mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2024-11-03 20:54:09 +01:00
1207 lines
52 KiB
HTML
1207 lines
52 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2021-03-19 Fri 22:17 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<title>Atomic Orbitals</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="TREX CoE" />
|
|
<style type="text/css">
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
.title { text-align: center;
|
|
margin-bottom: .2em; }
|
|
.subtitle { text-align: center;
|
|
font-size: medium;
|
|
font-weight: bold;
|
|
margin-top:0; }
|
|
.todo { font-family: monospace; color: red; }
|
|
.done { font-family: monospace; color: green; }
|
|
.priority { font-family: monospace; color: orange; }
|
|
.tag { background-color: #eee; font-family: monospace;
|
|
padding: 2px; font-size: 80%; font-weight: normal; }
|
|
.timestamp { color: #bebebe; }
|
|
.timestamp-kwd { color: #5f9ea0; }
|
|
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
|
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
|
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
|
.underline { text-decoration: underline; }
|
|
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
|
p.verse { margin-left: 3%; }
|
|
pre {
|
|
border: 1px solid #ccc;
|
|
box-shadow: 3px 3px 3px #eee;
|
|
padding: 8pt;
|
|
font-family: monospace;
|
|
overflow: auto;
|
|
margin: 1.2em;
|
|
}
|
|
pre.src {
|
|
position: relative;
|
|
overflow: visible;
|
|
padding-top: 1.2em;
|
|
}
|
|
pre.src:before {
|
|
display: none;
|
|
position: absolute;
|
|
background-color: white;
|
|
top: -10px;
|
|
right: 10px;
|
|
padding: 3px;
|
|
border: 1px solid black;
|
|
}
|
|
pre.src:hover:before { display: inline;}
|
|
/* Languages per Org manual */
|
|
pre.src-asymptote:before { content: 'Asymptote'; }
|
|
pre.src-awk:before { content: 'Awk'; }
|
|
pre.src-C:before { content: 'C'; }
|
|
/* pre.src-C++ doesn't work in CSS */
|
|
pre.src-clojure:before { content: 'Clojure'; }
|
|
pre.src-css:before { content: 'CSS'; }
|
|
pre.src-D:before { content: 'D'; }
|
|
pre.src-ditaa:before { content: 'ditaa'; }
|
|
pre.src-dot:before { content: 'Graphviz'; }
|
|
pre.src-calc:before { content: 'Emacs Calc'; }
|
|
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
|
pre.src-fortran:before { content: 'Fortran'; }
|
|
pre.src-gnuplot:before { content: 'gnuplot'; }
|
|
pre.src-haskell:before { content: 'Haskell'; }
|
|
pre.src-hledger:before { content: 'hledger'; }
|
|
pre.src-java:before { content: 'Java'; }
|
|
pre.src-js:before { content: 'Javascript'; }
|
|
pre.src-latex:before { content: 'LaTeX'; }
|
|
pre.src-ledger:before { content: 'Ledger'; }
|
|
pre.src-lisp:before { content: 'Lisp'; }
|
|
pre.src-lilypond:before { content: 'Lilypond'; }
|
|
pre.src-lua:before { content: 'Lua'; }
|
|
pre.src-matlab:before { content: 'MATLAB'; }
|
|
pre.src-mscgen:before { content: 'Mscgen'; }
|
|
pre.src-ocaml:before { content: 'Objective Caml'; }
|
|
pre.src-octave:before { content: 'Octave'; }
|
|
pre.src-org:before { content: 'Org mode'; }
|
|
pre.src-oz:before { content: 'OZ'; }
|
|
pre.src-plantuml:before { content: 'Plantuml'; }
|
|
pre.src-processing:before { content: 'Processing.js'; }
|
|
pre.src-python:before { content: 'Python'; }
|
|
pre.src-R:before { content: 'R'; }
|
|
pre.src-ruby:before { content: 'Ruby'; }
|
|
pre.src-sass:before { content: 'Sass'; }
|
|
pre.src-scheme:before { content: 'Scheme'; }
|
|
pre.src-screen:before { content: 'Gnu Screen'; }
|
|
pre.src-sed:before { content: 'Sed'; }
|
|
pre.src-sh:before { content: 'shell'; }
|
|
pre.src-sql:before { content: 'SQL'; }
|
|
pre.src-sqlite:before { content: 'SQLite'; }
|
|
/* additional languages in org.el's org-babel-load-languages alist */
|
|
pre.src-forth:before { content: 'Forth'; }
|
|
pre.src-io:before { content: 'IO'; }
|
|
pre.src-J:before { content: 'J'; }
|
|
pre.src-makefile:before { content: 'Makefile'; }
|
|
pre.src-maxima:before { content: 'Maxima'; }
|
|
pre.src-perl:before { content: 'Perl'; }
|
|
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
|
pre.src-scala:before { content: 'Scala'; }
|
|
pre.src-shell:before { content: 'Shell Script'; }
|
|
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
|
/* additional language identifiers per "defun org-babel-execute"
|
|
in ob-*.el */
|
|
pre.src-cpp:before { content: 'C++'; }
|
|
