1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-05 02:49:01 +01:00
qmckl/org/qmckl_ao.org

7370 lines
254 KiB
Org Mode

#+TITLE: Atomic Orbitals
#+SETUPFILE: ../tools/theme.setup
#+INCLUDE: ../tools/lib.org
* Introduction
The atomic basis set is defined as a list of shells. Each shell $s$ is
centered on a nucleus $A$, possesses a given angular momentum $l$ and a
radial function $R_s$. The radial function is a linear combination of
/primitive/ functions that can be of type Slater ($p=1$) or
Gaussian ($p=2$):
\[
R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s}
\sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks}
\exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right).
\]
In the case of Gaussian functions, $n_s$ is always zero. The
normalization factor $\mathcal{N}_s$ ensures that all the functions of
the shell are normalized (integrate) to unity. Usually, basis sets are
given a combination of normalized primitives, so the normalization
coefficients of the primitives, $f_{ks}$, need also to be provided.
Atomic orbitals (AOs) are defined as
\[
\chi_i (\mathbf{r}) = \mathcal{M}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r})
\]
where $\theta(i)$ returns the shell on which the AO is expanded, and
$\eta(i)$ denotes which angular function is chosen and $P$ are the
generating functions of the given angular momentum $\eta(i)$. Here,
the parameter $\mathcal{M}_i$ is an extra parameter which allows the
normalization of the different functions of the same shell to be
different, as in GAMESS for example.
In this section we describe first how the basis set is stored in the
context, and then we present the kernels used to compute the values,
gradients and Laplacian of the atomic basis functions.
* Headers :noexport:
#+begin_src elisp :noexport :results none
(org-babel-lob-ingest "../tools/lib.org")
#+end_src
#+begin_src c :tangle (eval h_private_func)
#ifndef QMCKL_AO_HPF
#define QMCKL_AO_HPF
#include "qmckl_blas_private_type.h"
#+end_src
#+begin_src c :tangle (eval h_private_type)
#ifndef QMCKL_AO_HPT
#define QMCKL_AO_HPT
#include <stdbool.h>
#include <stdio.h>
#include "qmckl_blas_private_type.h"
#+end_src
#+begin_src f90 :tangle (eval f) :noweb yes
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#+end_src
#+begin_src c :tangle (eval c_test) :noweb yes
#include "qmckl.h"
#include "assert.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "chbrclf.h"
#include "qmckl_ao_private_func.h"
int main() {
qmckl_context context;
context = qmckl_context_create();
#+end_src
#+begin_src c :tangle (eval c)
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h>
#elif HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <stdio.h>
#include <math.h>
#include "qmckl.h"
#include "qmckl_context_private_type.h"
#include "qmckl_memory_private_type.h"
#include "qmckl_blas_private_type.h"
#include "qmckl_memory_private_func.h"
#include "qmckl_ao_private_type.h"
#include "qmckl_ao_private_func.h"
#+end_src
#+NAME:fortran_cutoff
#+begin_src fortran
cutoff = qmckl_get_numprec_precision(context)
cutoff = dlog(2.d0**(cutoff-2))
#+end_src
* Context
** Constant data
The following arrays are stored in the context, and need to be set
when initializing the library:
#+NAME: constant_data
|---------------------------+-----------------------+----------------------------------------------------------------------|
| Variable | Type | Description |
|---------------------------+-----------------------+----------------------------------------------------------------------|
| ~type~ | ~char~ | Gaussian (~'G'~) or Slater (~'S'~) |
| ~shell_num~ | ~int64_t~ | Number of shells |
| ~prim_num~ | ~int64_t~ | Total number of primitives |
| ~nucleus_index~ | ~int64_t[nucl_num]~ | Index of the first shell of each nucleus |
| ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | Number of shells per nucleus |
| ~shell_ang_mom~ | ~int32_t[shell_num]~ | Angular momentum of each shell |
| ~shell_prim_num~ | ~int64_t[shell_num]~ | Number of primitives in each shell |
| ~shell_prim_index~ | ~int64_t[shell_num]~ | Address of the first primitive of each shell in the ~EXPONENT~ array |
| ~shell_factor~ | ~double[shell_num]~ | Normalization factor for each shell |
| ~exponent~ | ~double[prim_num]~ | Array of exponents |
| ~coefficient~ | ~double[prim_num]~ | Array of coefficients |
| ~prim_factor~ | ~double[prim_num]~ | Normalization factors of the primtives |
| ~ao_num~ | ~int64_t~ | Number of AOs |
| ~ao_cartesian~ | ~bool~ | If true, use polynomials. Otherwise, use spherical harmonics |
| ~ao_factor~ | ~double[ao_num]~ | Normalization factor of the AO |
|---------------------------+-----------------------+----------------------------------------------------------------------|
The following data is computed when the basis is finalized:
|---------------------------+-----------------------+-------------------------------------------------------------------------------------------------|
| Variable | Type | Description |
|---------------------------+-----------------------+-------------------------------------------------------------------------------------------------|
| ~nucleus_prim_index~ | ~int64_t[nucl_num+1]~ | Index of the first primitive of each nucleus |
| ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | Maximum angular momentum of each nucleus |
| ~coefficient_normalized~~ | ~double[prim_num]~ | Normalized array of coefficients |
| ~ao_ang_mom~ | ~int32_t[ao_num]~ | Angular momentum of the shell to which the AO belongs |
| ~ao_nucl~ | ~int64_t[ao_num]~ | Nucleus on which the AO is centered |
| ~nucleus_range~ | ~double[nucl_num]~ | Used to compute the distance beyond which all Gaussian AOs are zero, depending on the precision |
|---------------------------+-----------------------+-------------------------------------------------------------------------------------------------|
For H_2 with the following basis set,
#+NAME: basis
#+BEGIN_EXAMPLE
HYDROGEN
S 5
1 3.387000E+01 6.068000E-03
2 5.095000E+00 4.530800E-02
3 1.159000E+00 2.028220E-01
4 3.258000E-01 5.039030E-01
5 1.027000E-01 3.834210E-01
S 1
1 3.258000E-01 1.000000E+00
S 1
1 1.027000E-01 1.000000E+00
P 1
1 1.407000E+00 1.000000E+00
P 1
1 3.880000E-01 1.000000E+00
D 1
1 1.057000E+00 1.0000000
#+END_EXAMPLE
we have:
#+NAME: params
#+BEGIN_EXAMPLE
type = 'G'
shell_num = 12
prim_num = 20
ao_num = 30
nucleus_index = [0 , 6]
shell_ang_mom = [0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2]
shell_factor = [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]
shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1]
shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19]
exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407,
0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407,
0.388, 1.057]
coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0,
1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0,
1.0, 1.0, 1.0]
prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01
3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01,
1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01,
1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00,
7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01,
3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00,
4.3649547399719840e-01, 1.8135965626177861e+00 ]
#+END_EXAMPLE
A scalar variable ~$V$~ present in this table can be set or get by
calling the functions:
#+NAME: template_scalar_c
#+begin_src C :tangle no
qmckl_exit_code qmckl_set_ao_basis_$V$ ( qmckl_context context,
const $type_of_V$ $V$);
qmckl_exit_code qmckl_get_ao_basis_$V$ ( const qmckl_context context,
$type_of_V$ const $V$);
#+end_src
#+begin_src f90 :tangle no
interface
integer(c_int32_t) function qmckl_set_ao_basis_$V$ (context, $V$) &
bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
$f_type_of_V$ , intent(in) , value :: $V$
end function qmckl_set_ao_basis_$V$
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_$V$ (context, $V$) &
bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
$f_type_of_V$ , intent(out) :: $V$
end function qmckl_get_ao_basis_$V$
end interface
#+end_src
For array variables, use the rule:
#+NAME: template_array_c
#+begin_src C :tangle no
qmckl_exit_code qmckl_set_ao_basis_$V$ ( qmckl_context context,
const $type_of_V$ $V$,
const int64_t size_max);
qmckl_exit_code qmckl_get_ao_basis_$V$ ( const qmckl_context context,
$type_of_V$ const $V$,
const int64_t size_max);
#+end_src
#+begin_src f90 :tangle no
interface
integer(c_int32_t) function qmckl_set_ao_basis_$V$ (context, &
$V$, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
$f_type_of_V$ , intent(in) , value :: $V$
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_$V$
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_$V$ (context, &
$V$, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
$f_type_of_V$ , intent(out) :: $V$
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_$V$
end interface
#+end_src
*** Data structure :noexport:
#+begin_src c :comments org :tangle (eval h_private_type) :noweb yes
typedef struct qmckl_ao_basis_struct {
int64_t shell_num;
int64_t prim_num;
int64_t ao_num;
int64_t * restrict nucleus_index;
int64_t * restrict nucleus_shell_num;
int32_t * restrict shell_ang_mom;
int64_t * restrict shell_prim_num;
int64_t * restrict shell_prim_index;
double * restrict shell_factor;
double * restrict exponent;
double * restrict coefficient;
double * restrict prim_factor;
double * restrict ao_factor;
int64_t * restrict ao_nucl;
int32_t * restrict ao_ang_mom;
int64_t * restrict nucleus_prim_index;
double * restrict coefficient_normalized;
int32_t * restrict nucleus_max_ang_mom;
double * restrict nucleus_range;
double * restrict primitive_vgl;
uint64_t primitive_vgl_date;
double * restrict shell_vgl;
uint64_t shell_vgl_date;
double * restrict ao_vgl;
uint64_t ao_vgl_date;
double * restrict ao_value;
uint64_t ao_value_date;
int32_t uninitialized;
bool provided;
bool ao_cartesian;
char type;
#ifdef HAVE_HPC
<<HPC_struct>>
#endif
} qmckl_ao_basis_struct;
#+end_src
The ~uninitialized~ integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and ~provided == true~.
Some values are initialized by default, and are not concerned by
this mechanism.
#+begin_src c :comments org :tangle (eval h_private_func)
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c)
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_init_ao_basis",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
ctx->ao_basis.uninitialized = (1 << 14) - 1;
/* Default values */
ctx->ao_basis.ao_cartesian = true;
return QMCKL_SUCCESS;
}
#+end_src
*** Initialization functions ~size_max~ is the dimension of the input array, which should be
equal of larger than the value given in the table of section [[Context]].
**** C interface
#+NAME:pre2
#+begin_src c :exports none
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_NULL_CONTEXT,
"qmckl_set_ao_*",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
if (mask != 0 && !(ctx->ao_basis.uninitialized & mask)) {
return qmckl_failwith( context,
QMCKL_ALREADY_SET,
"qmckl_set_ao_*",
NULL);
}
#+end_src
#+NAME:post2
#+begin_src c :exports none
ctx->ao_basis.uninitialized &= ~mask;
ctx->ao_basis.provided = (ctx->ao_basis.uninitialized == 0);
if (ctx->ao_basis.provided) {
qmckl_exit_code rc_ = qmckl_finalize_basis(context);
if (rc_ != QMCKL_SUCCESS) return rc_;
}
return QMCKL_SUCCESS;
#+end_src
To set the basis set, all the following functions need to be
called.
