Fri 22:17 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Atomic Orbitals</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="TREX CoE" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" title="Standard" href="qmckl.css" type="text/css" />
<script type="text/javascript" src="org-info.js">
/**
*
* @source: org-info.js
*
* @licstart The following is the entire license notice for the
* JavaScript code in org-info.js.
*
* Copyright (C) 2012-2019 Free Software Foundation, Inc.
*
*
* The JavaScript code in this tag is free software: you can
* redistribute it and/or modify it under the terms of the GNU
* General Public License (GNU GPL) as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version. The code is distributed WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
*
* As additional permission under GNU GPL version 3 section 7, you
* may distribute non-source (e.g., minimized or compacted) forms of
* that code without the copy of the GNU GPL normally required by
* section 4, provided you include this license notice and a URL
* through which recipients can access the Corresponding Source.
*
* @licend The above is the entire license notice
* for the JavaScript code in org-info.js.
*
*/
</script>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2019 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
org_html_manager.set("TOC_DEPTH", "4");
org_html_manager.set("LINK_HOME", "index.html");
org_html_manager.set("LINK_UP", "");
org_html_manager.set("LOCAL_TOC", "1");
org_html_manager.set("VIEW_BUTTONS", "0");
org_html_manager.set("MOUSE_HINT", "underline");
org_html_manager.set("FIXED_TOC", "0");
org_html_manager.set("TOC", "1");
org_html_manager.set("VIEW", "info");
org_html_manager.setup(); // activate after the parameters are set
/*]]>*///-->
</script>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2019 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
displayAlign: "center",
displayIndent: "0em",
"HTML-CSS": { scale: 100,
linebreaks: { automatic: "false" },
webFont: "TeX"
},
SVG: {scale: 100,
linebreaks: { automatic: "false" },
font: "TeX"},
NativeMML: {scale: 100},
TeX: { equationNumbers: {autoNumber: "AMS"},
MultLineWidth: "85%",
TagSide: "right",
TagIndent: ".8em"
}
});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href=""> UP </a>
|
<a accesskey="H" href="index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Atomic Orbitals</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org31a9a5e">1. Polynomial part</a>
<ul>
<li><a href="#org44015c3">1.1. Powers of \(x-X_i\)</a></li>
<li><a href="#org4798ffb">1.2. Value, Gradient and Laplacian of a polynomial</a></li>
</ul>
</li>
<li><a href="#org2caedcc">2. Gaussian basis functions</a></li>
<li><a href="#org1f77090">3. <span class="todo TODO">TODO</span> Slater basis functions</a></li>
</ul>
</div>
</div>
<p>
The atomic basis set is defined as a list of shells. Each shell \(s\) is
centered on a nucleus \(A\), possesses a given angular momentum \(l\) and a
radial function \(R_s\). The radial function is a linear combination of
\emph{primitive} functions that can be of type Slater (\(p=1\)) or
Gaussian (\(p=2\)):
</p>
<p>
\[
R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s}
\sum_{k=1}^{N_{\text{prim}}} a_{ks}
\exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). |
\]
</p>
<p>
In the case of Gaussian functions, \(n_s\) is always zero.
The normalization factor \(\mathcal{N}_s\) ensures that all the functions
of the shell are normalized to unity. As this normalization requires
the ability to compute overlap integrals, it should be written in the
file to ensure that the file is self-contained and does not require
the client program to have the ability to compute such integrals.
</p>
<p>
Atomic orbitals (AOs) are defined as
</p>
<p>
\[
\chi_i (\mathbf{r}) = P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r})
\]
</p>
<p>
where \(\theta(i)\) returns the shell on which the AO is expanded,
and \(\eta(i)\) denotes which angular function is chosen.
</p>
<p>
In this section we describe the kernels used to compute the values,
gradients and Laplacian of the atomic basis functions.