pre.src-abc:before { content: 'ABC'; }
|
|
pre.src-coq:before { content: 'Coq'; }
|
|
pre.src-groovy:before { content: 'Groovy'; }
|
|
/* additional language identifiers from org-babel-shell-names in
|
|
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
|
the execution function name together. */
|
|
pre.src-bash:before { content: 'bash'; }
|
|
pre.src-csh:before { content: 'csh'; }
|
|
pre.src-ash:before { content: 'ash'; }
|
|
pre.src-dash:before { content: 'dash'; }
|
|
pre.src-ksh:before { content: 'ksh'; }
|
|
pre.src-mksh:before { content: 'mksh'; }
|
|
pre.src-posh:before { content: 'posh'; }
|
|
/* Additional Emacs modes also supported by the LaTeX listings package */
|
|
pre.src-ada:before { content: 'Ada'; }
|
|
pre.src-asm:before { content: 'Assembler'; }
|
|
pre.src-caml:before { content: 'Caml'; }
|
|
pre.src-delphi:before { content: 'Delphi'; }
|
|
pre.src-html:before { content: 'HTML'; }
|
|
pre.src-idl:before { content: 'IDL'; }
|
|
pre.src-mercury:before { content: 'Mercury'; }
|
|
pre.src-metapost:before { content: 'MetaPost'; }
|
|
pre.src-modula-2:before { content: 'Modula-2'; }
|
|
pre.src-pascal:before { content: 'Pascal'; }
|
|
pre.src-ps:before { content: 'PostScript'; }
|
|
pre.src-prolog:before { content: 'Prolog'; }
|
|
pre.src-simula:before { content: 'Simula'; }
|
|
pre.src-tcl:before { content: 'tcl'; }
|
|
pre.src-tex:before { content: 'TeX'; }
|
|
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
|
pre.src-verilog:before { content: 'Verilog'; }
|
|
pre.src-vhdl:before { content: 'VHDL'; }
|
|
pre.src-xml:before { content: 'XML'; }
|
|
pre.src-nxml:before { content: 'XML'; }
|
|
/* add a generic configuration mode; LaTeX export needs an additional
|
|
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
|
pre.src-conf:before { content: 'Configuration File'; }
|
|
|
|
table { border-collapse:collapse; }
|
|
caption.t-above { caption-side: top; }
|
|
caption.t-bottom { caption-side: bottom; }
|
|
td, th { vertical-align:top; }
|
|
th.org-right { text-align: center; }
|
|
th.org-left { text-align: center; }
|
|
th.org-center { text-align: center; }
|
|
td.org-right { text-align: right; }
|
|
td.org-left { text-align: left; }
|
|
td.org-center { text-align: center; }
|
|
dt { font-weight: bold; }
|
|
.footpara { display: inline; }
|
|
.footdef { margin-bottom: 1em; }
|
|
.figure { padding: 1em; }
|
|
.figure p { text-align: center; }
|
|
.inlinetask {
|
|
padding: 10px;
|
|
border: 2px solid gray;
|
|
margin: 10px;
|
|
background: #ffffcc;
|
|
}
|
|
#org-div-home-and-up
|
|
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
|
textarea { overflow-x: auto; }
|
|
.linenr { font-size: smaller }
|
|
.code-highlighted { background-color: #ffff00; }
|
|
.org-info-js_info-navigation { border-style: none; }
|
|
#org-info-js_console-label
|
|
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
|
.org-info-js_search-highlight
|
|
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
|
.org-svg { width: 90%; }
|
|
/*]]>*/-->
|
|
</style>
|
|
<link rel="stylesheet" title="Standard" href="qmckl.css" type="text/css" />
|
|
|
|
<script type="text/javascript" src="org-info.js">
|
|
/**
|
|
*
|
|
* @source: org-info.js
|
|
*
|
|
* @licstart The following is the entire license notice for the
|
|
* JavaScript code in org-info.js.
|
|
*
|
|
* Copyright (C) 2012-2019 Free Software Foundation, Inc.
|
|
*
|
|
*
|
|
* The JavaScript code in this tag is free software: you can
|
|
* redistribute it and/or modify it under the terms of the GNU
|
|
* General Public License (GNU GPL) as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option)
|
|
* any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
*
|
|
* As additional permission under GNU GPL version 3 section 7, you
|
|
* may distribute non-source (e.g., minimized or compacted) forms of
|
|
* that code without the copy of the GNU GPL normally required by
|
|
* section 4, provided you include this license notice and a URL
|
|
* through which recipients can access the Corresponding Source.
|
|
*
|
|
* @licend The above is the entire license notice
|
|
* for the JavaScript code in org-info.js.
|
|
*
|
|
*/
|
|
</script>
|
|
|
|
<script type="text/javascript">
|
|
|
|
/*
|
|
@licstart The following is the entire license notice for the
|
|
JavaScript code in this tag.
|
|
|
|
Copyright (C) 2012-2019 Free Software Foundation, Inc.