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_type (qmckl_context context,
const char basis_type);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_type(qmckl_context context,
const char basis_type)
{
int32_t mask = 1;
<<pre2>>
if (basis_type != 'G' && basis_type != 'S') {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_type",
NULL);
}
ctx->ao_basis.type = basis_type;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_shell_num (qmckl_context context,
const int64_t shell_num);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_shell_num (qmckl_context context,
const int64_t shell_num)
{
int32_t mask = 1 << 1;
<<pre2>>
if (shell_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"shell_num <= 0");
}
const int64_t prim_num = ctx->ao_basis.prim_num;
if (0L < prim_num && prim_num < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"shell_num > prim_num");
}
ctx->ao_basis.shell_num = shell_num;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_prim_num (qmckl_context context,
const int64_t prim_num);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_prim_num (qmckl_context context,
const int64_t prim_num)
{
int32_t mask = 1 << 2;
<<pre2>>
if (prim_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"prim_num must be positive");
}
const int64_t shell_num = ctx->ao_basis.shell_num;
if (shell_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_shell_num",
"shell_num is not set");
}
if (prim_num < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"prim_num < shell_num");
}
ctx->ao_basis.prim_num = prim_num;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_nucleus_shell_num (qmckl_context context,
const int64_t* nucleus_shell_num,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_nucleus_shell_num (qmckl_context context,
const int64_t* nucleus_shell_num,
const int64_t size_max)
{
int32_t mask = 1 << 3;
<<pre2>>
const int64_t nucl_num = ctx->nucleus.num;
if (nucl_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_nucleus_shell_num",
"shell_num is not set");
}
if (size_max < nucl_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_nucleus_shell_num",
"input array too small");
}
if (ctx->ao_basis.nucleus_shell_num != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.nucleus_shell_num);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_nucleus_shell_num",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = nucl_num * sizeof(int64_t);
int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_nucleus_shell_num",
NULL);
}
memcpy(new_array, nucleus_shell_num, mem_info.size);
ctx->ao_basis.nucleus_shell_num = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_nucleus_index (qmckl_context context,
const int64_t* nucleus_index,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_nucleus_index (qmckl_context context,
const int64_t* nucleus_index,
const int64_t size_max)
{
int32_t mask = 1 << 4;
<<pre2>>
const int64_t nucl_num = ctx->nucleus.num;
if (nucl_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_nucleus_index",
"nucl_num is not set");
}
if (size_max < nucl_num) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_nucleus_index",
"input array too small");
}
if (ctx->ao_basis.nucleus_index != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.nucleus_index);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_nucleus_index",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = nucl_num * sizeof(int64_t);
int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_nucleus_index",
NULL);
}
memcpy(new_array, nucleus_index, mem_info.size);
ctx->ao_basis.nucleus_index = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_shell_ang_mom (qmckl_context context,
const int32_t* shell_ang_mom,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_shell_ang_mom (qmckl_context context,
const int32_t* shell_ang_mom,
const int64_t size_max)
{
int32_t mask = 1 << 5;
<<pre2>>
const int64_t shell_num = ctx->ao_basis.shell_num;
if (shell_num == 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_shell_ang_mom",
"shell_num is not set");
}
if (size_max < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_shell_ang_mom",
"input array too small");
}
if (ctx->ao_basis.shell_ang_mom != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_ang_mom);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_shell_ang_mom",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = shell_num * sizeof(int32_t);
int32_t * new_array = (int32_t*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_shell_ang_mom",
NULL);
}
memcpy(new_array, shell_ang_mom, mem_info.size);
ctx->ao_basis.shell_ang_mom = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_shell_prim_num (qmckl_context context,
const int64_t* shell_prim_num,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_shell_prim_num (qmckl_context context,
const int64_t* shell_prim_num,
const int64_t size_max)
{
int32_t mask = 1 << 6;
<<pre2>>
const int64_t shell_num = ctx->ao_basis.shell_num;
if (shell_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_shell_prim_num",
"shell_num is not set");
}
if (size_max < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_shell_prim_num",
"input array too small");
}
if (ctx->ao_basis.shell_prim_num != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_prim_num);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_shell_prim_num",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = shell_num * sizeof(int64_t);
int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_shell_prim_num",
NULL);
}
memcpy(new_array, shell_prim_num, mem_info.size);
ctx->ao_basis.shell_prim_num = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_shell_prim_index (qmckl_context context,
const int64_t* shell_prim_index,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_shell_prim_index (qmckl_context context,
const int64_t* shell_prim_index,
const int64_t size_max)
{
int32_t mask = 1 << 7;
<<pre2>>
const int64_t shell_num = ctx->ao_basis.shell_num;
if (shell_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_shell_prim_index",
"shell_num is not set");
}
if (size_max < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_shell_prim_index",
"input array too small");
}
if (ctx->ao_basis.shell_prim_index != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_prim_index);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_shell_prim_index",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = shell_num * sizeof(int64_t);
int64_t* new_array = (int64_t*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_shell_prim_index",
NULL);
}
memcpy(new_array, shell_prim_index, mem_info.size);
ctx->ao_basis.shell_prim_index = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_shell_factor (qmckl_context context,
const double* shell_factor,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_shell_factor (qmckl_context context,
const double* shell_factor,
const int64_t size_max)
{
int32_t mask = 1 << 8;
<<pre2>>
const int64_t shell_num = ctx->ao_basis.shell_num;
if (shell_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_shell_factor",
"shell_num is not set");
}
if (size_max < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_shell_factor",
"input array too small");
}
if (ctx->ao_basis.shell_factor != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.shell_factor);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_shell_factor",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = shell_num * sizeof(double);
double* new_array = (double*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_shell_factor",
NULL);
}
memcpy(new_array, shell_factor, mem_info.size);
ctx->ao_basis.shell_factor = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_exponent (qmckl_context context,
const double* exponent,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_exponent (qmckl_context context,
const double* exponent,
const int64_t size_max)
{
int32_t mask = 1 << 9;
<<pre2>>
const int64_t prim_num = ctx->ao_basis.prim_num;
if (prim_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_exponent",
"prim_num is not set");
}
if (size_max < prim_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_exponent",
"input array too small");
}
if (ctx->ao_basis.exponent != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.exponent);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_exponent",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = prim_num * sizeof(double);
double* new_array = (double*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_exponent",
NULL);
}
memcpy(new_array, exponent, mem_info.size);
ctx->ao_basis.exponent = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_coefficient (qmckl_context context,
const double* coefficient,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_coefficient (qmckl_context context,
const double* coefficient,
const int64_t size_max)
{
int32_t mask = 1 << 10;
<<pre2>>
const int64_t prim_num = ctx->ao_basis.prim_num;
if (prim_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_coefficient",
"prim_num is not set");
}
if (size_max < prim_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_coefficient",
"input array too small");
}
if (ctx->ao_basis.coefficient != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.coefficient);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_coefficient",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = prim_num * sizeof(double);
double* new_array = (double*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_coefficient",
NULL);
}
memcpy(new_array, coefficient, mem_info.size);
ctx->ao_basis.coefficient = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_prim_factor (qmckl_context context,
const double* prim_factor,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_prim_factor (qmckl_context context,
const double* prim_factor,
const int64_t size_max)
{
int32_t mask = 1 << 11;
<<pre2>>
const int64_t prim_num = ctx->ao_basis.prim_num;
if (prim_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_prim_factor",
"prim_num is not set");
}
if (size_max < prim_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_prim_factor",
"input array too small");
}
if (ctx->ao_basis.prim_factor != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.prim_factor);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_prim_factor",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = prim_num * sizeof(double);
double* new_array = (double*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_prim_factor",
NULL);
}
memcpy(new_array, prim_factor, mem_info.size);
ctx->ao_basis.prim_factor = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_ao_num (qmckl_context context,
const int64_t ao_num);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_ao_num (qmckl_context context,
const int64_t ao_num)
{
int32_t mask = 1 << 12;
<<pre2>>
if (ao_num <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"ao_num must be positive");
}
const int64_t shell_num = ctx->ao_basis.shell_num;
if (shell_num <= 0L) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"shell_num is not set");
}
if (ao_num < shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_set_ao_basis_shell_num",
"ao_num < shell_num");
}
ctx->ao_basis.ao_num = ao_num;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_ao_factor (qmckl_context context,
const double* ao_factor,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_ao_factor (qmckl_context context,
const double* ao_factor,
const int64_t size_max)
{
int32_t mask = 1 << 13;
<<pre2>>
const int64_t ao_num = ctx->ao_basis.ao_num;
if (ao_num <= 0L) {
return qmckl_failwith( context,
QMCKL_FAILURE,
"qmckl_set_ao_basis_ao_factor",
"ao_num is not set");
}
if (size_max < ao_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_set_ao_basis_ao_factor",
"input array too small");
}
if (ctx->ao_basis.ao_factor != NULL) {
qmckl_exit_code rc = qmckl_free(context, ctx->ao_basis.ao_factor);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc,
"qmckl_set_ao_basis_ao_factor",
NULL);
}
}
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ao_num * sizeof(double);
double* new_array = (double*) qmckl_malloc(context, mem_info);
if (new_array == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_set_ao_basis_ao_factor",
NULL);
}
memcpy(new_array, ao_factor, mem_info.size);
ctx->ao_basis.ao_factor = new_array;
<<post2>>
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_set_ao_basis_cartesian (qmckl_context context,
const bool cartesian);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_set_ao_basis_cartesian (qmckl_context context,
const bool cartesian)
{
int32_t mask = 1;
<<pre2>>
ctx->ao_basis.ao_cartesian = cartesian;
<<post2>>
}
#+end_src
**** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(c_int32_t) function qmckl_set_ao_basis_type (context, &
basis_type) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
character(c_char) , intent(in) , value :: basis_type
end function qmckl_set_ao_basis_type
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_shell_num(context, &
num) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: num
end function qmckl_set_ao_basis_shell_num
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_prim_num(context, &
num) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: num
end function qmckl_set_ao_basis_prim_num
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_nucleus_index(context, &
idx, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) :: idx(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_nucleus_index
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_nucleus_shell_num(context, &
shell_num, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) :: shell_num(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_nucleus_shell_num
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_shell_ang_mom(context, &
shell_ang_mom, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int32_t) , intent(in) :: shell_ang_mom(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_shell_ang_mom
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_shell_prim_num(context, &
shell_prim_num, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) :: shell_prim_num(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_shell_prim_num
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_shell_prim_index(context, &
shell_prim_index, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) :: shell_prim_index(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_shell_prim_index
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_shell_factor(context, &
shell_factor, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: shell_factor(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_shell_factor
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_exponent(context, &
exponent, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: exponent(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_exponent
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_coefficient(context, &
coefficient, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: coefficient(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_coefficient
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_prim_factor(context, &
prim_factor, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: prim_factor(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_prim_factor
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_ao_num(context, &
num) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: num
end function qmckl_set_ao_basis_ao_num
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_cartesian(context, &
cartesian) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
logical (c_bool) , intent(in) , value :: cartesian
end function qmckl_set_ao_basis_cartesian
end interface
interface
integer(c_int32_t) function qmckl_set_ao_basis_ao_factor(context, &
ao_factor, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(in) :: ao_factor(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_set_ao_basis_ao_factor
end interface
#+end_src
*** Access functions ~size_max~ is the dimension of the input array, which should be
equal of larger than the value given in the table of section [[Context]].
**** C interface
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_type (const qmckl_context context,
char* const basis_type);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_type (const qmckl_context context,
char* const basis_type)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_type",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_type",
NULL);
}
assert (ctx->ao_basis.type != (char) 0);
basis_type[0] = ctx->ao_basis.type;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_shell_num (const qmckl_context context,
int64_t* const shell_num);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_shell_num (const qmckl_context context,
int64_t* const shell_num)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_shell_factor",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 1;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_shell_num",
NULL);
}
assert (ctx->ao_basis.shell_num > (int64_t) 0);
,*shell_num = ctx->ao_basis.shell_num;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_prim_num (const qmckl_context context,
int64_t* const prim_num);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_prim_num (const qmckl_context context,
int64_t* const prim_num)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_prim_num",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 2;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_prim_num",
NULL);
}
assert (ctx->ao_basis.prim_num > (int64_t) 0);
,*prim_num = ctx->ao_basis.prim_num;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_nucleus_shell_num (const qmckl_context context,
int64_t* const nucleus_shell_num,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_nucleus_shell_num (const qmckl_context context,
int64_t* const nucleus_shell_num,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_nucleus_shell_num",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 3;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_nucleus_shell_num",
NULL);
}
if (nucleus_shell_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_nucleus_shell_num",
"NULL pointer");
}
if (size_max < ctx->nucleus.num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_nucleus_shell_num",
"Array too small. Expected nucl_num");
}
assert (ctx->ao_basis.nucleus_shell_num != NULL);
memcpy(nucleus_shell_num, ctx->ao_basis.nucleus_shell_num,
(size_t) ctx->nucleus.num * sizeof(int64_t));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_nucleus_index (const qmckl_context context,
int64_t* const nucleus_index,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_nucleus_index (const qmckl_context context,
int64_t* const nucleus_index,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_nucleus_index",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 4;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_nucleus_index",
NULL);
}
if (nucleus_index == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_nucleus_index",
"NULL pointer");
}
if (size_max < ctx->nucleus.num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_nucleus_index",
"Array too small. Expected shell_num");
}
assert (ctx->ao_basis.nucleus_index != NULL);
memcpy(nucleus_index, ctx->ao_basis.nucleus_index,
(size_t) ctx->nucleus.num * sizeof(int64_t));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context,
int32_t* const shell_ang_mom,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_shell_ang_mom (const qmckl_context context,
int32_t* const shell_ang_mom,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_shell_ang_mom",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 5;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_shell_ang_mom",
NULL);
}
if (shell_ang_mom == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_shell_ang_mom",
"NULL pointer");
}
if (size_max < ctx->ao_basis.shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_shell_ang_mom",
"Array too small. Expected shell_num");
}
assert (ctx->ao_basis.shell_ang_mom != NULL);
memcpy(shell_ang_mom, ctx->ao_basis.shell_ang_mom,
(size_t) ctx->ao_basis.shell_num * sizeof(int32_t));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_shell_prim_num (const qmckl_context context,
int64_t* const shell_prim_num,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_shell_prim_num (const qmckl_context context,
int64_t* const shell_prim_num,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_shell_prim_num",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 6;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_shell_prim_num",
NULL);
}
if (shell_prim_num == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_shell_prim_num",
"NULL pointer");
}
if (size_max < ctx->ao_basis.shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_shell_prim_num",
"Array too small. Expected shell_num");
}
assert (ctx->ao_basis.shell_prim_num != NULL);
memcpy(shell_prim_num, ctx->ao_basis.shell_prim_num,
(size_t) ctx->ao_basis.shell_num * sizeof(int64_t));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_shell_prim_index (const qmckl_context context,
int64_t* const shell_prim_index,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_shell_prim_index (const qmckl_context context,
int64_t* const shell_prim_index,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_shell_prim_index",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 7;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_shell_prim_index",
NULL);
}
if (shell_prim_index == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_shell_prim_index",
"NULL pointer");
}
if (size_max < ctx->ao_basis.shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_shell_prim_index",
"Array too small. Expected shell_num");
}
assert (ctx->ao_basis.shell_prim_index != NULL);
memcpy(shell_prim_index, ctx->ao_basis.shell_prim_index,
(size_t) ctx->ao_basis.shell_num * sizeof(int64_t));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_shell_factor (const qmckl_context context,
double* const shell_factor,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_shell_factor (const qmckl_context context,
double* const shell_factor,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_shell_factor",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 8;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_shell_factor",
NULL);
}
if (shell_factor == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_shell_factor",
"NULL pointer");
}
if (size_max < ctx->ao_basis.shell_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_shell_factor",
"Array too small. Expected shell_num");
}
assert (ctx->ao_basis.shell_factor != NULL);
memcpy(shell_factor, ctx->ao_basis.shell_factor,
(size_t) ctx->ao_basis.shell_num * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_exponent (const qmckl_context context,
double* const exponent,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_exponent (const qmckl_context context,
double* const exponent,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_exponent",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 9;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_exponent",
NULL);
}
if (exponent == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_exponent",
"NULL pointer");
}
if (size_max < ctx->ao_basis.prim_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_exponent",
"Array too small. Expected prim_num");
}
assert (ctx->ao_basis.exponent != NULL);
memcpy(exponent, ctx->ao_basis.exponent,
(size_t) ctx->ao_basis.prim_num * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_coefficient (const qmckl_context context,
double* const coefficient,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_coefficient (const qmckl_context context,
double* const coefficient,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_coefficient",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 10;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_coefficient",
NULL);
}
if (coefficient == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_coefficient",
"NULL pointer");
}
if (size_max < ctx->ao_basis.prim_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_coefficient",
"Array too small. Expected prim_num");
}
assert (ctx->ao_basis.coefficient != NULL);
memcpy(coefficient, ctx->ao_basis.coefficient,
(size_t) ctx->ao_basis.prim_num * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_prim_factor (const qmckl_context context,
double* const prim_factor,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_prim_factor (const qmckl_context context,
double* const prim_factor,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_prim_factor",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 11;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_prim_factor",
NULL);
}
if (prim_factor == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_prim_factor",
"NULL pointer");
}
if (size_max < ctx->ao_basis.prim_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_prim_factor",
"Array too small. Expected prim_num");
}
assert (ctx->ao_basis.prim_factor != NULL);
memcpy(prim_factor, ctx->ao_basis.prim_factor,
(size_t) ctx->ao_basis.prim_num * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_ao_num (const qmckl_context context,
int64_t* const ao_num);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_ao_num (const qmckl_context context,
int64_t* const ao_num)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_ao_num",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 12;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_ao_num",
NULL);
}
assert (ctx->ao_basis.ao_num > (int64_t) 0);
*ao_num = ctx->ao_basis.ao_num;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src c :comments org :tangle (eval h_func)
qmckl_exit_code
qmckl_get_ao_basis_ao_factor (const qmckl_context context,
double* const ao_factor,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_ao_factor (const qmckl_context context,
double* const ao_factor,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_ao_factor",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int32_t mask = 1 << 13;
if ( (ctx->ao_basis.uninitialized & mask) != 0) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_get_ao_basis_ao_factor",
NULL);
}
if (ao_factor == NULL) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_2,
"qmckl_get_ao_basis_ao_factor",
"NULL pointer");
}
if (size_max < ctx->ao_basis.ao_num) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_ao_factor",
"Array too small. Expected ao_num");
}
assert (ctx->ao_basis.ao_factor != NULL);
memcpy(ao_factor, ctx->ao_basis.ao_factor, ctx->ao_basis.ao_num * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
When all the data for the AOs have been provided, the following
function returns ~true~.