</p>
<div id="outline-container-org31a9a5e" class="outline-2">
<h2 id="org31a9a5e"><span class="section-number-2">1</span> Polynomial part</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org44015c3" class="outline-3">
<h3 id="org44015c3"><span class="section-number-3">1.1</span> Powers of \(x-X_i\)</h3>
<div class="outline-text-3" id="text-1-1">
<p>
The <code>qmckl_ao_power</code> function computes all the powers of the <code>n</code>
input data up to the given maximum value given in input for each of
the \(n\) points:
</p>
<p>
\[ P_{ik} = X_i^k \]
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
</colgroup>
<tbody>
<tr>
<td class="org-left"><code>context</code></td>
<td class="org-left">input</td>
<td class="org-left">Global state</td>
</tr>
<tr>
<td class="org-left"><code>n</code></td>
<td class="org-left">input</td>
<td class="org-left">Number of values</td>
</tr>
<tr>
<td class="org-left"><code>X(n)</code></td>
<td class="org-left">input</td>
<td class="org-left">Array containing the input values</td>
</tr>
<tr>
<td class="org-left"><code>LMAX(n)</code></td>
<td class="org-left">input</td>
<td class="org-left">Array containing the maximum power for each value</td>
</tr>
<tr>
<td class="org-left"><code>P(LDP,n)</code></td>
<td class="org-left">output</td>
<td class="org-left">Array containing all the powers of <code>X</code></td>
</tr>
<tr>
<td class="org-left"><code>LDP</code></td>
<td class="org-left">input</td>
<td class="org-left">Leading dimension of array <code>P</code></td>
</tr>
</tbody>
</table>
<p>
Requirements:
</p>
<ul class="org-ul">
<li><code>context</code> is not <code>QMCKL_NULL_CONTEXT</code></li>
<li><code>n</code> &gt; 0</li>
<li><code>X</code> is allocated with at least \(n \times 8\) bytes</li>
<li><code>LMAX</code> is allocated with at least \(n \times 4\) bytes</li>
<li><code>P</code> is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytes</li>
<li><code>LDP</code> &gt;= \(\max_i\) <code>LMAX[i]</code></li>
</ul>
<div class="org-src-container">
<pre class="src src-c"><span style="color: #228b22;">qmckl_exit_code</span>
<span style="color: #0000ff;">qmckl_ao_power</span>(<span style="color: #a020f0;">const</span> <span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">n</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">X</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int32_t</span> *<span style="color: #a0522d;">LMAX</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">P</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">LDP</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">integer </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">qmckl_ao_power_f</span><span style="color: #000000; background-color: #ffffff;">(context, n, X, LMAX, P, ldp) result(info)</span>
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> context</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> n</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> X(n)</span>
<span style="color: #228b22;">integer</span> , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> LMAX(n)</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> P(ldp,n)</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldp</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,k</span>
info = QMCKL_SUCCESS
<span style="color: #a020f0;">if</span> (context == QMCKL_NULL_CONTEXT) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_CONTEXT
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (n &lt;= ldp) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_2
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
k = <span style="color: #a020f0;">MAXVAL</span>(LMAX)
<span style="color: #a020f0;">if</span> (LDP &lt; k) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_6
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (k &lt;= 0) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_4
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">do</span> i=1,n
P(1,i) = X(i)
<span style="color: #a020f0;">do</span> k=2,LMAX(i)
P(k,i) = P(k-1,i) * X(i)
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">qmckl_ao_power_f</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int32_t</span>) <span style="color: #a020f0;">function</span> <span style="color: #0000ff;">test_qmckl_ao_power</span>(context) <span style="color: #a020f0;">bind</span>(C)
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>), <span style="color: #a020f0;">intent</span>(in), <span style="color: #a020f0;">value</span> ::<span style="color: #a0522d;"> context</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> n, LDP </span>
<span style="color: #228b22;">integer</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> LMAX(:) </span>
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> X(:), P(:,:)</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,j</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> epsilon</span>