|
|
|
|
The JavaScript code in this tag is free software: you can
|
|
redistribute it and/or modify it under the terms of the GNU
|
|
General Public License (GNU GPL) as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option)
|
|
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
|
|
As additional permission under GNU GPL version 3 section 7, you
|
|
may distribute non-source (e.g., minimized or compacted) forms of
|
|
that code without the copy of the GNU GPL normally required by
|
|
section 4, provided you include this license notice and a URL
|
|
through which recipients can access the Corresponding Source.
|
|
|
|
|
|
@licend The above is the entire license notice
|
|
for the JavaScript code in this tag.
|
|
*/
|
|
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
org_html_manager.set("TOC_DEPTH", "4");
|
|
org_html_manager.set("LINK_HOME", "index.html");
|
|
org_html_manager.set("LINK_UP", "");
|
|
org_html_manager.set("LOCAL_TOC", "1");
|
|
org_html_manager.set("VIEW_BUTTONS", "0");
|
|
org_html_manager.set("MOUSE_HINT", "underline");
|
|
org_html_manager.set("FIXED_TOC", "0");
|
|
org_html_manager.set("TOC", "1");
|
|
org_html_manager.set("VIEW", "info");
|
|
org_html_manager.setup(); // activate after the parameters are set
|
|
/*]]>*///-->
|
|
</script>
|
|
<script type="text/javascript">
|
|
/*
|
|
@licstart The following is the entire license notice for the
|
|
JavaScript code in this tag.
|
|
|
|
Copyright (C) 2012-2019 Free Software Foundation, Inc.
|
|
|
|
The JavaScript code in this tag is free software: you can
|
|
redistribute it and/or modify it under the terms of the GNU
|
|
General Public License (GNU GPL) as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option)
|
|
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
|
|
As additional permission under GNU GPL version 3 section 7, you
|
|
may distribute non-source (e.g., minimized or compacted) forms of
|
|
that code without the copy of the GNU GPL normally required by
|
|
section 4, provided you include this license notice and a URL
|
|
through which recipients can access the Corresponding Source.
|
|
|
|
|
|
@licend The above is the entire license notice
|
|
for the JavaScript code in this tag.
|
|
*/
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
function CodeHighlightOn(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(null != target) {
|
|
elem.cacheClassElem = elem.className;
|
|
elem.cacheClassTarget = target.className;
|
|
target.className = "code-highlighted";
|
|
elem.className = "code-highlighted";
|
|
}
|
|
}
|
|
function CodeHighlightOff(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(elem.cacheClassElem)
|
|
elem.className = elem.cacheClassElem;
|
|
if(elem.cacheClassTarget)
|
|
target.className = elem.cacheClassTarget;
|
|
}
|
|
/*]]>*///-->
|
|
</script>
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
displayAlign: "center",
|
|
displayIndent: "0em",
|
|
|
|
"HTML-CSS": { scale: 100,
|
|
linebreaks: { automatic: "false" },
|
|
webFont: "TeX"
|
|
},
|
|
SVG: {scale: 100,
|
|
linebreaks: { automatic: "false" },
|
|
font: "TeX"},
|
|
NativeMML: {scale: 100},
|
|
TeX: { equationNumbers: {autoNumber: "AMS"},
|
|
MultLineWidth: "85%",
|
|
TagSide: "right",
|
|
TagIndent: ".8em"
|
|
}
|
|
});
|
|
</script>
|
|
<script type="text/javascript"
|
|
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href=""> UP </a>
|
|
|
|
|
<a accesskey="H" href="index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Atomic Orbitals</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org31a9a5e">1. Polynomial part</a>
|
|
<ul>
|
|
<li><a href="#org44015c3">1.1. Powers of \(x-X_i\)</a></li>
|
|
<li><a href="#org4798ffb">1.2. Value, Gradient and Laplacian of a polynomial</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org2caedcc">2. Gaussian basis functions</a></li>
|
|
<li><a href="#org1f77090">3. <span class="todo TODO">TODO</span> Slater basis functions</a></li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
<p>
|
|
The atomic basis set is defined as a list of shells. Each shell \(s\) is
|
|
centered on a nucleus \(A\), possesses a given angular momentum \(l\) and a
|
|
radial function \(R_s\). The radial function is a linear combination of
|
|
\emph{primitive} functions that can be of type Slater (\(p=1\)) or
|
|
Gaussian (\(p=2\)):
|
|
</p>
|
|
|
|
<p>
|
|
\[
|
|
R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s}
|
|
\sum_{k=1}^{N_{\text{prim}}} a_{ks}
|
|
\exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). |
|
|
\]
|
|
</p>
|
|
|
|
<p>
|
|
In the case of Gaussian functions, \(n_s\) is always zero.
|
|
The normalization factor \(\mathcal{N}_s\) ensures that all the functions
|
|
of the shell are normalized to unity. As this normalization requires
|
|
the ability to compute overlap integrals, it should be written in the
|
|
file to ensure that the file is self-contained and does not require
|
|
the client program to have the ability to compute such integrals.