#+begin_src c :comments org :tangle (eval h_func)
bool qmckl_ao_basis_provided (const qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
bool qmckl_ao_basis_provided(const qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
return ctx->ao_basis.provided;
}
#+end_src
**** Fortran interface
#+begin_src f90 :tangle (eval fh_func) :comments org
interface
integer(c_int32_t) function qmckl_get_ao_basis_type (context, &
basis_type) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
character(c_char) , intent(out) :: basis_type
end function qmckl_get_ao_basis_type
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_shell_num(context, &
num) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: num
end function qmckl_get_ao_basis_shell_num
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_prim_num(context, &
num) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: num
end function qmckl_get_ao_basis_prim_num
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_nucleus_shell_num(context, &
shell_num, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: shell_num(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_nucleus_shell_num
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_nucleus_index(context, &
idx, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: idx(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_nucleus_index
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_shell_ang_mom(context, &
shell_ang_mom, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int32_t) , intent(out) :: shell_ang_mom(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_shell_ang_mom
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_shell_prim_num(context, &
shell_prim_num, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: shell_prim_num(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_shell_prim_num
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_shell_prim_index(context, &
shell_prim_index, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: shell_prim_index(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_shell_prim_index
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_shell_factor(context, &
shell_factor, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(out) :: shell_factor(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_shell_factor
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_exponent(context, &
exponent, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(out) :: exponent(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_exponent
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_coefficient(context, &
coefficient, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(out) :: coefficient(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_coefficient
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_prim_factor(context, &
prim_factor, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(out) :: prim_factor(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_prim_factor
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_ao_num(context, &
num) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
integer (c_int64_t) , intent(out) :: num
end function qmckl_get_ao_basis_ao_num
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_cartesian(context, &
cartesian) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
logical (c_bool) , intent(out) :: cartesian
end function qmckl_get_ao_basis_cartesian
end interface
interface
integer(c_int32_t) function qmckl_get_ao_basis_ao_factor(context, &
ao_factor, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real (c_double) , intent(out) :: ao_factor(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_ao_factor
end interface
#+end_src
*** Test :noexport:
#+begin_src c :tangle (eval c_test) :exports none :exports none
const int64_t nucl_num = chbrclf_nucl_num;
const double* nucl_charge = chbrclf_charge;
const double* nucl_coord = &(chbrclf_nucl_coord[0][0]);
qmckl_exit_code rc;
rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]), 3*nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_nucleus_charge(context, nucl_charge, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(qmckl_nucleus_provided(context));
const int64_t shell_num = chbrclf_shell_num;
const int64_t prim_num = chbrclf_prim_num;
const int64_t ao_num = chbrclf_ao_num;
const int64_t * nucleus_index = &(chbrclf_basis_nucleus_index[0]);
const int64_t * nucleus_shell_num = &(chbrclf_basis_nucleus_shell_num[0]);
const int32_t * shell_ang_mom = &(chbrclf_basis_shell_ang_mom[0]);
const int64_t * shell_prim_num = &(chbrclf_basis_shell_prim_num[0]);
const int64_t * shell_prim_index = &(chbrclf_basis_shell_prim_index[0]);
const double * shell_factor = &(chbrclf_basis_shell_factor[0]);
const double * exponent = &(chbrclf_basis_exponent[0]);
const double * coefficient = &(chbrclf_basis_coefficient[0]);
const double * prim_factor = &(chbrclf_basis_prim_factor[0]);
const double * ao_factor = &(chbrclf_basis_ao_factor[0]);
const char typ = 'G';
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_type (context, typ);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_shell_num (context, shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_prim_num (context, prim_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_nucleus_index (context, nucleus_index, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_nucleus_index (context, nucleus_index, nucl_num);
assert(rc == QMCKL_ALREADY_SET);
rc = qmckl_set_ao_basis_nucleus_shell_num (context, nucleus_shell_num, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_shell_ang_mom (context, shell_ang_mom, shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_shell_factor (context, shell_factor, shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_shell_prim_num (context, shell_prim_num, shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_shell_prim_index (context, shell_prim_index, shell_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_exponent (context, exponent, prim_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_coefficient (context, coefficient, prim_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_ao_basis_provided(context));
rc = qmckl_set_ao_basis_prim_factor (context, prim_factor, prim_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_ao_basis_ao_num(context, ao_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_ao_basis_ao_factor (context, ao_factor, ao_num);
assert(rc == QMCKL_SUCCESS);
assert(qmckl_ao_basis_provided(context));
int64_t shell_num_test ;
int64_t prim_num_test ;
int64_t ao_num_test ;
int64_t * nucleus_index_test ;
int64_t * nucleus_shell_num_test;
int32_t * shell_ang_mom_test ;
int64_t * shell_prim_num_test ;
int64_t * shell_prim_index_test ;
double * shell_factor_test ;
double * exponent_test ;
double * coefficient_test ;
double * prim_factor_test ;
double * ao_factor_test ;
char typ_test ;
rc = qmckl_get_ao_basis_type (context, &typ_test);
assert (rc == QMCKL_SUCCESS);
assert(typ == typ_test);
rc = qmckl_get_ao_basis_shell_num (context, &shell_num_test);
assert (rc == QMCKL_SUCCESS);
assert(shell_num == shell_num_test);
rc = qmckl_get_ao_basis_prim_num (context, &prim_num_test);
assert (rc == QMCKL_SUCCESS);
assert(prim_num == prim_num_test);
nucleus_index_test = (int64_t*) malloc (nucl_num * sizeof(int64_t));
rc = qmckl_get_ao_basis_nucleus_index (context, nucleus_index_test, nucl_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < nucl_num ; ++i) {
assert(nucleus_index_test[i] == nucleus_index[i]);
}
free(nucleus_index_test);
nucleus_shell_num_test = (int64_t*) malloc ( nucl_num * sizeof(int64_t));
rc = qmckl_get_ao_basis_nucleus_shell_num (context, nucleus_shell_num_test, nucl_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < nucl_num ; ++i) {
assert(nucleus_shell_num_test[i] == nucleus_shell_num[i]);
}
free(nucleus_shell_num_test);
shell_ang_mom_test = (int32_t*) malloc ( shell_num * sizeof(int32_t));
rc = qmckl_get_ao_basis_shell_ang_mom (context, shell_ang_mom_test, shell_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < shell_num ; ++i) {
assert(shell_ang_mom_test[i] == shell_ang_mom[i]);
}
free(shell_ang_mom_test);
shell_factor_test = (double*) malloc ( shell_num * sizeof(double));
rc = qmckl_get_ao_basis_shell_factor (context, shell_factor_test, shell_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < shell_num ; ++i) {
assert(shell_factor_test[i] == shell_factor[i]);
}
free(shell_factor_test);
shell_prim_num_test = (int64_t*) malloc ( shell_num * sizeof(int64_t));
rc = qmckl_get_ao_basis_shell_prim_num (context, shell_prim_num_test, shell_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < shell_num ; ++i) {
assert(shell_prim_num_test[i] == shell_prim_num[i]);
}
free(shell_prim_num_test);
shell_prim_index_test = (int64_t*) malloc ( shell_num * sizeof(int64_t));
rc = qmckl_get_ao_basis_shell_prim_index (context, shell_prim_index_test, shell_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < shell_num ; ++i) {
assert(shell_prim_index_test[i] == shell_prim_index[i]);
}
free(shell_prim_index_test);
exponent_test = (double*) malloc ( prim_num * sizeof(double));
rc = qmckl_get_ao_basis_exponent(context, exponent_test, prim_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < prim_num ; ++i) {
assert(exponent_test[i] == exponent[i]);
}
free(exponent_test);
coefficient_test = (double*) malloc ( prim_num * sizeof(double));
rc = qmckl_get_ao_basis_coefficient(context, coefficient_test, prim_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < prim_num ; ++i) {
assert(coefficient_test[i] == coefficient[i]);
}
free(coefficient_test);
prim_factor_test = (double*) malloc ( prim_num * sizeof(double));
rc = qmckl_get_ao_basis_prim_factor (context, prim_factor_test, prim_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < prim_num ; ++i) {
assert(prim_factor_test[i] == prim_factor[i]);
}
free(prim_factor_test);
rc = qmckl_get_ao_basis_ao_num(context, &ao_num_test);
assert(ao_num == ao_num_test);
ao_factor_test = (double*) malloc ( ao_num * sizeof(double));
rc = qmckl_get_ao_basis_ao_factor (context, ao_factor_test, ao_num);
assert (rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i < ao_num ; ++i) {
assert(ao_factor_test[i] == ao_factor[i]);
}
free(ao_factor_test);
#+end_src
** Computed data
The following data is computed as described in the next sections:
|----------------------+-----------------------------------+----------------------------------------------------------------------------------------------|
| Variable | Type | Description |
|----------------------+-----------------------------------+----------------------------------------------------------------------------------------------|
| ~primitive_vgl~ | ~double[point_num][5][prim_num]~ | Value, gradients, Laplacian of the primitives at current positions |
| ~primitive_vgl_date~ | ~uint64_t~ | Last modification date of Value, gradients, Laplacian of the primitives at current positions |
| ~shell_vgl~ | ~double[point_num][5][shell_num]~ | Value, gradients, Laplacian of the primitives at current positions |
| ~shell_vgl_date~ | ~uint64_t~ | Last modification date of Value, gradients, Laplacian of the AOs at current positions |
| ~ao_vgl~ | ~double[point_num][5][ao_num]~ | Value, gradients, Laplacian of the AOs at current positions |
| ~ao_vgl_date~ | ~uint64_t~ | Last modification date of Value, gradients, Laplacian of the AOs at current positions |
| ~ao_value~ | ~double[point_num][ao_num]~ | Values of the the AOs at current positions |
| ~ao_value_date~ | ~uint64_t~ | Last modification date of the values of the AOs at current positions |
|----------------------+-----------------------------------+----------------------------------------------------------------------------------------------|
*** After initialization
When the basis set is completely entered, extra data structures may be
computed to accelerate the calculations. The primitives within each
contraction are sorted in ascending order of their exponents, such
that as soon as a primitive is zero all the following functions
vanish. Also, it is possible to compute a nuclear radius beyond which
all the primitives are zero up to the numerical accuracy defined in
the context.
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_basis (qmckl_context context);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code qmckl_finalize_basis(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_finalize_basis",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t nucl_num = 0;
qmckl_exit_code rc = qmckl_get_nucleus_num(context, &nucl_num);
if (rc != QMCKL_SUCCESS) return rc;
/* nucleus_prim_index */
{
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = (ctx->nucleus.num + (int64_t) 1) * sizeof(int64_t);
ctx->ao_basis.nucleus_prim_index = (int64_t*) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.nucleus_prim_index == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.nucleus_prim_index",
NULL);
}
for (int64_t i=0 ; i<nucl_num ; ++i) {
int64_t shell_idx = ctx->ao_basis.nucleus_index[i];
ctx->ao_basis.nucleus_prim_index[i] = ctx->ao_basis.shell_prim_index[shell_idx];
}
ctx->ao_basis.nucleus_prim_index[nucl_num] = ctx->ao_basis.prim_num;
}
/* ao_ang_mom */
{
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.ao_num * sizeof(int32_t);
ctx->ao_basis.ao_ang_mom = (int32_t*) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.ao_ang_mom == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.ao_ang_mom",
NULL);
}
mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.ao_num * sizeof(int64_t);
ctx->ao_basis.ao_nucl = (int64_t*) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.ao_nucl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.ao_nucl",
NULL);
}
int64_t lstart[32];
for (int32_t l=0 ; l<32 ; ++l) {
lstart[l] = l*(l+1)*(l+2)/6;
}
int64_t ao_idx = 0;
for (int64_t inucl=0 ; inucl<nucl_num ; ++inucl) {
const int64_t ishell_start = ctx->ao_basis.nucleus_index[inucl];
const int64_t ishell_end = ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl];
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
const int l = ctx->ao_basis.shell_ang_mom[ishell];
assert (l<32);
for (int m=lstart[l] ; m < lstart[l+1]; m++) {
ctx->ao_basis.ao_ang_mom[ao_idx] = l;
ctx->ao_basis.ao_nucl[ao_idx] = inucl;
++ao_idx;
}
}
}
assert( ao_idx == ctx->ao_basis.ao_num );
}
/* Normalize coefficients */
{
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.prim_num * sizeof(double);
ctx->ao_basis.coefficient_normalized = (double *) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.coefficient_normalized == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.coefficient_normalized",
NULL);
}
for (int64_t ishell=0 ; ishell < ctx->ao_basis.shell_num ; ++ishell) {
for (int64_t iprim=ctx->ao_basis.shell_prim_index[ishell] ;
iprim < ctx->ao_basis.shell_prim_index[ishell]+ctx->ao_basis.shell_prim_num[ishell] ;
++iprim) {
ctx->ao_basis.coefficient_normalized[iprim] =
ctx->ao_basis.coefficient[iprim] * ctx->ao_basis.prim_factor[iprim] *
ctx->ao_basis.shell_factor[ishell];
}
}
}
/* Find max angular momentum on each nucleus */
{
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->nucleus.num * sizeof(int32_t);
ctx->ao_basis.nucleus_max_ang_mom = (int32_t *) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.nucleus_max_ang_mom == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.nucleus_max_ang_mom",
NULL);
}
for (int64_t inucl=0 ; inucl < nucl_num ; ++inucl) {
ctx->ao_basis.nucleus_max_ang_mom[inucl] = 0;
for (int64_t ishell=ctx->ao_basis.nucleus_index[inucl] ;
ishell < ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl] ;
++ishell) {
ctx->ao_basis.nucleus_max_ang_mom[inucl] =
ctx->ao_basis.nucleus_max_ang_mom[inucl] > ctx->ao_basis.shell_ang_mom[ishell] ?
ctx->ao_basis.nucleus_max_ang_mom[inucl] : ctx->ao_basis.shell_ang_mom[ishell] ;
}
}
}
/*
// Find distance beyond which all AOs are zero using computed Gaussians.