epsilon = qmckl_context_get_epsilon(context)
n = 100;
LDP = 10;
<span style="color: #a020f0;">allocate</span>(X(n), P(LDP,n), LMAX(n))
<span style="color: #a020f0;">do</span> j=1,n
X(j) = -5.d0 + 0.1d0 * <span style="color: #a020f0;">dble</span>(j)
LMAX(j) = 1 + <span style="color: #a020f0;">int</span>(<span style="color: #a020f0;">mod</span>(j, 5),4)
<span style="color: #a020f0;">end do</span>
test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
<span style="color: #a020f0;">if</span> (test_qmckl_ao_power /= 0) <span style="color: #a020f0;">return</span>
test_qmckl_ao_power = -1
<span style="color: #a020f0;">do</span> j=1,n
<span style="color: #a020f0;">do</span> i=1,LMAX(j)
<span style="color: #a020f0;">if</span> ( X(j)**i == 0.d0 ) <span style="color: #a020f0;">then</span>
<span style="color: #a020f0;">if</span> ( P(i,j) /= 0.d0) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">else</span>
<span style="color: #a020f0;">if</span> ( dabs(1.d0 - P(i,j) / (X(j)**i)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end if</span>
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">end do</span>
test_qmckl_ao_power = 0
<span style="color: #a020f0;">deallocate</span>(X,P,LMAX)
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">test_qmckl_ao_power</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org4798ffb" class="outline-3">
<h3 id="org4798ffb"><span class="section-number-3">1.2</span> Value, Gradient and Laplacian of a polynomial</h3>
<div class="outline-text-3" id="text-1-2">
<p>
A polynomial is centered on a nucleus \(\mathbf{R}_i\)
</p>
<p>
\[
P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c
\]
</p>
<p>
The gradients with respect to electron coordinates are
</p>
\begin{eqnarray*}
\frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\
\frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\
\end{eqnarray*}
<p>
and the Laplacian is
</p>
\begin{eqnarray*}
\left( \frac{\partial }{\partial x^2} +
\frac{\partial }{\partial y^2} +
\frac{\partial }{\partial z^2} \right) P_l
\left(\mathbf{r},\mathbf{R}_i \right) & = &
a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\
&& b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\
&& c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}.
\end{eqnarray*}
<p>
<code>qmckl_ao_polynomial_vgl</code> computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to <code>lmax</code>.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
</colgroup>
<tbody>
<tr>
<td class="org-left"><code>context</code></td>
<td class="org-left">input</td>
<td class="org-left">Global state</td>
</tr>
<tr>
<td class="org-left"><code>X(3)</code></td>
<td class="org-left">input</td>
<td class="org-left">Array containing the coordinates of the points</td>
</tr>
<tr>
<td class="org-left"><code>R(3)</code></td>
<td class="org-left">input</td>
<td class="org-left">Array containing the x,y,z coordinates of the center</td>
</tr>
<tr>
<td class="org-left"><code>lmax</code></td>
<td class="org-left">input</td>
<td class="org-left">Maximum angular momentum</td>
</tr>
<tr>
<td class="org-left"><code>n</code></td>
<td class="org-left">output</td>
<td class="org-left">Number of computed polynomials</td>
</tr>
<tr>
<td class="org-left"><code>L(ldl,n)</code></td>
<td class="org-left">output</td>
<td class="org-left">Contains a,b,c for all <code>n</code> results</td>
</tr>
<tr>
<td class="org-left"><code>ldl</code></td>
<td class="org-left">input</td>
<td class="org-left">Leading dimension of <code>L</code></td>
</tr>
<tr>
<td class="org-left"><code>VGL(ldv,n)</code></td>
<td class="org-left">output</td>
<td class="org-left">Value, gradients and Laplacian of the polynomials</td>
</tr>
<tr>
<td class="org-left"><code>ldv</code></td>
<td class="org-left">input</td>
<td class="org-left">Leading dimension of array <code>VGL</code></td>
</tr>
</tbody>
</table>
<p>
Requirements:
</p>
<ul class="org-ul">
<li><code>context</code> is not <code>QMCKL_NULL_CONTEXT</code></li>
<li><code>n</code> &gt; 0</li>
<li><code>lmax</code> &gt;= 0</li>
<li><code>ldl</code> &gt;= 3</li>
<li><code>ldv</code> &gt;= 5</li>
<li><code>X</code> is allocated with at least \(3 \times 8\) bytes</li>
<li><code>R</code> is allocated with at least \(3 \times 8\) bytes</li>
<li><code>n</code> &gt;= <code>(lmax+1)(lmax+2)(lmax+3)/6</code></li>
<li><code>L</code> is allocated with at least \(3 \times n \times 4\) bytes</li>
<li><code>VGL</code> is allocated with at least \(5 \times n \times 8\) bytes</li>
<li>On output, <code>n</code> should be equal to <code>(lmax+1)(lmax+2)(lmax+3)/6</code></li>
<li>On output, the powers are given in the following order (l=a+b+c):
<ul class="org-ul">
<li>Increasing values of <code>l</code></li>
<li>Within a given value of <code>l</code>, alphabetical order of the
string made by a*"x" + b*"y" + c*"z" (in Python notation).