|
|
</p>
|
|
|
|
<p>
|
|
Atomic orbitals (AOs) are defined as
|
|
</p>
|
|
|
|
<p>
|
|
\[
|
|
\chi_i (\mathbf{r}) = P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r})
|
|
\]
|
|
</p>
|
|
|
|
<p>
|
|
where \(\theta(i)\) returns the shell on which the AO is expanded,
|
|
and \(\eta(i)\) denotes which angular function is chosen.
|
|
</p>
|
|
|
|
<p>
|
|
In this section we describe the kernels used to compute the values,
|
|
gradients and Laplacian of the atomic basis functions.
|
|
</p>
|
|
|
|
<div id="outline-container-org31a9a5e" class="outline-2">
|
|
<h2 id="org31a9a5e"><span class="section-number-2">1</span> Polynomial part</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
</div>
|
|
<div id="outline-container-org44015c3" class="outline-3">
|
|
<h3 id="org44015c3"><span class="section-number-3">1.1</span> Powers of \(x-X_i\)</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<p>
|
|
The <code>qmckl_ao_power</code> function computes all the powers of the <code>n</code>
|
|
input data up to the given maximum value given in input for each of
|
|
the \(n\) points:
|
|
</p>
|
|
|
|
<p>
|
|
\[ P_{ik} = X_i^k \]
|
|
</p>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-left" />
|
|
|
|
<col class="org-left" />
|
|
|
|
<col class="org-left" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-left"><code>context</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Global state</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>n</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Number of values</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>X(n)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Array containing the input values</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>LMAX(n)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Array containing the maximum power for each value</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>P(LDP,n)</code></td>
|
|
<td class="org-left">output</td>
|
|
<td class="org-left">Array containing all the powers of <code>X</code></td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>LDP</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Leading dimension of array <code>P</code></td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
Requirements:
|
|
</p>
|
|
|
|
<ul class="org-ul">
|
|
<li><code>context</code> is not <code>QMCKL_NULL_CONTEXT</code></li>
|
|
<li><code>n</code> > 0</li>
|
|
<li><code>X</code> is allocated with at least \(n \times 8\) bytes</li>
|
|
<li><code>LMAX</code> is allocated with at least \(n \times 4\) bytes</li>
|
|
<li><code>P</code> is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytes</li>
|
|
<li><code>LDP</code> >= \(\max_i\) <code>LMAX[i]</code></li>
|
|
</ul>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">qmckl_exit_code</span>
|
|
<span style="color: #0000ff;">qmckl_ao_power</span>(<span style="color: #a020f0;">const</span> <span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">n</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">X</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int32_t</span> *<span style="color: #a0522d;">LMAX</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">P</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">LDP</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #228b22;">integer </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">qmckl_ao_power_f</span><span style="color: #000000; background-color: #ffffff;">(context, n, X, LMAX, P, ldp) result(info)</span>
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> context</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> n</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> X(n)</span>
|
|
<span style="color: #228b22;">integer</span> , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> LMAX(n)</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> P(ldp,n)</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldp</span>
|
|
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,k</span>
|
|
|
|
info = QMCKL_SUCCESS
|
|
|
|
<span style="color: #a020f0;">if</span> (context == QMCKL_NULL_CONTEXT) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_CONTEXT
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (n <= ldp) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_2
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
k = <span style="color: #a020f0;">MAXVAL</span>(LMAX)
|
|
<span style="color: #a020f0;">if</span> (LDP < k) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_6
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (k <= 0) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_4
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
P(1,i) = X(i)
|
|
<span style="color: #a020f0;">do</span> k=2,LMAX(i)
|
|
P(k,i) = P(k-1,i) * X(i)
|
|
<span style="color: #a020f0;">end do</span>
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">qmckl_ao_power_f</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int32_t</span>) <span style="color: #a020f0;">function</span> <span style="color: #0000ff;">test_qmckl_ao_power</span>(context) <span style="color: #a020f0;">bind</span>(C)
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>), <span style="color: #a020f0;">intent</span>(in), <span style="color: #a020f0;">value</span> ::<span style="color: #a0522d;"> context</span>
|
|
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> n, LDP </span>
|
|
<span style="color: #228b22;">integer</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> LMAX(:) </span>
|
|
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> X(:), P(:,:)</span>