{
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->nucleus.num * 53 * sizeof(double);
ctx->ao_basis.nucleus_range = (double *) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.nucleus_range == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.nucleus_range",
NULL);
}
for (int64_t i=0 ; i<ctx->nucleus.num * 53 ; ++i) {
ctx->ao_basis.nucleus_range[i] = 50.;
}
if (ctx->ao_basis.type == 'G') {
rc = qmckl_compute_nucleus_range_gaussian(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->ao_basis.prim_num,
nucl_num,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_prim_index,
ctx->ao_basis.shell_prim_num,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.exponent,
ctx->ao_basis.coefficient_normalized,
ctx->ao_basis.nucleus_range);
}
}
*/
/* Find distance beyond which all AOs are zero.
The distance is obtained by sqrt(-log(epsilon)*range) */
{
if (ctx->ao_basis.type == 'G') {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->nucleus.num * sizeof(double);
ctx->ao_basis.nucleus_range = (double *) qmckl_malloc(context, mem_info);
if (ctx->ao_basis.nucleus_range == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"ao_basis.nucleus_range",
NULL);
}
for (int64_t inucl=0 ; inucl < ctx->nucleus.num ; ++inucl) {
ctx->ao_basis.nucleus_range[inucl] = 0.;
for (int64_t ishell=ctx->ao_basis.nucleus_index[inucl] ;
ishell < ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl] ;
++ishell) {
for (int64_t iprim=ctx->ao_basis.shell_prim_index[ishell] ;
iprim < ctx->ao_basis.shell_prim_index[ishell] + ctx->ao_basis.shell_prim_num[ishell] ;
++iprim) {
double range = 1./ctx->ao_basis.exponent[iprim];
ctx->ao_basis.nucleus_range[inucl] =
ctx->ao_basis.nucleus_range[inucl] > range ?
ctx->ao_basis.nucleus_range[inucl] : range;
}
}
}
}
}
#ifdef HAVE_HPC
rc = qmckl_finalize_basis_hpc(context);
if (rc != QMCKL_SUCCESS) return rc;
#endif
return qmckl_context_touch(context);
}
#+end_src
*** TODO HPC-specific data structures
For faster access, we provide extra arrays for the shell information as:
- $C_{psa}$ = =coef_per_nucleus[inucl][ishell][iprim]=
- $\gamma_{pa}$ =expo_per_nucleus[inucl][iprim]=
such that the computation of the radial parts can be vectorized.
Exponents are sorted in increasing order to exit loops quickly,
and only unique exponents are kept. This also allows to pack the
exponents to enable vectorization of exponentials.
The computation of the radial part is made as
\[
R_{sa} = \sum_p C_{psa} \gamma_{pa}
\]
which is a matrix-vector product.
#+NAME:HPC_struct
#+begin_src c :comments org :exports none
/* HPC specific data structures */
int32_t* restrict prim_num_per_nucleus;
qmckl_tensor coef_per_nucleus;
qmckl_matrix expo_per_nucleus;
#+end_src
#+begin_src c :comments org :tangle (eval h_private_func) :exports none
#ifdef HAVE_HPC
qmckl_exit_code qmckl_finalize_basis_hpc (qmckl_context context);
#endif
#+end_src
#+begin_src c :comments org :tangle (eval c) :exports none
/* Data structure for sorting */
struct combined {
double expo;
int64_t index;
};
/* Comparison function */
int compare_basis( const void * l, const void * r )
{
const struct combined * restrict _l= (const struct combined *)l;
const struct combined * restrict _r= (const struct combined *)r;
if( _l->expo > _r->expo ) return 1;
if( _l->expo < _r->expo ) return -1;
return 0;
}
#ifdef HAVE_HPC
qmckl_exit_code qmckl_finalize_basis_hpc (qmckl_context context)
{
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->nucleus.num * sizeof(int32_t);
ctx->ao_basis.prim_num_per_nucleus = (int32_t*) qmckl_malloc(context, mem_info);
/* Find max number of primitives per nucleus */
int64_t shell_max = 0;
int64_t prim_max = 0;
int64_t nucl_num = ctx->nucleus.num;
for (int inucl=0 ; inucl < nucl_num ; ++inucl) {
shell_max = ctx->ao_basis.nucleus_shell_num[inucl] > shell_max ?
ctx->ao_basis.nucleus_shell_num[inucl] : shell_max;
int64_t prim_num = 0;
const int64_t ishell_start = ctx->ao_basis.nucleus_index[inucl];
const int64_t ishell_end = ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl];
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
prim_num += ctx->ao_basis.shell_prim_num[ishell];
}
prim_max = prim_num > prim_max ?
prim_num : prim_max;
ctx->ao_basis.prim_num_per_nucleus[inucl] = prim_num;
}
int64_t size[3] = { prim_max, shell_max, nucl_num };
ctx->ao_basis.coef_per_nucleus = qmckl_tensor_alloc( context, 3, size );
ctx->ao_basis.coef_per_nucleus = qmckl_tensor_set(ctx->ao_basis.coef_per_nucleus, 0.);
ctx->ao_basis.expo_per_nucleus = qmckl_matrix_alloc( context, prim_max, nucl_num );
ctx->ao_basis.expo_per_nucleus = qmckl_matrix_set(ctx->ao_basis.expo_per_nucleus, 0.);
struct combined expo[prim_max];
double coef[shell_max][prim_max];
double newcoef[prim_max];
for (int64_t inucl=0 ; inucl < nucl_num ; ++inucl) {
memset(expo, 0, sizeof(expo));
memset(coef, 0, sizeof(expo));
int64_t idx = 0;
const int64_t ishell_start = ctx->ao_basis.nucleus_index[inucl];
const int64_t ishell_end = ctx->ao_basis.nucleus_index[inucl] + ctx->ao_basis.nucleus_shell_num[inucl];
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
const int64_t iprim_start = ctx->ao_basis.shell_prim_index[ishell];
const int64_t iprim_end = ctx->ao_basis.shell_prim_index[ishell] + ctx->ao_basis.shell_prim_num[ishell];
for (int64_t iprim = iprim_start ; iprim < iprim_end ; ++iprim) {
expo[idx].expo = ctx->ao_basis.exponent[iprim];
expo[idx].index = idx;
idx += 1;
}
}
/* Sort exponents */
qsort( expo, (size_t) idx, sizeof(struct combined), compare_basis );
idx = 0;
int64_t idx2 = 0;
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
memset(newcoef, 0, sizeof(newcoef));
const int64_t iprim_start = ctx->ao_basis.shell_prim_index[ishell];
const int64_t iprim_end = ctx->ao_basis.shell_prim_index[ishell] + ctx->ao_basis.shell_prim_num[ishell];
for (int64_t iprim = iprim_start ; iprim < iprim_end ; ++iprim) {
newcoef[idx] = ctx->ao_basis.coefficient_normalized[iprim];
idx += 1;
}
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
idx2 = expo[i].index;
coef[ishell - ishell_start][i] = newcoef[idx2];
}
}
/* Apply ordering to coefficients */
/* Remove duplicates */
int64_t newidx[prim_max];
int64_t idxmax = 0;
idx = 0;
newidx[0] = 0;
for (int32_t i=1 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
if (expo[i].expo != expo[i-1].expo) {
idx += 1;
}
newidx[i] = idx;
}
idxmax = idx;
for (int32_t j=0 ; j<ishell_end-ishell_start ; ++j) {
memset(newcoef, 0, sizeof(newcoef));
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
newcoef[newidx[i]] += coef[j][i];
}
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
coef[j][i] = newcoef[i];
}
}
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
expo[newidx[i]].expo = expo[i].expo;
}
ctx->ao_basis.prim_num_per_nucleus[inucl] = idxmax+1;
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
qmckl_mat( ctx->ao_basis.expo_per_nucleus, i, inucl ) = expo[i].expo;
}
for (int32_t j=0 ; j<ishell_end-ishell_start ; ++j) {
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
qmckl_ten3( ctx->ao_basis.coef_per_nucleus, i, j, inucl ) = coef[j][i];
}
}
/*
for (int32_t i=0 ; i<ctx->ao_basis.prim_num_per_nucleus[inucl] ; ++i) {
printf("%4ld %4ld %15.5e | ", inucl, i, qmckl_mat( ctx->ao_basis.expo_per_nucleus, i, inucl ));
for (int64_t j=0 ; j<ishell_end-ishell_start ; ++j) {
printf("%8.5f ", qmckl_ten3( ctx->ao_basis.coef_per_nucleus, i, j, inucl ));
}
printf("\n");
}
printf("\n");
*/
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
*** Access functions
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_ao_basis_primitive_vgl (qmckl_context context,
double* const primitive_vgl,
const int64_t size_max);
#+end_src
Returns the array of values, gradients an Laplacian of primitive
basis functions evaluated at the current coordinates.
See section [[Computation of primitives]].
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_primitive_vgl (qmckl_context context,
double* const primitive_vgl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_primitive_vgl",
NULL);
}
if (size_max <= 0) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_primitive_vgl",
"size_max <= 0");
}
qmckl_exit_code rc;
rc = qmckl_provide_ao_basis_primitive_vgl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->ao_basis.prim_num * 5 * ctx->point.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_primitive_vgl",
"input array too small");
}
memcpy(primitive_vgl, ctx->ao_basis.primitive_vgl, (size_t) sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_get_ao_basis_primitive_vgl &
(context, primitive_vgl, size_max) &
bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real(c_double), intent(out) :: primitive_vgl(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function
end interface
#+end_src
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_ao_basis_shell_vgl (qmckl_context context,
double* const shell_vgl,
const int64_t size_max);
#+end_src
Returns the array of values, gradients an Laplacian of contracted shells
evaluated at the current coordinates. See section [[Computation of shells]].
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_shell_vgl (qmckl_context context,
double* const shell_vgl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_shell_vgl",
NULL);
}
qmckl_exit_code rc;
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->ao_basis.shell_num * 5 * ctx->point.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_shell_vgl",
"input array too small");
}
memcpy(shell_vgl, ctx->ao_basis.shell_vgl, (size_t)sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_get_ao_basis_shell_vgl &
(context, shell_vgl, size_max) &
bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real(c_double), intent(out) :: shell_vgl(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function
end interface
#+end_src
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_ao_basis_ao_vgl (qmckl_context context,
double* const ao_vgl,
const int64_t size_max);
#+end_src
Returns the array of values, gradients an Laplacian of the atomic orbitals
evaluated at the current coordinates.
See section [[Combining radial and polynomial parts]].
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_ao_vgl (qmckl_context context,
double* const ao_vgl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_ao_vgl",
NULL);
}
qmckl_exit_code rc;
rc = qmckl_provide_ao_basis_ao_vgl(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->ao_basis.ao_num * 5 * ctx->point.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_ao_vgl",
"input array too small");
}
memcpy(ao_vgl, ctx->ao_basis.ao_vgl, (size_t) sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_get_ao_basis_ao_vgl (context, &
ao_vgl, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real(c_double), intent(out) :: ao_vgl(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_ao_vgl
end interface
#+end_src
Uses the given array to compute the VGL.
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_ao_basis_ao_vgl_inplace (qmckl_context context,
double* const ao_vgl,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_ao_vgl_inplace (qmckl_context context,
double* const ao_vgl,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_ao_vgl",
NULL);
}
qmckl_exit_code rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->ao_basis.ao_num * 5 * ctx->point.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_ao_vgl",
"input array too small");
}
rc = qmckl_context_touch(context);
if (rc != QMCKL_SUCCESS) return rc;
double* old_array = ctx->ao_basis.ao_vgl;
ctx->ao_basis.ao_vgl = ao_vgl;
rc = qmckl_provide_ao_basis_ao_vgl(context);
if (rc != QMCKL_SUCCESS) return rc;
ctx->ao_basis.ao_vgl = old_array;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_get_ao_basis_ao_vgl_inplace (context, &
ao_vgl, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real(c_double), intent(out) :: ao_vgl(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_ao_vgl_inplace
end interface
#+end_src
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_ao_basis_ao_value (qmckl_context context,
double* const ao_value,
const int64_t size_max);
#+end_src
Returns the array of values of the atomic orbitals evaluated at
the current coordinates. See section [[Combining radial and polynomial parts]].
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_ao_value (qmckl_context context,
double* const ao_value,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_ao_value",
NULL);
}
qmckl_exit_code rc;
rc = qmckl_provide_ao_basis_ao_value(context);
if (rc != QMCKL_SUCCESS) return rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->ao_basis.ao_num * ctx->point.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_ao_value",
"input array too small");
}
memcpy(ao_value, ctx->ao_basis.ao_value, (size_t) sze * sizeof(double));
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_get_ao_basis_ao_value (context, &
ao_value, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real(c_double) , intent(out) :: ao_value(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_ao_value
end interface
#+end_src
Uses the given array to compute the value.