For example, with a=0, b=2 and c=1 the string is "yyz"</li>
</ul></li>
</ul>
<div class="org-src-container">
<pre class="src src-c"><span style="color: #228b22;">qmckl_exit_code</span>
<span style="color: #0000ff;">qmckl_ao_polynomial_vgl</span>(<span style="color: #a020f0;">const</span> <span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">X</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">R</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int32_t</span> <span style="color: #a0522d;">lmax</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> *<span style="color: #a0522d;">n</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int32_t</span> *<span style="color: #a0522d;">L</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">ldl</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">VGL</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">ldv</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">integer </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">qmckl_ao_polynomial_vgl_f</span><span style="color: #000000; background-color: #ffffff;">(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)</span>
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> context</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> X(3), R(3)</span>
<span style="color: #228b22;">integer</span> , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> lmax</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> n</span>
<span style="color: #228b22;">integer</span> , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldl</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldv</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,j</span>
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> a,b,c,d</span>
<span style="color: #228b22;">real</span>*8 ::<span style="color: #a0522d;"> Y(3)</span>
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> lmax_array(3)</span>
<span style="color: #228b22;">real</span>*8 ::<span style="color: #a0522d;"> pows(-2:lmax,3)</span>
<span style="color: #228b22;">integer</span>, <span style="color: #a020f0;">external</span> ::<span style="color: #a0522d;"> qmckl_ao_power_f</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> xy, yz, xz</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> da, db, dc, dd</span>
info = 0
<span style="color: #a020f0;">if</span> (context == QMCKL_NULL_CONTEXT) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_CONTEXT
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (lmax &lt; 0) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_4
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (ldl &lt; 3) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_7
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (ldv &lt; 5) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_9
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">do</span> i=1,3
Y(i) = X(i) - R(i)
<span style="color: #a020f0;">end do</span>
lmax_array(1:3) = lmax
<span style="color: #a020f0;">if</span> (lmax == 0) <span style="color: #a020f0;">then</span>
VGL(1,1) = 1.d0
vgL(2:5,1) = 0.d0
l(1:3,1) = 0
n=1
<span style="color: #a020f0;">else if</span> (lmax &gt; 0) <span style="color: #a020f0;">then</span>
pows(-2:0,1:3) = 1.d0
<span style="color: #a020f0;">do</span> i=1,lmax
pows(i,1) = pows(i-1,1) * Y(1)
pows(i,2) = pows(i-1,2) * Y(2)
pows(i,3) = pows(i-1,3) * Y(3)
<span style="color: #a020f0;">end do</span>
VGL(1:5,1:4) = 0.d0
l (1:3,1:4) = 0
VGL(1 ,1 ) = 1.d0
vgl(1:5,2:4) = 0.d0
l (1,2) = 1
vgl(1,2) = pows(1,1)
vgL(2,2) = 1.d0
l (2,3) = 1
vgl(1,3) = pows(1,2)
vgL(3,3) = 1.d0
l (3,4) = 1
vgl(1,4) = pows(1,3)
vgL(4,4) = 1.d0
n=4
<span style="color: #a020f0;">endif</span>
! <span style="color: #b22222;">l&gt;=2</span>
dd = 2.d0
<span style="color: #a020f0;">do</span> d=2,lmax
da = dd
<span style="color: #a020f0;">do</span> a=d,0,-1
db = dd-da
<span style="color: #a020f0;">do</span> b=d-a,0,-1
c = d - a - b
dc = dd - da - db
n = n+1
l(1,n) = a
l(2,n) = b
l(3,n) = c
xy = pows(a,1) * pows(b,2)
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
vgl(1,n) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
vgl(2,n) = pows(a-1,1) * yz
vgl(3,n) = pows(b-1,2) * xz
vgl(4,n) = pows(c-1,3) * xy
vgl(5,n) = <span style="color: #a020f0;">&amp;</span>