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,j</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> epsilon</span>
|
|
|
|
epsilon = qmckl_context_get_epsilon(context)
|
|
|
|
n = 100;
|
|
LDP = 10;
|
|
|
|
<span style="color: #a020f0;">allocate</span>(X(n), P(LDP,n), LMAX(n))
|
|
|
|
<span style="color: #a020f0;">do</span> j=1,n
|
|
X(j) = -5.d0 + 0.1d0 * <span style="color: #a020f0;">dble</span>(j)
|
|
LMAX(j) = 1 + <span style="color: #a020f0;">int</span>(<span style="color: #a020f0;">mod</span>(j, 5),4)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
|
|
<span style="color: #a020f0;">if</span> (test_qmckl_ao_power /= 0) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_power = -1
|
|
|
|
<span style="color: #a020f0;">do</span> j=1,n
|
|
<span style="color: #a020f0;">do</span> i=1,LMAX(j)
|
|
<span style="color: #a020f0;">if</span> ( X(j)**i == 0.d0 ) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">if</span> ( P(i,j) /= 0.d0) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">else</span>
|
|
<span style="color: #a020f0;">if</span> ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">end do</span>
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
test_qmckl_ao_power = 0
|
|
<span style="color: #a020f0;">deallocate</span>(X,P,LMAX)
|
|
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">test_qmckl_ao_power</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4798ffb" class="outline-3">
|
|
<h3 id="org4798ffb"><span class="section-number-3">1.2</span> Value, Gradient and Laplacian of a polynomial</h3>
|
|
<div class="outline-text-3" id="text-1-2">
|
|
<p>
|
|
A polynomial is centered on a nucleus \(\mathbf{R}_i\)
|
|
</p>
|
|
|
|
<p>
|
|
\[
|
|
P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c
|
|
\]
|
|
</p>
|
|
|
|
<p>
|
|
The gradients with respect to electron coordinates are
|
|
</p>
|
|
|
|
\begin{eqnarray*}
|
|
\frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
|
|
= & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\
|
|
\frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
|
|
= & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\
|
|
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
|
|
= & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\
|
|
\end{eqnarray*}
|
|
|
|
<p>
|
|
and the Laplacian is
|
|
</p>
|
|
|
|
\begin{eqnarray*}
|
|
\left( \frac{\partial }{\partial x^2} +
|
|
\frac{\partial }{\partial y^2} +
|
|
\frac{\partial }{\partial z^2} \right) P_l
|
|
\left(\mathbf{r},\mathbf{R}_i \right) & = &
|
|
a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\
|
|
&& b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\
|
|
&& c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}.
|
|
\end{eqnarray*}
|
|
|
|
<p>
|
|
<code>qmckl_ao_polynomial_vgl</code> computes the values, gradients and
|
|
Laplacians at a given point in space, of all polynomials with an
|
|
angular momentum up to <code>lmax</code>.
|
|
</p>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-left" />
|
|
|
|
<col class="org-left" />
|
|
|
|
<col class="org-left" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-left"><code>context</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Global state</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>X(3)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Array containing the coordinates of the points</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>R(3)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Array containing the x,y,z coordinates of the center</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>lmax</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Maximum angular momentum</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>n</code></td>
|
|
<td class="org-left">output</td>
|
|
<td class="org-left">Number of computed polynomials</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>L(ldl,n)</code></td>
|
|
<td class="org-left">output</td>
|
|
<td class="org-left">Contains a,b,c for all <code>n</code> results</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>ldl</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Leading dimension of <code>L</code></td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>VGL(ldv,n)</code></td>
|
|
<td class="org-left">output</td>
|
|
<td class="org-left">Value, gradients and Laplacian of the polynomials</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>ldv</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Leading dimension of array <code>VGL</code></td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
Requirements:
|
|
</p>
|
|
|
|
<ul class="org-ul">
|
|
<li><code>context</code> is not <code>QMCKL_NULL_CONTEXT</code></li>
|
|
<li><code>n</code> > 0</li>
|
|
<li><code>lmax</code> >= 0</li>
|
|
<li><code>ldl</code> >= 3</li>
|
|
<li><code>ldv</code> >= 5</li>
|
|
<li><code>X</code> is allocated with at least \(3 \times 8\) bytes</li>
|
|
<li><code>R</code> is allocated with at least \(3 \times 8\) bytes</li>
|
|
<li><code>n</code> >= <code>(lmax+1)(lmax+2)(lmax+3)/6</code></li>
|
|
<li><code>L</code> is allocated with at least \(3 \times n \times 4\) bytes</li>
|
|
<li><code>VGL</code> is allocated with at least \(5 \times n \times 8\) bytes</li>
|
|
<li>On output, <code>n</code> should be equal to <code>(lmax+1)(lmax+2)(lmax+3)/6</code></li>
|
|
<li>On output, the powers are given in the following order (l=a+b+c):
|
|
<ul class="org-ul">
|
|
<li>Increasing values of <code>l</code></li>
|
|
<li>Within a given value of <code>l</code>, alphabetical order of the
|
|
string made by a*"x" + b*"y" + c*"z" (in Python notation).