#+begin_src c :comments org :tangle (eval h_func) :noweb yes
qmckl_exit_code
qmckl_get_ao_basis_ao_value_inplace (qmckl_context context,
double* const ao_value,
const int64_t size_max);
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
qmckl_exit_code
qmckl_get_ao_basis_ao_value_inplace (qmckl_context context,
double* const ao_value,
const int64_t size_max)
{
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_get_ao_basis_ao_value",
NULL);
}
qmckl_exit_code rc;
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
int64_t sze = ctx->ao_basis.ao_num * ctx->point.num;
if (size_max < sze) {
return qmckl_failwith( context,
QMCKL_INVALID_ARG_3,
"qmckl_get_ao_basis_ao_value",
"input array too small");
}
rc = qmckl_context_touch(context);
if (rc != QMCKL_SUCCESS) return rc;
double* old_array = ctx->ao_basis.ao_value;
ctx->ao_basis.ao_value = ao_value;
rc = qmckl_provide_ao_basis_ao_value(context);
if (rc != QMCKL_SUCCESS) return rc;
ctx->ao_basis.ao_value = old_array;
return QMCKL_SUCCESS;
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(c_int32_t) function qmckl_get_ao_basis_ao_value_inplace (context, &
ao_value, size_max) bind(C)
use qmckl_constants
import
implicit none
integer (c_int64_t) , intent(in) , value :: context
real(c_double) , intent(out) :: ao_value(*)
integer (c_int64_t) , intent(in) , value :: size_max
end function qmckl_get_ao_basis_ao_value_inplace
end interface
#+end_src
* Radial part
** General functions for Gaussian basis functions ~qmckl_ao_gaussian_vgl~ computes the values, gradients and
Laplacians at a given point of ~n~ Gaussian functions centered at
the same point:
\[ v_i = \exp(-a_i |X-R|^2) \]
\[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \]
\[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \]
\[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \]
\[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
|--------------+------------------+------------------------------------------------------|
| Variable | Type | Description |
|--------------+------------------+------------------------------------------------------|
| ~context~ | ~qmckl_context~ | Global state |
| ~X(3)~ | ~double[3]~ | Array containing the coordinates of the points |
| ~R(3)~ | ~double[3]~ | Array containing the x,y,z coordinates of the center |
| ~n~ | ~int64_t~ | Number of computed Gaussians |
| ~A(n)~ | ~double[n]~ | Exponents of the Gaussians |
| ~VGL(ldv,5)~ | ~double[5][ldv]~ | Value, gradients and Laplacian of the Gaussians |
| ~ldv~ | ~int64_t~ | Leading dimension of array ~VGL~ |
|--------------+------------------+------------------------------------------------------|
Requirements:
- ~context~ \ne 0
- ~n~ > 0
- ~ldv~ >= 5
- ~A(i)~ > 0 for all ~i~
- ~X~ is allocated with at least $3 \times 8$ bytes
- ~R~ is allocated with at least $3 \times 8$ bytes
- ~A~ is allocated with at least $n \times 8$ bytes
- ~VGL~ is allocated with at least $n \times 5 \times 8$ bytes
#+begin_src c :tangle (eval h_func)
qmckl_exit_code
qmckl_ao_gaussian_vgl(const qmckl_context context,
const double *X,
const double *R,
const int64_t *n,
const int64_t *A,
const double *VGL,
const int64_t ldv);
#+end_src
#+begin_src f90 :tangle (eval f)
function qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv) &
bind(C) result(info)
use qmckl_constants
implicit none
integer (qmckl_context) , intent(in) , value :: context
real (c_double) , intent(in) :: X(3), R(3)
integer (c_int64_t) , intent(in) , value :: n
integer (c_int64_t) , intent(in) , value :: ldv
real (c_double) , intent(in) :: A(n)
real (c_double) , intent(out) :: VGL(ldv,5)
integer (qmckl_exit_code) :: info
integer*8 :: i,j
double precision :: Y(3), r2, t, u, v
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (n <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldv < n) then
info = QMCKL_INVALID_ARG_7
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
do i=1,n
VGL(i,1) = dexp(-A(i) * r2)
end do
do i=1,n
VGL(i,5) = A(i) * VGL(i,1)
end do
t = -2.d0 * ( X(1) - R(1) )
u = -2.d0 * ( X(2) - R(2) )
v = -2.d0 * ( X(3) - R(3) )
do i=1,n
VGL(i,2) = t * VGL(i,5)
VGL(i,3) = u * VGL(i,5)
VGL(i,4) = v * VGL(i,5)
end do
t = 4.d0 * r2
do i=1,n
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
end do
end function qmckl_ao_gaussian_vgl
#+end_src
#+begin_src f90 :tangle (eval fh_func) :exports none
interface
function qmckl_ao_gaussian_vgl(context, &
X, R, n, A, VGL, ldv) bind(C) result(info)
use qmckl_constants
integer (qmckl_context) , intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int64_t) , intent(in) , value :: n
real (c_double) , intent(in) :: X(3), R(3), A(n)
real (c_double) , intent(out) :: VGL(ldv,5)
integer(qmckl_exit_code) :: info
end function qmckl_ao_gaussian_vgl
end interface
#+end_src
*** Test :noexport:
#+begin_src f90 :tangle (eval f_test)
function test_qmckl_ao_gaussian_vgl(context) bind(C)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer(qmckl_exit_code) :: test_qmckl_ao_gaussian_vgl
integer*8 :: n, ldv, j, i
double precision :: X(3), R(3), Y(3), r2, z
double precision, allocatable :: VGL(:,:), A(:)
double precision :: epsilon
epsilon = 3.d0 * qmckl_get_numprec_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
r2 = Y(1)**2 + Y(2)**2 + Y(3)**2
n = 10;
ldv = 100;
allocate (A(n), VGL(ldv,5))
do i=1,n
A(i) = 0.0013 * dble(ishft(1,i))
end do
test_qmckl_ao_gaussian_vgl = &
qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
if (test_qmckl_ao_gaussian_vgl /= 0) return
test_qmckl_ao_gaussian_vgl = -1
do i=1,n
test_qmckl_ao_gaussian_vgl = -11
z = dabs(1.d0 - VGL(i,1) / (dexp(-A(i) * r2)) )
if ( z > epsilon ) then
print *, z, epsilon
return
end if
test_qmckl_ao_gaussian_vgl = -12
z = dabs(1.d0 - VGL(i,2) / (&
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) ))
if ( z > epsilon ) then
print *, z, epsilon
return
end if
test_qmckl_ao_gaussian_vgl = -13
z = dabs(1.d0 - VGL(i,3) / (&
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) ))
if ( z > epsilon ) then
print *, z, epsilon
return
end if
test_qmckl_ao_gaussian_vgl = -14
z = dabs(1.d0 - VGL(i,4) / (&
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) ))
if ( z > epsilon ) then
print *, z, epsilon
return
end if
test_qmckl_ao_gaussian_vgl = -15
z = dabs(1.d0 - VGL(i,5) / (&
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) ))
if ( z > epsilon ) then
print *, z, epsilon
return
end if
end do
test_qmckl_ao_gaussian_vgl = 0
deallocate(VGL)
end function test_qmckl_ao_gaussian_vgl
#+end_src
#+begin_src c :tangle (eval c_test) :exports none
int test_qmckl_ao_gaussian_vgl(qmckl_context context);
assert(0 == test_qmckl_ao_gaussian_vgl(context));
#+end_src
** TODO General functions for Slater basis functions :noexport:
** TODO General functions for Radial functions on a grid :noexport:
** Computation of primitives
:PROPERTIES:
:Name: qmckl_compute_ao_basis_primitive_gaussian_vgl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_ao_basis_primitive_gaussian_vgl_args
| Variable | Type | In/Out | Description |
|----------------------+----------------------------------+--------+--------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~prim_num~ | ~int64_t~ | in | Number of primitives |
| ~point_num~ | ~int64_t~ | in | Number of points considered |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~nucleus_prim_index~ | ~int64_t[nucl_num+1]~ | in | Index of the 1st primitive of each nucleus |
| ~coord~ | ~double[3][point_num]~ | in | Coordinates |
| ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~expo~ | ~double[prim_num]~ | in | Exponents of the primitives |
| ~primitive_vgl~ | ~double[point_num][5][prim_num]~ | out | Value, gradients and Laplacian of the primitives |
#+CALL: generate_c_header(table=qmckl_ao_basis_primitive_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_basis_primitive_gaussian_vgl"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_ao_basis_primitive_gaussian_vgl (
const qmckl_context context,
const int64_t prim_num,
const int64_t point_num,
const int64_t nucl_num,
const int64_t* nucleus_prim_index,
const double* coord,
const double* nucl_coord,
const double* expo,
double* const primitive_vgl );
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_ao_basis_primitive_gaussian_vgl &
(context, prim_num, point_num, nucl_num, nucleus_prim_index, coord, nucl_coord, expo, primitive_vgl) &
bind(C) result(info)
use qmckl_constants
use qmckl, only: qmckl_get_numprec_precision
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: prim_num
integer (c_int64_t) , intent(in) , value :: point_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) :: nucleus_prim_index(nucl_num+1)
real (c_double ) , intent(in) :: coord(point_num,3)
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
real (c_double ) , intent(in) :: expo(prim_num)
real (c_double ) , intent(out) :: primitive_vgl(prim_num,5,point_num)
integer(qmckl_exit_code) :: info
integer*8 :: inucl, iprim, ipoint
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
info = QMCKL_SUCCESS
! Don't compute exponentials when the result will be almost zero.
<<fortran_cutoff>>
do inucl=1,nucl_num
! C is zero-based, so shift bounds by one
do iprim = nucleus_prim_index(inucl)+1, nucleus_prim_index(inucl+1)
do ipoint = 1, point_num
x = coord(ipoint,1) - nucl_coord(inucl,1)
y = coord(ipoint,2) - nucl_coord(inucl,2)
z = coord(ipoint,3) - nucl_coord(inucl,3)
r2 = x*x + y*y + z*z
ar2 = expo(iprim)*r2
if (ar2 > cutoff) cycle
v = dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
primitive_vgl(iprim, 1, ipoint) = v
primitive_vgl(iprim, 2, ipoint) = two_a * x
primitive_vgl(iprim, 3, ipoint) = two_a * y
primitive_vgl(iprim, 4, ipoint) = two_a * z
primitive_vgl(iprim, 5, ipoint) = two_a * (3.d0 - 2.d0*ar2)
end do
end do
end do
end function qmckl_compute_ao_basis_primitive_gaussian_vgl
#+end_src
*** Provide :noexport:
#+CALL: write_provider_header( group="ao_basis", data="primitive_vgl" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_primitive_vgl(qmckl_context context);
#+end_src
#+CALL: write_provider_pre( group="ao_basis", data="primitive_vgl", dimension="ctx->ao_basis.prim_num * 5 * ctx->point.num")
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_primitive_vgl(qmckl_context context)
{
qmckl_exit_code rc = QMCKL_SUCCESS;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_ao_basis_primitive_vgl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->ao_basis.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_ao_basis_primitive_vgl",
NULL);
}
/* Compute if necessary */
if (ctx->point.date > ctx->ao_basis.primitive_vgl_date) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.prim_num * 5 * ctx->point.num * sizeof(double);
if (ctx->ao_basis.primitive_vgl != NULL) {
qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero;
rc = qmckl_get_malloc_info(context, ctx->ao_basis.primitive_vgl, &mem_info_test);
/* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the
memory was not allocated with qmckl_malloc */
if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) {
rc = qmckl_free(context, ctx->ao_basis.primitive_vgl);
assert (rc == QMCKL_SUCCESS);
ctx->ao_basis.primitive_vgl = NULL;
}
}
/* Allocate array */
if (ctx->ao_basis.primitive_vgl == NULL) {
double* primitive_vgl = (double*) qmckl_malloc(context, mem_info);
if (primitive_vgl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_ao_basis_primitive_vgl",
NULL);
}
ctx->ao_basis.primitive_vgl = primitive_vgl;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
if (ctx->ao_basis.type == 'G') {
rc = qmckl_compute_ao_basis_primitive_gaussian_vgl(context,
ctx->ao_basis.prim_num,
ctx->point.num,
ctx->nucleus.num,
ctx->ao_basis.nucleus_prim_index,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.exponent,
ctx->ao_basis.primitive_vgl);
} else {
return qmckl_failwith( context,
QMCKL_FAILURE,
"compute_ao_basis_primitive_vgl",
"Not yet implemented");
}
#+end_src
#+CALL: write_provider_post( group="ao_basis", data="shell_vgl" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->ao_basis.shell_vgl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Test :noexport:
#+begin_src python :results output :exports none :exports none
import numpy as np
def f(a,x,y):
return np.exp( -a*(np.linalg.norm(x-y))**2 )
def df(a,x,y,n):
h0 = 1.e-6
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0)
def d2f(a,x,y,n):
h0 = 1.e-6
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2
def lf(a,x,y):
return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3)
elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] )
nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] )
nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] )
#double prim_vgl[prim_num][5][elec_num];
a = 0.9059; x = elec_26_w1 ; y = nucl_1
print ( "[7][0][26] : %e"% f(a,x,y))
print ( "[7][1][26] : %e"% df(a,x,y,1))
print ( "[7][2][26] : %e"% df(a,x,y,2))
print ( "[7][3][26] : %e"% df(a,x,y,3))
print ( "[7][4][26] : %e"% lf(a,x,y))
#+end_src
#+RESULTS:
: [7][0][26] : 1.050157e-03
: [7][1][26] : -7.501497e-04
: [7][2][26] : -3.825069e-03
: [7][3][26] : 3.495056e-03
: [7][4][26] : 2.040013e-02
#+begin_src c :tangle (eval c_test) :exports none
{
#define walk_num 1 // chbrclf_walk_num
#define elec_num chbrclf_elec_num
#define prim_num chbrclf_prim_num
int64_t elec_up_num = chbrclf_elec_up_num;
int64_t elec_dn_num = chbrclf_elec_dn_num;
double* elec_coord = &(chbrclf_elec_coord[0][0][0]);
rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert (rc == QMCKL_SUCCESS);
assert(qmckl_electron_provided(context));
int64_t point_num = elec_num;
rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3);
assert(rc == QMCKL_SUCCESS);
double prim_vgl[point_num][5][prim_num];
rc = qmckl_get_ao_basis_primitive_vgl(context, &(prim_vgl[0][0][0]),
(int64_t) 5*point_num*prim_num );
assert (rc == QMCKL_SUCCESS);
printf("prim_vgl[26][0][7] = %e\n",prim_vgl[26][0][7]);
assert( fabs(prim_vgl[26][0][7] - ( 1.0501570432064878E-003)) < 1.e-14 );
printf("prim_vgl[26][1][7] = %e\n",prim_vgl[26][1][7]);
assert( fabs(prim_vgl[26][1][7] - (-7.5014974095310560E-004)) < 1.e-14 );
printf("prim_vgl[26][2][7] = %e\n",prim_vgl[26][2][7]);
assert( fabs(prim_vgl[26][2][7] - (-3.8250692897610380E-003)) < 1.e-14 );
printf("prim_vgl[26][3][7] = %e\n",prim_vgl[26][3][7]);
assert( fabs(prim_vgl[26][3][7] - ( 3.4950559194080275E-003)) < 1.e-14 );
printf("prim_vgl[26][4][7] = %e\n",prim_vgl[26][4][7]);
assert( fabs(prim_vgl[26][4][7] - ( 2.0392163767356572E-002)) < 1.e-14 );
}
#+end_src
** Computation of shells
:PROPERTIES:
:Name: qmckl_compute_ao_basis_shell_gaussian_vgl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
#+NAME: qmckl_ao_basis_shell_gaussian_vgl_args
| Variable | Type | In/Out | Description |
|---------------------+-----------------------------------+--------+----------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~prim_num~ | ~int64_t~ | in | Number of primitives |
| ~shell_num~ | ~int64_t~ | in | Number of shells |
| ~point_num~ | ~int64_t~ | in | Number of points |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells for each nucleus |
| ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus |
| ~nucleus_range~ | ~double[nucl_num]~ | in | Range of the nucleus |
| ~shell_prim_index~ | ~int64_t[shell_num]~ | in | Index of the 1st primitive of each shell |
| ~shell_prim_num~ | ~int64_t[shell_num]~ | in | Number of primitives per shell |
| ~coord~ | ~double[3][point_num]~ | in | Coordinates |
| ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~expo~ | ~double[prim_num]~ | in | Exponents of the primitives |
| ~coef_normalized~ | ~double[prim_num]~ | in | Coefficients of the primitives |
| ~shell_vgl~ | ~double[point_num][5][shell_num]~ | out | Value, gradients and Laplacian of the shells |
#+CALL: generate_c_header(table=qmckl_ao_basis_shell_gaussian_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_basis_shell_gaussian_vgl"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_compute_ao_basis_shell_gaussian_vgl (
const qmckl_context context,
const int64_t prim_num,
const int64_t shell_num,
const int64_t point_num,
const int64_t nucl_num,
const int64_t* nucleus_shell_num,
const int64_t* nucleus_index,
const double* nucleus_range,
const int64_t* shell_prim_index,
const int64_t* shell_prim_num,
const double* coord,
const double* nucl_coord,
const double* expo,
const double* coef_normalized,
double* const shell_vgl );
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_ao_basis_shell_gaussian_vgl( &
context, prim_num, shell_num, point_num, nucl_num, &
nucleus_shell_num, nucleus_index, nucleus_range, &
shell_prim_index, shell_prim_num, coord, nucl_coord, &
expo, coef_normalized, shell_vgl) &
bind(C) result(info)
use qmckl_constants
use qmckl, only: qmckl_get_numprec_precision
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: prim_num
integer (c_int64_t) , intent(in) , value :: shell_num
integer (c_int64_t) , intent(in) , value :: point_num
integer (c_int64_t) , intent(in) , value :: nucl_num
integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num)
integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num)
real (c_double ) , intent(in) :: nucleus_range(nucl_num)
integer (c_int64_t) , intent(in) :: shell_prim_index(shell_num)
integer (c_int64_t) , intent(in) :: shell_prim_num(shell_num)
real (c_double ) , intent(in) :: coord(point_num,3)
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
real (c_double ) , intent(in) :: expo(prim_num)
real (c_double ) , intent(in) :: coef_normalized(prim_num)
real (c_double ) , intent(out) :: shell_vgl(shell_num,5,point_num)
integer(qmckl_exit_code) :: info
integer*8 :: inucl, iprim, ipoint, ishell
integer*8 :: ishell_start, ishell_end
integer*8 :: iprim_start , iprim_end
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
info = QMCKL_SUCCESS
! Don't compute exponentials when the result will be almost zero.