(da-1.d0) * pows(a-2,1) * yz + <span style="color: #a020f0;">&amp;</span>
(db-1.d0) * pows(b-2,2) * xz + <span style="color: #a020f0;">&amp;</span>
(dc-1.d0) * pows(c-2,3) * xy
db = db - 1.d0
<span style="color: #a020f0;">end do</span>
da = da - 1.d0
<span style="color: #a020f0;">end do</span>
dd = dd + 1.d0
<span style="color: #a020f0;">end do</span>
info = QMCKL_SUCCESS
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">qmckl_ao_polynomial_vgl_f</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int32_t</span>) <span style="color: #a020f0;">function</span> <span style="color: #0000ff;">test_qmckl_ao_polynomial_vgl</span>(context) <span style="color: #a020f0;">bind</span>(C)
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>), <span style="color: #a020f0;">intent</span>(in), <span style="color: #a020f0;">value</span> ::<span style="color: #a0522d;"> context</span>
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> lmax, d, i</span>
<span style="color: #228b22;">integer</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> L(:,:)</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> n, ldl, ldv, j</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> X(3), R(3), Y(3)</span>
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> VGL(:,:)</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> w</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> epsilon</span>
epsilon = qmckl_context_get_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
lmax = 4;
ldl = 3;
ldv = 100;
d = (lmax+1)*(lmax+2)*(lmax+3)/6
<span style="color: #a020f0;">allocate</span> (L(ldl,d), VGL(ldv,d))
test_qmckl_ao_polynomial_vgl = <span style="color: #a020f0;">&amp;</span>
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
<span style="color: #a020f0;">if</span> (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">if</span> (n /= d) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">do</span> j=1,n
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
<span style="color: #a020f0;">do</span> i=1,3
<span style="color: #a020f0;">if</span> (L(i,j) &lt; 0) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end do</span>
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(1,j) / (<span style="color: #a020f0;">&amp;</span>
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
<span style="color: #a020f0;">if</span> (L(1,j) &lt; 1) <span style="color: #a020f0;">then</span>
<span style="color: #a020f0;">if</span> (VGL(2,j) /= 0.d0) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">else</span>
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(2,j) / (<span style="color: #a020f0;">&amp;</span>
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end if</span>
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
<span style="color: #a020f0;">if</span> (L(2,j) &lt; 1) <span style="color: #a020f0;">then</span>
<span style="color: #a020f0;">if</span> (VGL(3,j) /= 0.d0) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">else</span>
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(3,j) / (<span style="color: #a020f0;">&amp;</span>
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end if</span>
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
<span style="color: #a020f0;">if</span> (L(3,j) &lt; 1) <span style="color: #a020f0;">then</span>
<span style="color: #a020f0;">if</span> (VGL(4,j) /= 0.d0) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">else</span>
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(4,j) / (<span style="color: #a020f0;">&amp;</span>
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end if</span>
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
w = 0.d0
<span style="color: #a020f0;">if</span> (L(1,j) &gt; 1) <span style="color: #a020f0;">then</span>
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
<span style="color: #a020f0;">end if</span>
<span style="color: #a020f0;">if</span> (L(2,j) &gt; 1) <span style="color: #a020f0;">then</span>
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
<span style="color: #a020f0;">end if</span>
<span style="color: #a020f0;">if</span> (L(3,j) &gt; 1) <span style="color: #a020f0;">then</span>
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
<span style="color: #a020f0;">end if</span>