|
|
For example, with a=0, b=2 and c=1 the string is "yyz"</li>
|
|
</ul></li>
|
|
</ul>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">qmckl_exit_code</span>
|
|
<span style="color: #0000ff;">qmckl_ao_polynomial_vgl</span>(<span style="color: #a020f0;">const</span> <span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">X</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">R</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int32_t</span> <span style="color: #a0522d;">lmax</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> *<span style="color: #a0522d;">n</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int32_t</span> *<span style="color: #a0522d;">L</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">ldl</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">VGL</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">ldv</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #228b22;">integer </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">qmckl_ao_polynomial_vgl_f</span><span style="color: #000000; background-color: #ffffff;">(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)</span>
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> context</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> X(3), R(3)</span>
|
|
<span style="color: #228b22;">integer</span> , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> lmax</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> n</span>
|
|
<span style="color: #228b22;">integer</span> , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldl</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldv</span>
|
|
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,j</span>
|
|
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> a,b,c,d</span>
|
|
<span style="color: #228b22;">real</span>*8 ::<span style="color: #a0522d;"> Y(3)</span>
|
|
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> lmax_array(3)</span>
|
|
<span style="color: #228b22;">real</span>*8 ::<span style="color: #a0522d;"> pows(-2:lmax,3)</span>
|
|
<span style="color: #228b22;">integer</span>, <span style="color: #a020f0;">external</span> ::<span style="color: #a0522d;"> qmckl_ao_power_f</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> xy, yz, xz</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> da, db, dc, dd</span>
|
|
|
|
info = 0
|
|
|
|
<span style="color: #a020f0;">if</span> (context == QMCKL_NULL_CONTEXT) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_CONTEXT
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (lmax < 0) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_4
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (ldl < 3) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_7
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (ldv < 5) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_9
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,3
|
|
Y(i) = X(i) - R(i)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
lmax_array(1:3) = lmax
|
|
<span style="color: #a020f0;">if</span> (lmax == 0) <span style="color: #a020f0;">then</span>
|
|
VGL(1,1) = 1.d0
|
|
vgL(2:5,1) = 0.d0
|
|
l(1:3,1) = 0
|
|
n=1
|
|
<span style="color: #a020f0;">else if</span> (lmax > 0) <span style="color: #a020f0;">then</span>
|
|
pows(-2:0,1:3) = 1.d0
|
|
<span style="color: #a020f0;">do</span> i=1,lmax
|
|
pows(i,1) = pows(i-1,1) * Y(1)
|
|
pows(i,2) = pows(i-1,2) * Y(2)
|
|
pows(i,3) = pows(i-1,3) * Y(3)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
VGL(1:5,1:4) = 0.d0
|
|
l (1:3,1:4) = 0
|
|
|
|
VGL(1 ,1 ) = 1.d0
|
|
vgl(1:5,2:4) = 0.d0
|
|
|
|
l (1,2) = 1
|
|
vgl(1,2) = pows(1,1)
|
|
vgL(2,2) = 1.d0
|
|
|
|
l (2,3) = 1
|
|
vgl(1,3) = pows(1,2)
|
|
vgL(3,3) = 1.d0
|
|
|
|
l (3,4) = 1
|
|
vgl(1,4) = pows(1,3)
|
|
vgL(4,4) = 1.d0
|
|
|
|
n=4
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
! <span style="color: #b22222;">l>=2</span>
|
|
dd = 2.d0
|
|
<span style="color: #a020f0;">do</span> d=2,lmax
|
|
da = dd
|
|
<span style="color: #a020f0;">do</span> a=d,0,-1
|
|
db = dd-da
|
|
<span style="color: #a020f0;">do</span> b=d-a,0,-1
|
|
c = d - a - b
|
|
dc = dd - da - db
|
|
n = n+1
|
|
|
|
l(1,n) = a
|
|
l(2,n) = b
|
|
l(3,n) = c
|
|
|
|
xy = pows(a,1) * pows(b,2)
|
|
yz = pows(b,2) * pows(c,3)
|
|
xz = pows(a,1) * pows(c,3)
|
|
|
|
vgl(1,n) = xy * pows(c,3)
|
|
|
|
xy = dc * xy
|
|
xz = db * xz
|
|
yz = da * yz
|
|
|
|
vgl(2,n) = pows(a-1,1) * yz
|
|
vgl(3,n) = pows(b-1,2) * xz
|
|
vgl(4,n) = pows(c-1,3) * xy
|
|
|
|
vgl(5,n) = <span style="color: #a020f0;">&</span>
|
|
(da-1.d0) * pows(a-2,1) * yz + <span style="color: #a020f0;">&</span>
|
|
(db-1.d0) * pows(b-2,2) * xz + <span style="color: #a020f0;">&</span>
|
|
(dc-1.d0) * pows(c-2,3) * xy
|
|
|
|
db = db - 1.d0
|
|
<span style="color: #a020f0;">end do</span>
|
|
da = da - 1.d0
|
|
<span style="color: #a020f0;">end do</span>
|
|
dd = dd + 1.d0
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
info = QMCKL_SUCCESS
|
|
|
|
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">qmckl_ao_polynomial_vgl_f</span>
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int32_t</span>) <span style="color: #a020f0;">function</span> <span style="color: #0000ff;">test_qmckl_ao_polynomial_vgl</span>(context) <span style="color: #a020f0;">bind</span>(C)
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>), <span style="color: #a020f0;">intent</span>(in), <span style="color: #a020f0;">value</span> ::<span style="color: #a0522d;"> context</span>
|
|
|
|
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> lmax, d, i</span>
|
|
<span style="color: #228b22;">integer</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> L(:,:)</span>
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> n, ldl, ldv, j</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> X(3), R(3), Y(3)</span>
|
|
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> VGL(:,:)</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> w</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> epsilon</span>