<<fortran_cutoff>>
do ipoint = 1, point_num
do inucl=1,nucl_num
x = coord(ipoint,1) - nucl_coord(inucl,1)
y = coord(ipoint,2) - nucl_coord(inucl,2)
z = coord(ipoint,3) - nucl_coord(inucl,3)
r2 = x*x + y*y + z*z
if (r2 > cutoff*nucleus_range(inucl)) then
cycle
end if
! C is zero-based, so shift bounds by one
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell=ishell_start, ishell_end
shell_vgl(ishell, 1, ipoint) = 0.d0
shell_vgl(ishell, 2, ipoint) = 0.d0
shell_vgl(ishell, 3, ipoint) = 0.d0
shell_vgl(ishell, 4, ipoint) = 0.d0
shell_vgl(ishell, 5, ipoint) = 0.d0
iprim_start = shell_prim_index(ishell) + 1
iprim_end = shell_prim_index(ishell) + shell_prim_num(ishell)
do iprim = iprim_start, iprim_end
ar2 = expo(iprim)*r2
if (ar2 > cutoff) then
cycle
end if
v = coef_normalized(iprim) * dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
shell_vgl(ishell, 1, ipoint) = &
shell_vgl(ishell, 1, ipoint) + v
shell_vgl(ishell, 2, ipoint) = &
shell_vgl(ishell, 2, ipoint) + two_a * x
shell_vgl(ishell, 3, ipoint) = &
shell_vgl(ishell, 3, ipoint) + two_a * y
shell_vgl(ishell, 4, ipoint) = &
shell_vgl(ishell, 4, ipoint) + two_a * z
shell_vgl(ishell, 5, ipoint) = &
shell_vgl(ishell, 5, ipoint) + two_a * (3.d0 - 2.d0*ar2)
end do
end do
end do
end do
end function qmckl_compute_ao_basis_shell_gaussian_vgl
#+end_src
*** Provide :noexport:
#+CALL: write_provider_header( group="ao_basis", data="shell_vgl" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_shell_vgl(qmckl_context context);
#+end_src
#+CALL: write_provider_pre( group="ao_basis", data="shell_vgl", dimension="ctx->ao_basis.shell_num * 5 * ctx->point.num")
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_shell_vgl(qmckl_context context)
{
qmckl_exit_code rc = QMCKL_SUCCESS;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_ao_basis_shell_vgl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->ao_basis.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_ao_basis_shell_vgl",
NULL);
}
/* Compute if necessary */
if (ctx->point.date > ctx->ao_basis.shell_vgl_date) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.shell_num * 5 * ctx->point.num * sizeof(double);
if (ctx->ao_basis.shell_vgl != NULL) {
qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero;
rc = qmckl_get_malloc_info(context, ctx->ao_basis.shell_vgl, &mem_info_test);
/* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the
memory was not allocated with qmckl_malloc */
if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) {
rc = qmckl_free(context, ctx->ao_basis.shell_vgl);
assert (rc == QMCKL_SUCCESS);
ctx->ao_basis.shell_vgl = NULL;
}
}
/* Allocate array */
if (ctx->ao_basis.shell_vgl == NULL) {
double* shell_vgl = (double*) qmckl_malloc(context, mem_info);
if (shell_vgl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_ao_basis_shell_vgl",
NULL);
}
ctx->ao_basis.shell_vgl = shell_vgl;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
if (ctx->ao_basis.type == 'G') {
rc = qmckl_compute_ao_basis_shell_gaussian_vgl(context,
ctx->ao_basis.prim_num,
ctx->ao_basis.shell_num,
ctx->point.num,
ctx->nucleus.num,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.shell_prim_index,
ctx->ao_basis.shell_prim_num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.exponent,
ctx->ao_basis.coefficient_normalized,
ctx->ao_basis.shell_vgl);
} else {
return qmckl_failwith( context,
QMCKL_FAILURE,
"compute_ao_basis_shell_vgl",
"Not yet implemented");
}
#+end_src
#+CALL: write_provider_post( group="ao_basis", data="shell_vgl" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->ao_basis.shell_vgl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
*** Test :noexport:
#+begin_src python :results output :exports none
import numpy as np
def f(a,x,y):
return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )
def df(a,x,y,n):
h0 = 1.e-6
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( f(a,x+h,y) - f(a,x-h,y) ) / (2.*h0)
def d2f(a,x,y,n):
h0 = 1.e-6
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( f(a,x+h,y) - 2.*f(a,x,y) + f(a,x-h,y) ) / h0**2
def lf(a,x,y):
return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3)
elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] )
elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] )
nucl_1 = np.array( [ 1.096243353458458e+00, 8.907054016973815e-01, 7.777092280258892e-01 ] )
nucl_2 = np.array( [ 1.168459237342663e+00, 1.125660720053393e+00, 2.833370314829343e+00 ] )
#double prim_vgl[prim_num][5][point_num];
x = elec_26_w1 ; y = nucl_1
a = [( 8.236000E+03, -1.130000E-04 * 6.1616545431994848e+02 ),
( 1.235000E+03, -8.780000E-04 * 1.4847738511079908e+02 ),
( 2.808000E+02, -4.540000E-03 * 4.8888635917437597e+01 ),
( 7.927000E+01, -1.813300E-02 * 1.8933972232608955e+01 ),
( 2.559000E+01, -5.576000E-02 * 8.1089160941724145e+00 ),
( 8.997000E+00, -1.268950E-01 * 3.7024003863155635e+00 ),
( 3.319000E+00, -1.703520E-01 * 1.7525302846177560e+00 ),
( 9.059000E-01, 1.403820E-01 * 6.6179013183966806e-01 ),
( 3.643000E-01, 5.986840E-01 * 3.3419848027174592e-01 ),
( 1.285000E-01, 3.953890E-01 * 1.5296336817449557e-01 )]
print ( "[1][0][26] : %25.15e"% f(a,x,y))
print ( "[1][1][26] : %25.15e"% df(a,x,y,1))
print ( "[1][2][26] : %25.15e"% df(a,x,y,2))
print ( "[1][3][26] : %25.15e"% df(a,x,y,3))
print ( "[1][4][26] : %25.15e"% lf(a,x,y))
#+end_src
#+RESULTS:
: [1][0][26] : 3.564393437193867e-02
: [1][1][26] : -6.030177988891605e-03
: [1][2][26] : -3.074832579871845e-02
: [1][3][26] : 2.809546963133958e-02
: [1][4][26] : 1.903338597841753e-02
#+begin_src c :tangle (eval c_test) :exports none
{
#define shell_num chbrclf_shell_num
double* elec_coord = &(chbrclf_elec_coord[0][0][0]);
assert(qmckl_electron_provided(context));
int64_t point_num = elec_num;
rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3);
assert(rc == QMCKL_SUCCESS);
double shell_vgl[point_num][5][shell_num];
rc = qmckl_get_ao_basis_shell_vgl(context, &(shell_vgl[0][0][0]),
(int64_t) 5*point_num*shell_num);
assert (rc == QMCKL_SUCCESS);
printf(" shell_vgl[26][0][1] %25.15e\n", shell_vgl[26][0][1]);
printf(" shell_vgl[26][1][1] %25.15e\n", shell_vgl[26][1][1]);
printf(" shell_vgl[26][2][1] %25.15e\n", shell_vgl[26][2][1]);
printf(" shell_vgl[26][3][1] %25.15e\n", shell_vgl[26][3][1]);
printf(" shell_vgl[26][4][1] %25.15e\n", shell_vgl[26][4][1]);
assert( fabs(shell_vgl[26][0][1] - ( 3.564393437193868e-02)) < 1.e-14 );
assert( fabs(shell_vgl[26][1][1] - (-6.030177987072189e-03)) < 1.e-14 );
assert( fabs(shell_vgl[26][2][1] - (-3.074832579537582e-02)) < 1.e-14 );
assert( fabs(shell_vgl[26][3][1] - ( 2.809546963519935e-02)) < 1.e-14 );
assert( fabs(shell_vgl[26][4][1] - ( 1.896046117183968e-02)) < 1.e-14 );
}
#+end_src
* Polynomial part
Going from the atomic basis set to AOs implies a systematic
construction of all the angular functions of each shell. We
consider two cases for the angular functions: the real-valued
spherical harmonics, and the polynomials in Cartesian coordinates.
In the case of spherical harmonics, the AOs are ordered in
increasing magnetic quantum number ($-l \le m \le l$), and in the
case of polynomials we choose the canonical ordering, i.e
\begin{eqnarray}
p & : & p_x, p_y, p_z \nonumber \\
d & : & d_{xx}, d_{xy}, d_{xz}, d_{yy}, d_{yz}, d_{zz} \nonumber \\
f & : & f_{xxx}, f_{xxy}, f_{xxz}, f_{xyy}, f_{xyz}, f_{xzz}, f_{yyy}, f_{yyz}, f_{yzz}, f_{zzz} \nonumber \\
{\rm etc.} \nonumber
\end{eqnarray}
** General functions for Powers of $x-X_i$
:PROPERTIES:
:Name: qmckl_ao_power
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
The ~qmckl_ao_power~ function computes all the powers of the ~n~
input data up to the given maximum value given in input for each of
the $n$ points:
\[ P_{ik} = X_i^k \]
#+NAME: qmckl_ao_power_args
| Variable | Type | In/Out | Description |
|-----------+-----------------+--------+---------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~n~ | int64_t | in | Number of values |
| ~X~ | double[n] | in | Array containing the input values |
| ~LMAX~ | int32_t[n] | in | Array containing the maximum power for each value |
| ~P~ | double[n][ldp] | out | Array containing all the powers of ~X~ |
| ~ldp~ | int64_t | in | Leading dimension of array ~P~ |
Requirements:
- ~context~ is not ~QMCKL_NULL_CONTEXT~
- ~n~ > 0
- ~X~ is allocated with at least $n \times 8$ bytes
- ~LMAX~ is allocated with at least $n \times 4$ bytes
- ~P~ is allocated with at least $n \times \max_i \text{LMAX}_i \times 8$ bytes
- ~LDP~ >= $\max_i$ ~LMAX[i]~
#+CALL: generate_c_header(table=qmckl_ao_power_args,rettyp=get_value("CRetType"),fname="qmckl_ao_power")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_ao_power (
const qmckl_context context,
const int64_t n,
const double* X,
const int32_t* LMAX,
double* const P,
const int64_t ldp );
#+end_src
#+begin_src f90 :tangle (eval f)
function qmckl_ao_power(context, n, X, LMAX, P, ldp) &
bind(C) result(info)
use qmckl_constants
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n
integer (c_int64_t) , intent(in) , value :: ldp
real (c_double ) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double ) , intent(out) :: P(ldp,n)
integer(qmckl_exit_code) :: info
integer(c_int64_t) :: i,k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (n <= ldp) then
info = QMCKL_INVALID_ARG_2
return
endif
k = MAXVAL(LMAX)
if (LDP < k) then
info = QMCKL_INVALID_ARG_6
return
endif
if (k <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do i=1,n
P(1,i) = X(i)
do k=2,LMAX(i)
P(k,i) = P(k-1,i) * X(i)
end do
end do
end function qmckl_ao_power
#+end_src
#+CALL: generate_f_interface(table=qmckl_ao_power_args,rettyp=get_value("CRetType"),fname="qmckl_ao_power")
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(qmckl_exit_code) function qmckl_ao_power &
(context, n, X, LMAX, P, ldp) &
bind(C)
use :: qmckl_constants
import
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: n
integer (c_int64_t) , intent(in) , value :: ldp
real (c_double ) , intent(in) :: X(n)
integer (c_int32_t) , intent(in) :: LMAX(n)
real (c_double ) , intent(out) :: P(ldp,n)
end function qmckl_ao_power
end interface
#+end_src
*** Test :noexport:
#+begin_src f90 :tangle (eval f_test)
function test_qmckl_ao_power(context) bind(C)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer(qmckl_exit_code) :: test_qmckl_ao_power
integer*8 :: n, LDP
integer, allocatable :: LMAX(:)
double precision, allocatable :: X(:), P(:,:)
integer*8 :: i,j
double precision :: epsilon
epsilon = qmckl_get_numprec_precision(context)
n = 100;
LDP = 10;
allocate(X(n), P(LDP,n), LMAX(n))
do j=1,n
X(j) = -5.d0 + 0.1d0 * dble(j)
LMAX(j) = 1 + int(mod(j, 5),4)
end do
test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
if (test_qmckl_ao_power /= QMCKL_SUCCESS) return
test_qmckl_ao_power = QMCKL_FAILURE
do j=1,n
do i=1,LMAX(j)
if ( X(j)**i == 0.d0 ) then
if ( P(i,j) /= 0.d0) return
else
if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return
end if
end do
end do
test_qmckl_ao_power = QMCKL_SUCCESS
deallocate(X,P,LMAX)
end function test_qmckl_ao_power
#+end_src
#+begin_src c :tangle (eval c_test) :exports none
int test_qmckl_ao_power(qmckl_context context);
assert(0 == test_qmckl_ao_power(context));
#+end_src
** General functions for Value, Gradient and Laplacian of a polynomial
:PROPERTIES:
:Name: qmckl_ao_polynomial_vgl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
A polynomial is centered on a nucleus $\mathbf{R}_i$
\[
P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c
\]
The gradients with respect to electron coordinates are
\begin{eqnarray*}
\frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\
\frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\
\frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) &
= & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\
\end{eqnarray*}
and the Laplacian is
\begin{eqnarray*}
\left( \frac{\partial }{\partial x^2} +
\frac{\partial }{\partial y^2} +
\frac{\partial }{\partial z^2} \right) P_l
\left(\mathbf{r},\mathbf{R}_i \right) & = &
a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\
&& b(b-1) (x-X_i)^a (y-Y_i)^{b-2} (z-Z_i)^c + \\
&& c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-2}.