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(5,j) / w) &gt; epsilon ) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end do</span>
test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS
<span style="color: #a020f0;">deallocate</span>(L,VGL)
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">test_qmckl_ao_polynomial_vgl</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-c"><span style="color: #228b22;">int</span> <span style="color: #0000ff;">test_qmckl_ao_polynomial_vgl</span>(<span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>);
munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-org2caedcc" class="outline-2">
<h2 id="org2caedcc"><span class="section-number-2">2</span> Gaussian basis functions</h2>
<div class="outline-text-2" id="text-2">
<p>
<code>qmckl_ao_gaussian_vgl</code> computes the values, gradients and
Laplacians at a given point of <code>n</code> Gaussian functions centered at
the same point:
</p>
<p>
\[ v_i = \exp(-a_i |X-R|^2) \]
\[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \]
\[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \]
\[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \]
\[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-left" />
<col class="org-left" />
</colgroup>
<tbody>
<tr>
<td class="org-left"><code>context</code></td>
<td class="org-left">input</td>
<td class="org-left">Global state</td>
</tr>
<tr>
<td class="org-left"><code>X(3)</code></td>
<td class="org-left">input</td>
<td class="org-left">Array containing the coordinates of the points</td>
</tr>
<tr>
<td class="org-left"><code>R(3)</code></td>
<td class="org-left">input</td>
<td class="org-left">Array containing the x,y,z coordinates of the center</td>
</tr>
<tr>
<td class="org-left"><code>n</code></td>
<td class="org-left">input</td>
<td class="org-left">Number of computed gaussians</td>
</tr>
<tr>
<td class="org-left"><code>A(n)</code></td>
<td class="org-left">input</td>
<td class="org-left">Exponents of the Gaussians</td>
</tr>
<tr>
<td class="org-left"><code>VGL(ldv,5)</code></td>
<td class="org-left">output</td>
<td class="org-left">Value, gradients and Laplacian of the Gaussians</td>
</tr>
<tr>
<td class="org-left"><code>ldv</code></td>
<td class="org-left">input</td>
<td class="org-left">Leading dimension of array <code>VGL</code></td>
</tr>
</tbody>
</table>
<p>
Requirements :
</p>
<ul class="org-ul">
<li><code>context</code> is not 0</li>
<li><code>n</code> &gt; 0</li>
<li><code>ldv</code> &gt;= 5</li>
<li><code>A(i)</code> &gt; 0 for all <code>i</code></li>
<li><code>X</code> is allocated with at least \(3 \times 8\) bytes</li>
<li><code>R</code> is allocated with at least \(3 \times 8\) bytes</li>
<li><code>A</code> is allocated with at least \(n \times 8\) bytes</li>
<li><code>VGL</code> is allocated with at least \(n \times 5 \times 8\) bytes</li>
</ul>
<div class="org-src-container">
<pre class="src src-c"><span style="color: #228b22;">qmckl_exit_code</span>
<span style="color: #0000ff;">qmckl_ao_gaussian_vgl</span>(<span style="color: #a020f0;">const</span> <span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">X</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">R</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> *<span style="color: #a0522d;">n</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> *<span style="color: #a0522d;">A</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">VGL</span>,
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">ldv</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">integer </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">qmckl_ao_gaussian_vgl_f</span><span style="color: #000000; background-color: #ffffff;">(context, X, R, n, A, VGL, ldv) result(info)</span>
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> context</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> X(3), R(3)</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> n</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> A(n)</span>
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> VGL(ldv,5)</span>
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldv</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,j</span>
<span style="color: #228b22;">real</span>*8 ::<span style="color: #a0522d;"> Y(3), r2, t, u, v</span>
info = QMCKL_SUCCESS