|
|
|
|
epsilon = qmckl_context_get_epsilon(context)
|
|
|
|
X = (/ 1.1 , 2.2 , 3.3 /)
|
|
R = (/ 0.1 , 1.2 , -2.3 /)
|
|
Y(:) = X(:) - R(:)
|
|
|
|
lmax = 4;
|
|
ldl = 3;
|
|
ldv = 100;
|
|
|
|
d = (lmax+1)*(lmax+2)*(lmax+3)/6
|
|
|
|
<span style="color: #a020f0;">allocate</span> (L(ldl,d), VGL(ldv,d))
|
|
|
|
test_qmckl_ao_polynomial_vgl = <span style="color: #a020f0;">&</span>
|
|
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
|
|
|
|
<span style="color: #a020f0;">if</span> (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">if</span> (n /= d) <span style="color: #a020f0;">return</span>
|
|
|
|
<span style="color: #a020f0;">do</span> j=1,n
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
|
|
<span style="color: #a020f0;">do</span> i=1,3
|
|
<span style="color: #a020f0;">if</span> (L(i,j) < 0) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end do</span>
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(1,j) / (<span style="color: #a020f0;">&</span>
|
|
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
|
|
<span style="color: #a020f0;">if</span> (L(1,j) < 1) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">if</span> (VGL(2,j) /= 0.d0) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">else</span>
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(2,j) / (<span style="color: #a020f0;">&</span>
|
|
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end if</span>
|
|
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
|
|
<span style="color: #a020f0;">if</span> (L(2,j) < 1) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">if</span> (VGL(3,j) /= 0.d0) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">else</span>
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(3,j) / (<span style="color: #a020f0;">&</span>
|
|
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end if</span>
|
|
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
|
|
<span style="color: #a020f0;">if</span> (L(3,j) < 1) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">if</span> (VGL(4,j) /= 0.d0) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">else</span>
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(4,j) / (<span style="color: #a020f0;">&</span>
|
|
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end if</span>
|
|
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
|
|
w = 0.d0
|
|
<span style="color: #a020f0;">if</span> (L(1,j) > 1) <span style="color: #a020f0;">then</span>
|
|
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">if</span> (L(2,j) > 1) <span style="color: #a020f0;">then</span>
|
|
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">if</span> (L(3,j) > 1) <span style="color: #a020f0;">then</span>
|
|
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(5,j) / w) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS
|
|
|
|
<span style="color: #a020f0;">deallocate</span>(L,VGL)
|
|
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">test_qmckl_ao_polynomial_vgl</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">int</span> <span style="color: #0000ff;">test_qmckl_ao_polynomial_vgl</span>(<span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>);
|
|
munit_assert_int(0, ==, test_qmckl_ao_polynomial_vgl(context));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2caedcc" class="outline-2">
|
|
<h2 id="org2caedcc"><span class="section-number-2">2</span> Gaussian basis functions</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
<p>
|
|
<code>qmckl_ao_gaussian_vgl</code> computes the values, gradients and
|
|
Laplacians at a given point of <code>n</code> Gaussian functions centered at
|
|
the same point:
|
|
</p>
|
|
|
|
<p>
|
|
\[ v_i = \exp(-a_i |X-R|^2) \]
|
|
\[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \]
|
|
\[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \]
|
|
\[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \]
|
|
\[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
|
|
</p>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-left" />
|
|
|
|
<col class="org-left" />
|
|
|
|
<col class="org-left" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-left"><code>context</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Global state</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>X(3)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Array containing the coordinates of the points</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>R(3)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Array containing the x,y,z coordinates of the center</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>n</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Number of computed gaussians</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>A(n)</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Exponents of the Gaussians</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>VGL(ldv,5)</code></td>
|
|
<td class="org-left">output</td>
|
|
<td class="org-left">Value, gradients and Laplacian of the Gaussians</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-left"><code>ldv</code></td>
|
|
<td class="org-left">input</td>
|
|
<td class="org-left">Leading dimension of array <code>VGL</code></td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
Requirements :
|
|
</p>
|
|
|
|
<ul class="org-ul">
|
|
<li><code>context</code> is not 0</li>
|
|
<li><code>n</code> > 0</li>
|
|
<li><code>ldv</code> >= 5</li>
|
|
<li><code>A(i)</code> > 0 for all <code>i</code></li>
|
|
<li><code>X</code> is allocated with at least \(3 \times 8\) bytes</li>
|
|
<li><code>R</code> is allocated with at least \(3 \times 8\) bytes</li>
|
|
<li><code>A</code> is allocated with at least \(n \times 8\) bytes</li>
|
|
<li><code>VGL</code> is allocated with at least \(n \times 5 \times 8\) bytes</li>
|
|
</ul>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">qmckl_exit_code</span>
|
|