\end{eqnarray*} ~qmckl_ao_polynomial_vgl~ computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to ~lmax~.
#+NAME: qmckl_ao_polynomial_vgl_args
| Variable | Type | In/Out | Description |
|-----------+-------------------+--------+------------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~X~ | ~double[3]~ | in | Array containing the coordinates of the points |
| ~R~ | ~double[3]~ | in | Array containing the x,y,z coordinates of the center |
| ~lmax~ | ~int32_t~ | in | Maximum angular momentum |
| ~n~ | ~int64_t~ | inout | Number of computed polynomials |
| ~L~ | ~int32_t[n][ldl]~ | out | Contains a,b,c for all ~n~ results |
| ~ldl~ | ~int64_t~ | in | Leading dimension of ~L~ |
| ~VGL~ | ~double[n][ldv]~ | out | Value, gradients and Laplacian of the polynomials |
| ~ldv~ | ~int64_t~ | in | Leading dimension of array ~VGL~ |
Requirements:
- ~context~ \ne ~QMCKL_NULL_CONTEXT~
- ~n~ > 0
- ~lmax~ >= 0
- ~ldl~ >= 3
- ~ldv~ >= 5
- ~X~ is allocated with at least $3 \times 8$ bytes
- ~R~ is allocated with at least $3 \times 8$ bytes
- ~n~ >= ~(lmax+1)(lmax+2)(lmax+3)/6~
- ~L~ is allocated with at least $3 \times n \times 4$ bytes
- ~VGL~ is allocated with at least $5 \times n \times 8$ bytes
- On output, ~n~ should be equal to ~(lmax+1)(lmax+2)(lmax+3)/6~
- On output, the powers are given in the following order (l=a+b+c):
- Increasing values of ~l~
- Within a given value of ~l~, alphabetical order of the
string made by a*"x" + b*"y" + c*"z" (in Python notation).
For example, with a=0, b=2 and c=1 the string is "yyz"
#+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname=get_value("Name"))
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_ao_polynomial_vgl (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
#+end_src
#+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_vgl_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_ao_polynomial_vgl_doc (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
#+end_src
#+begin_src c :tangle (eval c) :comments org
qmckl_exit_code
qmckl_ao_polynomial_vgl (const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv )
{
#ifdef HAVE_HPC
//return qmckl_ao_polynomial_vgl_hpc (context, X, R, lmax, n, L, ldl, VGL, ldv);
return qmckl_ao_polynomial_vgl_doc
#else
return qmckl_ao_polynomial_vgl_doc
#endif
(context, X, R, lmax, n, L, ldl, VGL, ldv);
}
#+end_src
#+begin_src f90 :tangle (eval f)
function qmckl_ao_polynomial_vgl_doc (context, &
X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C) result(info)
use qmckl_constants
implicit none
integer (qmckl_context), intent(in) , value :: context
real (c_double ) , intent(in) :: X(3)
real (c_double ) , intent(in) :: R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(inout) :: n
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
real (c_double ) , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer(qmckl_exit_code) :: info
integer*8 :: i,j
integer :: a,b,c,d
double precision :: Y(3)
double precision :: pows(-2:lmax,3)
double precision :: xy, yz, xz
double precision :: da, db, dc, dd
info = 0
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (lmax < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldl < 3) then
info = QMCKL_INVALID_ARG_7
return
endif
if (ldv < 5) then
info = QMCKL_INVALID_ARG_9
return
endif
! The shift below is such that polynomials will not make the AO equal to zero at the nodes of the orbitals
do i=1,3
Y(i) = (X(i) - R(i)) + 1.d-20
end do
if (lmax == 0) then
VGL(1,1) = 1.d0
VGL(2,1) = 0.d0
VGL(3,1) = 0.d0
VGL(4,1) = 0.d0
VGL(5,1) = 0.d0
l(1,1) = 0
l(2,1) = 0
l(3,1) = 0
n=1
else if (lmax > 0) then
pows(-2:0,1:3) = 1.d0
do i=1,lmax
pows(i,1) = pows(i-1,1) * Y(1)
pows(i,2) = pows(i-1,2) * Y(2)
pows(i,3) = pows(i-1,3) * Y(3)
end do
VGL(1:5,1:4) = 0.d0
VGL(1,1) = 1.d0
VGL(1,2) = pows(1,1)
VGL(2,2) = 1.d0
VGL(1,3) = pows(1,2)
VGL(3,3) = 1.d0
VGL(1,4) = pows(1,3)
VGL(4,4) = 1.d0
l (1:3,1:4) = 0
l (1,2) = 1
l (2,3) = 1
l (3,4) = 1
n=4
endif
! l>=2
dd = 2.d0
do d=2,lmax
da = dd
do a=d,0,-1
db = dd-da
do b=d-a,0,-1
c = d - a - b
dc = dd - da - db
n = n+1
l(1,n) = a
l(2,n) = b
l(3,n) = c
xy = pows(a,1) * pows(b,2)
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
VGL(1,n) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
VGL(2,n) = pows(a-1,1) * yz
VGL(3,n) = pows(b-1,2) * xz
VGL(4,n) = pows(c-1,3) * xy
VGL(5,n) = &
(da-1.d0) * pows(a-2,1) * yz + &
(db-1.d0) * pows(b-2,2) * xz + &
(dc-1.d0) * pows(c-2,3) * xy
db = db - 1.d0
end do
da = da - 1.d0
end do
dd = dd + 1.d0
end do
info = QMCKL_SUCCESS
end function qmckl_ao_polynomial_vgl_doc
#+end_src
#+CALL: generate_f_interface(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("FRetType"),fname="qmckl_ao_polynomial_vgl_doc" )
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(qmckl_exit_code) function qmckl_ao_polynomial_vgl_doc &
(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C)
use qmckl_constants
import
implicit none
integer (qmckl_context), intent(in) , value :: context
real (c_double ) , intent(in) :: X(3)
real (c_double ) , intent(in) :: R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(inout) :: n
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int32_t) , intent(out) :: L(ldl,n)
real (c_double ) , intent(out) :: VGL(ldv,n)
end function qmckl_ao_polynomial_vgl_doc
end interface
#+end_src
#+CALL: generate_f_interface(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("FRetType"),fname="qmckl_ao_polynomial_vgl" )
#+RESULTS:
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(qmckl_exit_code) function qmckl_ao_polynomial_vgl &
(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C)
use qmckl_constants
import
implicit none
integer (qmckl_context), intent(in) , value :: context
real (c_double ) , intent(in) :: X(3)
real (c_double ) , intent(in) :: R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(inout) :: n
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int32_t) , intent(out) :: L(ldl,n)
real (c_double ) , intent(out) :: VGL(ldv,n)
end function qmckl_ao_polynomial_vgl
end interface
#+end_src
#+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_transp_vgl")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_ao_polynomial_transp_vgl (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
#+end_src
#+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_transp_vgl_doc")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_ao_polynomial_transp_vgl_doc (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
#+end_src
# #+CALL: generate_c_header(table=qmckl_ao_polynomial_vgl_args,rettyp=get_value("CRetType"),fname="qmckl_ao_polynomial_transp_vgl_hpc")
#+RESULTS:
#+begin_src c :tangle (eval h_func) :comments org
qmckl_exit_code qmckl_ao_polynomial_transp_vgl_hpc (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
#+end_src
#+begin_src c :tangle (eval c) :comments org
qmckl_exit_code
qmckl_ao_polynomial_transp_vgl (const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv )
{
#ifdef HAVE_HPC
return qmckl_ao_polynomial_transp_vgl_hpc
#else
return qmckl_ao_polynomial_transp_vgl_doc
#endif
(context, X, R, lmax, n, L, ldl, VGL, ldv);
}
#+end_src
#+begin_src f90 :tangle (eval f)
function qmckl_ao_polynomial_transp_vgl_doc (context, &
X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C) result(info)
use qmckl_constants
implicit none
integer (qmckl_context), intent(in) , value :: context
real (c_double ) , intent(in) :: X(3)
real (c_double ) , intent(in) :: R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(inout) :: n
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int32_t) , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
real (c_double ) , intent(out) :: VGL(ldv,5)
integer(qmckl_exit_code) :: info
integer*8 :: i,j
integer :: a,b,c,d
real*8 :: Y(3)
real*8 :: pows(-2:21,3) ! lmax < 22
double precision :: xy, yz, xz
double precision :: da, db, dc, dd
info = 0
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (lmax < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldl < 3) then
info = QMCKL_INVALID_ARG_7
return
endif
if (ldv < (lmax+1)*(lmax+2)*(lmax+3)/6) then
info = QMCKL_INVALID_ARG_9
return
endif
if (lmax > 0) then
do i=1,3
Y(i) = X(i) - R(i)
end do
pows(-2:0,1:3) = 1.d0
do i=1,lmax
pows(i,1) = pows(i-1,1) * Y(1)
pows(i,2) = pows(i-1,2) * Y(2)
pows(i,3) = pows(i-1,3) * Y(3)
end do
l (1:3,1:4) = 0
VGL(1:4,1:5) = 0.d0
VGL(1 ,1 ) = 1.d0
l (1,2) = 1
VGL(2,1) = Y(1)
VGL(2,2) = 1.d0
l (2,3) = 1
VGL(3,1) = Y(2)
VGL(3,3) = 1.d0
l (3,4) = 1
VGL(4,1) = Y(3)
VGL(4,4) = 1.d0
n=4
else
VGL(1,1) = 1.d0
VGL(1,2:5) = 0.d0
l(1:3,1) = 0
n=1
return
endif
! l>=2
dd = 2.d0
do d=2,lmax
da = dd
do a=d,0,-1
db = dd-da
do b=d-a,0,-1
c = d - a - b
dc = dd - da - db
n = n+1
xy = pows(a,1) * pows(b,2)
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
l(1,n) = a
l(2,n) = b
l(3,n) = c
VGL(n,1) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
VGL(n,2) = pows(a-1,1) * yz
VGL(n,3) = pows(b-1,2) * xz
VGL(n,4) = pows(c-1,3) * xy
VGL(n,5) = &
(da-1.d0) * pows(a-2,1) * yz + &
(db-1.d0) * pows(b-2,2) * xz + &
(dc-1.d0) * pows(c-2,3) * xy
db = db - 1.d0
end do
da = da - 1.d0
end do
dd = dd + 1.d0
end do
info = QMCKL_SUCCESS
end function qmckl_ao_polynomial_transp_vgl_doc
#+end_src
#+begin_src c :tangle (eval c) :comments org
static inline qmckl_exit_code
qmckl_ao_polynomial_transp_vgl_hpc_inline (const qmckl_context context,
const double* restrict X,
const double* restrict R,
const int32_t lmax,
int64_t* n,
int32_t* restrict const L,
const int64_t ldl,
double* restrict const VGL,
const int64_t ldv )
{
const qmckl_context_struct* ctx = (qmckl_context_struct*) context;
assert (ctx != NULL && X != NULL && R != NULL && n != NULL && L != NULL && VGL != NULL);
if (lmax < 0) return QMCKL_INVALID_ARG_4;
if (ldl < 3) return QMCKL_INVALID_ARG_7;
int32_t m;
const double shift=1.e-20;
switch (lmax) {
case 0:
{
if (ldv < 1) return QMCKL_INVALID_ARG_9;
L[0] = 0; L[1] = 0; L[2] = 0;
VGL[0 ] = 1.0;
VGL[ldv ] = 0.0;
VGL[ldv<<1 ] = 0.0;
VGL[(ldv<<1)+ldv] = 0.0;
VGL[ldv<<2 ] = 0.0;
m=1;
break;
}
case 1:
{
if (ldv < 4) return QMCKL_INVALID_ARG_9;
if (ldl == 3) {
const int32_t ltmp[12] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1};
for (int i=0 ; i<12 ; ++i)
L[i] = ltmp[i];
} else {
int32_t* restrict const l[4] = {L, L+ldl, L+(ldl<<1), L+ldl+(ldl<<1)};
l[0][0] = 0; l[0][1] = 0; l[0][2] = 0;
l[1][0] = 1; l[1][1] = 0; l[1][2] = 0;
l[2][0] = 0; l[2][1] = 1; l[2][2] = 0;
l[3][0] = 0; l[3][1] = 0; l[3][2] = 1;
}
if (ldv == 4) {
const double tmp[20] = {1.0, (X[0]-R[0])+shift, (X[1]-R[1])+shift, (X[2]-R[2])+shift,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 0.0};
for (int i=0 ; i<20 ; ++i)
VGL[i] = tmp[i];
} else {
double* restrict const vgl1 = VGL;
double* restrict const vgl2 = VGL + ldv;
double* restrict const vgl3 = VGL + (ldv << 1);