<span style="color: #a020f0;">if</span> (context == QMCKL_NULL_CONTEXT) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_CONTEXT
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (n &lt;= 0) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_4
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">if</span> (ldv &lt; n) <span style="color: #a020f0;">then</span>
info = QMCKL_INVALID_ARG_7
<span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">endif</span>
<span style="color: #a020f0;">do</span> i=1,3
Y(i) = X(i) - R(i)
<span style="color: #a020f0;">end do</span>
r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
<span style="color: #a020f0;">do</span> i=1,n
VGL(i,1) = dexp(-A(i) * r2)
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">do</span> i=1,n
VGL(i,5) = A(i) * VGL(i,1)
<span style="color: #a020f0;">end do</span>
t = -2.d0 * ( X(1) - R(1) )
u = -2.d0 * ( X(2) - R(2) )
v = -2.d0 * ( X(3) - R(3) )
<span style="color: #a020f0;">do</span> i=1,n
VGL(i,2) = t * VGL(i,5)
VGL(i,3) = u * VGL(i,5)
VGL(i,4) = v * VGL(i,5)
<span style="color: #a020f0;">end do</span>
t = 4.d0 * r2
<span style="color: #a020f0;">do</span> i=1,n
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">qmckl_ao_gaussian_vgl_f</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int32_t</span>) <span style="color: #a020f0;">function</span> <span style="color: #0000ff;">test_qmckl_ao_gaussian_vgl</span>(context) <span style="color: #a020f0;">bind</span>(C)
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>), <span style="color: #a020f0;">intent</span>(in), <span style="color: #a020f0;">value</span> ::<span style="color: #a0522d;"> context</span>
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> n, ldv, j, i</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> X(3), R(3), Y(3), r2</span>
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> VGL(:,:), A(:)</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> epsilon</span>
epsilon = qmckl_context_get_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
r2 = Y(1)**2 + Y(2)**2 + Y(3)**2
n = 10;
ldv = 100;
<span style="color: #a020f0;">allocate</span> (A(n), VGL(ldv,5))
<span style="color: #a020f0;">do</span> i=1,n
A(i) = 0.0013 * <span style="color: #a020f0;">dble</span>(<span style="color: #a020f0;">ishft</span>(1,i))
<span style="color: #a020f0;">end do</span>
test_qmckl_ao_gaussian_vgl = <span style="color: #a020f0;">&amp;</span>
qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
<span style="color: #a020f0;">if</span> (test_qmckl_ao_gaussian_vgl /= 0) <span style="color: #a020f0;">return</span>
test_qmckl_ao_gaussian_vgl = -1
<span style="color: #a020f0;">do</span> i=1,n
test_qmckl_ao_gaussian_vgl = -11
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,1) / (<span style="color: #a020f0;">&amp;</span>
dexp(-A(i) * r2) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
test_qmckl_ao_gaussian_vgl = -12
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,2) / (<span style="color: #a020f0;">&amp;</span>
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
test_qmckl_ao_gaussian_vgl = -13
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,3) / (<span style="color: #a020f0;">&amp;</span>
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
test_qmckl_ao_gaussian_vgl = -14
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,4) / (<span style="color: #a020f0;">&amp;</span>
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
test_qmckl_ao_gaussian_vgl = -15
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,5) / (<span style="color: #a020f0;">&amp;</span>
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) <span style="color: #a020f0;">&amp;</span>
)) &gt; epsilon ) <span style="color: #a020f0;">return</span>
<span style="color: #a020f0;">end do</span>
test_qmckl_ao_gaussian_vgl = 0
<span style="color: #a020f0;">deallocate</span>(VGL)
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">test_qmckl_ao_gaussian_vgl</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org1f77090" class="outline-2">
<h2 id="org1f77090"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Slater basis functions</h2>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: TREX CoE</p>
<p class="date">Created: 2021-03-19 Fri 22:17</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>
</html>