<span style="color: #0000ff;">qmckl_ao_gaussian_vgl</span>(<span style="color: #a020f0;">const</span> <span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">X</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">R</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> *<span style="color: #a0522d;">n</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> *<span style="color: #a0522d;">A</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">double</span> *<span style="color: #a0522d;">VGL</span>,
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">ldv</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #228b22;">integer </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">qmckl_ao_gaussian_vgl_f</span><span style="color: #000000; background-color: #ffffff;">(context, X, R, n, A, VGL, ldv) result(info)</span>
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> context</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> X(3), R(3)</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> n</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> A(n)</span>
|
|
<span style="color: #228b22;">real</span>*8 , <span style="color: #a020f0;">intent</span>(out) ::<span style="color: #a0522d;"> VGL(ldv,5)</span>
|
|
<span style="color: #228b22;">integer</span>*8 , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> ldv</span>
|
|
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> i,j</span>
|
|
<span style="color: #228b22;">real</span>*8 ::<span style="color: #a0522d;"> Y(3), r2, t, u, v</span>
|
|
|
|
info = QMCKL_SUCCESS
|
|
|
|
<span style="color: #a020f0;">if</span> (context == QMCKL_NULL_CONTEXT) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_CONTEXT
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (n <= 0) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_4
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
<span style="color: #a020f0;">if</span> (ldv < n) <span style="color: #a020f0;">then</span>
|
|
info = QMCKL_INVALID_ARG_7
|
|
<span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">endif</span>
|
|
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,3
|
|
Y(i) = X(i) - R(i)
|
|
<span style="color: #a020f0;">end do</span>
|
|
r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
VGL(i,1) = dexp(-A(i) * r2)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
VGL(i,5) = A(i) * VGL(i,1)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
t = -2.d0 * ( X(1) - R(1) )
|
|
u = -2.d0 * ( X(2) - R(2) )
|
|
v = -2.d0 * ( X(3) - R(3) )
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
VGL(i,2) = t * VGL(i,5)
|
|
VGL(i,3) = u * VGL(i,5)
|
|
VGL(i,4) = v * VGL(i,5)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
t = 4.d0 * r2
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">qmckl_ao_gaussian_vgl_f</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int32_t</span>) <span style="color: #a020f0;">function</span> <span style="color: #0000ff;">test_qmckl_ao_gaussian_vgl</span>(context) <span style="color: #a020f0;">bind</span>(C)
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>), <span style="color: #a020f0;">intent</span>(in), <span style="color: #a020f0;">value</span> ::<span style="color: #a0522d;"> context</span>
|
|
|
|
<span style="color: #228b22;">integer</span>*8 ::<span style="color: #a0522d;"> n, ldv, j, i</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> X(3), R(3), Y(3), r2</span>
|
|
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> VGL(:,:), A(:)</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> epsilon</span>
|
|
|
|
epsilon = qmckl_context_get_epsilon(context)
|
|
|
|
X = (/ 1.1 , 2.2 , 3.3 /)
|
|
R = (/ 0.1 , 1.2 , -2.3 /)
|
|
Y(:) = X(:) - R(:)
|
|
r2 = Y(1)**2 + Y(2)**2 + Y(3)**2
|
|
|
|
n = 10;
|
|
ldv = 100;
|
|
|
|
<span style="color: #a020f0;">allocate</span> (A(n), VGL(ldv,5))
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
A(i) = 0.0013 * <span style="color: #a020f0;">dble</span>(<span style="color: #a020f0;">ishft</span>(1,i))
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
|
|
test_qmckl_ao_gaussian_vgl = <span style="color: #a020f0;">&</span>
|
|
qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
|
|
<span style="color: #a020f0;">if</span> (test_qmckl_ao_gaussian_vgl /= 0) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_gaussian_vgl = -1
|
|
|
|
<span style="color: #a020f0;">do</span> i=1,n
|
|
test_qmckl_ao_gaussian_vgl = -11
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,1) / (<span style="color: #a020f0;">&</span>
|
|
dexp(-A(i) * r2) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_gaussian_vgl = -12
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,2) / (<span style="color: #a020f0;">&</span>
|
|
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_gaussian_vgl = -13
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,3) / (<span style="color: #a020f0;">&</span>
|
|
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_gaussian_vgl = -14
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,4) / (<span style="color: #a020f0;">&</span>
|
|
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
|
|
test_qmckl_ao_gaussian_vgl = -15
|
|
<span style="color: #a020f0;">if</span> (dabs(1.d0 - VGL(i,5) / (<span style="color: #a020f0;">&</span>
|
|
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) <span style="color: #a020f0;">&</span>
|
|
)) > epsilon ) <span style="color: #a020f0;">return</span>
|
|
<span style="color: #a020f0;">end do</span>
|
|
|
|
test_qmckl_ao_gaussian_vgl = 0
|
|
|
|
<span style="color: #a020f0;">deallocate</span>(VGL)
|
|
<span style="color: #a020f0;">end function</span> <span style="color: #0000ff;">test_qmckl_ao_gaussian_vgl</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1f77090" class="outline-2">
|
|
<h2 id="org1f77090"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Slater basis functions</h2>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: TREX CoE</p>
|
|
<p class="date">Created: 2021-03-19 Fri 22:17</p>
|
|
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
|
|
</div>
|
|
</body>
|
|
</html>
|