double* restrict const vgl4 = VGL + ldv + (ldv << 1);
double* restrict const vgl5 = VGL + (ldv << 2);
for (int32_t k=0 ; k<4 ; ++k) {
vgl2[k] = 0.0;
vgl3[k] = 0.0;
vgl4[k] = 0.0;
vgl5[k] = 0.0;
}
vgl1[0] = 1.0;
vgl1[1] = (X[0]-R[0])+shift;
vgl1[2] = (X[1]-R[1])+shift;
vgl1[3] = (X[2]-R[2])+shift;
vgl2[1] = 1.0;
vgl3[2] = 1.0;
vgl4[3] = 1.0;
}
m=4;
break;
}
case 2:
{
if (ldv < 10) return QMCKL_INVALID_ARG_9;
if (ldl == 3) {
const int32_t ltmp[30] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0,
0, 1, 1, 0, 0, 2};
for (int i=0 ; i<30 ; ++i)
L[i] = ltmp[i];
} else {
int32_t* restrict l[10];
for (int32_t i=0 ; i<10 ; ++i) {
l[i] = L + i*ldl;
}
l[0][0] = 0; l[0][1] = 0; l[0][2] = 0;
l[1][0] = 1; l[1][1] = 0; l[1][2] = 0;
l[2][0] = 0; l[2][1] = 1; l[2][2] = 0;
l[3][0] = 0; l[3][1] = 0; l[3][2] = 1;
l[4][0] = 2; l[4][1] = 0; l[4][2] = 0;
l[5][0] = 1; l[5][1] = 1; l[5][2] = 0;
l[6][0] = 1; l[6][1] = 0; l[6][2] = 1;
l[7][0] = 0; l[7][1] = 2; l[7][2] = 0;
l[8][0] = 0; l[8][1] = 1; l[8][2] = 1;
l[9][0] = 0; l[9][1] = 0; l[9][2] = 2;
}
const double Y[3] = { X[0]-R[0],
X[1]-R[1],
X[2]-R[2] };
if (ldv == 50) {
const double tmp[50] = {
1.0, Y[0]+shift, Y[1]+shift, Y[2]+shift,
Y[0] * Y[0]+shift, Y[0] * Y[1]+shift, Y[0] * Y[2]+shift,
Y[1] * Y[1]+shift, Y[1] * Y[2]+shift, Y[2] * Y[2]+shift,
0.0, 1.0, 0.0, 0.0,
Y[0] + Y[0], Y[1], Y[2], 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0,
Y[0], 0.0, Y[1] + Y[1], Y[2], 0.0,
0.0, 0.0, 0.0, 1.0, 0.0,
0.0, Y[0], 0.0, Y[1], Y[2] + Y[2],
0.0, 0.0, 0.0, 0.0, 2.0,
0.0, 0.0, 2.0, 0., 2.0 };
for (int i=0 ; i<50 ; ++i)
VGL[i] = tmp[i];
} else {
double* restrict const vgl1 = VGL;
double* restrict const vgl2 = VGL + ldv;
double* restrict const vgl3 = VGL + (ldv << 1);
double* restrict const vgl4 = VGL + 3*ldv;
double* restrict const vgl5 = VGL + (ldv << 2);
vgl1[0] = 1.0 ; vgl1[1] = Y[0]+shift ; vgl1[2] = Y[1]+shift;
vgl1[3] = Y[2]+shift ; vgl1[4] = Y[0]*Y[0]+shift; vgl1[5] = Y[0]*Y[1]+shift;
vgl1[6] = Y[0]*Y[2]+shift; vgl1[7] = Y[1]*Y[1]+shift; vgl1[8] = Y[1]*Y[2]+shift;
vgl1[9] = Y[2]*Y[2]+shift;
vgl2[0] = 0.0 ; vgl2[1] = 1.0 ; vgl2[2] = 0.0 ;
vgl2[3] = 0.0 ; vgl2[4] = Y[0]+Y[0]; vgl2[5] = Y[1];
vgl2[6] = Y[2]; vgl2[7] = 0.0 ; vgl2[8] = 0.0 ;
vgl2[9] = 0.0 ;
vgl3[0] = 0.0; vgl3[1] = 0.0 ; vgl3[2] = 1.0 ;
vgl3[3] = 0.0; vgl3[4] = 0.0 ; vgl3[5] = Y[0];
vgl3[6] = 0.0; vgl3[7] = Y[1]+Y[1]; vgl3[8] = Y[2];
vgl3[9] = 0.0;
vgl4[0] = 0.0 ; vgl4[1] = 0.0; vgl4[2] = 0.0 ;
vgl4[3] = 1.0 ; vgl4[4] = 0.0; vgl4[5] = 0.0 ;
vgl4[6] = Y[0] ; vgl4[7] = 0.0; vgl4[8] = Y[1];
vgl4[9] = Y[2]+Y[2];
vgl5[0] = 0.0; vgl5[1] = 0.0; vgl5[2] = 0.0;
vgl5[3] = 0.0; vgl5[4] = 2.0; vgl5[5] = 0.0;
vgl5[6] = 0.0; vgl5[7] = 2.0; vgl5[8] = 0.0;
vgl5[9] = 2.0;
}
m=10;
break;
}
default:
{
const int32_t size_max = (lmax+1)*(lmax+2)*(lmax+3)/6;
if (ldv < size_max) return QMCKL_INVALID_ARG_9;
double* restrict const vgl1 = VGL;
double* restrict const vgl2 = VGL + ldv;
double* restrict const vgl3 = VGL + (ldv<<1);
double* restrict const vgl4 = VGL + ldv + (ldv<<1);
double* restrict const vgl5 = VGL + (ldv<<2);
const double Y[3] = { X[0]-R[0],
X[1]-R[1],
X[2]-R[2]};
assert(size_max > lmax+3);
double pows[3][size_max];
for (int32_t i=0 ; i<3 ; ++i) {
pows[0][i] = 1.0;
pows[1][i] = 1.0;
pows[2][i] = 1.0;
}
for (int32_t i=3 ; i<=lmax+2 ; ++i) {
pows[0][i] = pows[0][i-1] * Y[0];
pows[1][i] = pows[1][i-1] * Y[1];
pows[2][i] = pows[2][i-1] * Y[2];
}
int32_t* l[size_max];
for (int32_t i=0 ; i<size_max ; ++i) {
l[i] = &(L[i*ldl]);
}
for (int32_t i=0 ; i<4 ; ++i) {
l[i][0] = 0;
l[i][1] = 0;
l[i][2] = 0;
}
l[1][0] = 1;
l[2][1] = 1;
l[3][2] = 1;
for (int32_t k=0 ; k<4 ; ++k) {
vgl2[k] = 0.0;
vgl3[k] = 0.0;
vgl4[k] = 0.0;
vgl5[k] = 0.0;
}
vgl1[0] = 1.0;
vgl1[1] = Y[0]+shift;
vgl1[2] = Y[1]+shift;
vgl1[3] = Y[2]+shift;
vgl2[1] = 1.0;
vgl3[2] = 1.0;
vgl4[3] = 1.0;
m=4;
double dd = 2.0;
for (int32_t d=2 ; d<= lmax ; ++d) {
double da = dd;
for (int32_t a=d ; a>=0 ; --a) {
double db = dd-da;
for (int32_t b=d-a ; b>=0 ; --b) {
const int32_t c = d - a - b;
const double dc = dd - da - db;
double xy = pows[0][a+2] * pows[1][b+2];
double yz = pows[1][b+2] * pows[2][c+2];
double xz = pows[0][a+2] * pows[2][c+2];
l[m][0] = a;
l[m][1] = b;
l[m][2] = c;
vgl1[m] = xy * pows[2][c+2]+shift;
xy *= dc;
xz *= db;
yz *= da;
vgl2[m] = pows[0][a+1] * yz;
vgl3[m] = pows[1][b+1] * xz;
vgl4[m] = pows[2][c+1] * xy;
vgl5[m] = (da-1.) * pows[0][a] * yz +
(db-1.) * pows[1][b] * xz +
(dc-1.) * pows[2][c] * xy;
db -= 1.0;
++m;
}
da -= 1.0;
}
dd += 1.0;
}
}
}
,*n = m;
return QMCKL_SUCCESS;
}
qmckl_exit_code
qmckl_ao_polynomial_transp_vgl_hpc (const qmckl_context context,
const double* restrict X,
const double* restrict R,
const int32_t lmax,
int64_t* n,
int32_t* restrict const L,
const int64_t ldl,
double* restrict const VGL,
const int64_t ldv )
{
return qmckl_ao_polynomial_transp_vgl_hpc_inline (context,
X, R, lmax, n, L, ldl, VGL, ldv );
}
#+end_src
#+begin_src f90 :tangle (eval fh_func) :comments org :exports none
interface
integer(qmckl_exit_code) function qmckl_ao_polynomial_transp_vgl &
(context, X, R, lmax, n, L, ldl, VGL, ldv) &
bind(C)
use qmckl_constants
import
implicit none
integer (qmckl_context), intent(in) , value :: context
real (c_double ) , intent(in) :: X(3)
real (c_double ) , intent(in) :: R(3)
integer (c_int32_t) , intent(in) , value :: lmax
integer (c_int64_t) , intent(inout) :: n
integer (c_int64_t) , intent(in) , value :: ldl
integer (c_int64_t) , intent(in) , value :: ldv
integer (c_int32_t) , intent(out) :: L(ldl,n)
real (c_double ) , intent(out) :: VGL(ldv,5)
end function qmckl_ao_polynomial_transp_vgl
end interface
#+end_src
*** Test :noexport:
#+begin_src f90 :tangle (eval f_test)
function test_qmckl_ao_polynomial_vgl(context) bind(C)
use qmckl
implicit none
integer(qmckl_context), intent(in), value :: context
integer :: lmax, d, i
integer, allocatable :: L(:,:)
integer*8 :: n, ldl, ldv, j
double precision :: X(3), R(3), Y(3)
double precision, allocatable :: VGL(:,:)
double precision :: w
double precision :: epsilon
integer(qmckl_exit_code) :: test_qmckl_ao_polynomial_vgl
epsilon = qmckl_get_numprec_precision(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
lmax = 4;
ldl = 3;
ldv = 100;
d = (lmax+1)*(lmax+2)*(lmax+3)/6
allocate (L(ldl,d), VGL(ldv,d))
test_qmckl_ao_polynomial_vgl = &
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return
if (n /= d) return
do j=1,n
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
do i=1,3
if (L(i,j) < 0) return
end do
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (dabs(1.d0 - VGL(1,j) / (&
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(1,j) < 1) then
if (VGL(2,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(2,j) / (&
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(2,j) < 1) then
if (VGL(3,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(3,j) / (&
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(3,j) < 1) then
if (VGL(4,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(4,j) / (&
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
w = 0.d0
if (L(1,j) > 1) then
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
end if
if (L(2,j) > 1) then
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
end if
if (L(3,j) > 1) then
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
end if
if (w /= 0.d0) then
if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return
endif
end do
test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS
deallocate(L,VGL)
end function test_qmckl_ao_polynomial_vgl
#+end_src
#+begin_src c :tangle (eval c_test)
int test_qmckl_ao_polynomial_vgl(qmckl_context context);
assert(0 == test_qmckl_ao_polynomial_vgl(context));
double X[3] = { 1.1, 2.2, 3.3 };
double R[3] = { 0.2, 1.1, 3.0 };
int32_t ldv[8] = {1, 4, 10, 20, 35, 56, 84, 120};
for (int32_t ldl=3 ; ldl<=5 ; ++ldl) {
int64_t n;
int32_t L0[200][ldl];
int32_t L1[200][ldl];
printf("ldl=%d\n", ldl);
for (int32_t lmax=0 ; lmax<=7 ; lmax++) {
double VGL0[5][ldv[lmax]];
double VGL1[5][ldv[lmax]];
memset(&L0[0][0], 0, sizeof(L0));
memset(&L1[0][0], 0, sizeof(L1));
memset(&VGL0[0][0], 0, sizeof(VGL0));
memset(&VGL1[0][0], 0, sizeof(VGL1));
rc = qmckl_ao_polynomial_transp_vgl_doc (context, X, R, lmax, &n, &(L0[0][0]), ldl, &(VGL0[0][0]), ldv[lmax]);
assert (rc == QMCKL_SUCCESS);
rc = qmckl_ao_polynomial_transp_vgl_hpc (context, X, R, lmax, &n, &(L1[0][0]), ldl, &(VGL1[0][0]), ldv[lmax]);
assert (rc == QMCKL_SUCCESS);
printf("lmax=%d\n", lmax);
for (int32_t l=0 ; l<n ; ++l) {
for (int32_t k=0 ; k<3 ; ++k) {
printf("L[%d][%d] = %d %d\n", l, k, L0[l][k], L1[l][k]);
assert( L0[l][k] == L1[l][k] );
}
}
for (int32_t k=0 ; k<5 ; ++k) {
for (int32_t l=0 ; l<n ; ++l) {
printf("VGL[%d][%d] = %e %e %e\n", k, l, VGL0[k][l], VGL1[k][l], VGL0[k][l]-VGL1[k][l]);
assert( fabs(1.-(VGL0[k][l]+1.e-100)/(VGL1[k][l]+1.e-100)) < 1.e-15 );
}
}
}
}
#+end_src
* Combining radial and polynomial parts
** Determination of nucleus ranges
The range of a nucleus is defined as the distance beyond which all
the AOs are zero, up to a given precision. For all possible numbers
of bits of precision (1-53), a range is given.
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_nucleus_range_gaussian(
const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int64_t prim_num,
const int64_t nucl_num,
const double* nucl_coord,
const int64_t* nucleus_index,
const int64_t* nucleus_shell_num,
const int32_t* nucleus_max_ang_mom,
const int64_t* shell_prim_index,
const int64_t* shell_prim_num,
const int32_t* shell_ang_mom,
const double* ao_factor,
const double* ao_expo,
const double* coefficient_normalized,
double* const nucleus_range);
#+end_src
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_nucleus_range_gaussian(context, &
ao_num, shell_num, prim_num, nucl_num, &
nucl_coord, nucleus_index, nucleus_shell_num, &
nucleus_max_ang_mom, shell_prim_index, shell_prim_num, shell_ang_mom, &
ao_factor, expo, coef_normalized, nucleus_range) &
bind(C) result(info)
use qmckl_constants
use qmckl, only: qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: ao_num
integer (c_int64_t) , intent(in) , value :: shell_num
integer (c_int64_t) , intent(in) , value :: prim_num
integer (c_int64_t) , intent(in) , value :: nucl_num
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num)
integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num)
integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num)
integer (c_int64_t) , intent(in) :: shell_prim_index(shell_num)
integer (c_int64_t) , intent(in) :: shell_prim_num(shell_num)
integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num)
real (c_double ) , intent(in) :: ao_factor(ao_num)
real (c_double ) , intent(in) :: expo(prim_num)
real (c_double ) , intent(in) :: coef_normalized(prim_num)
real (c_double ) , intent(out) :: nucleus_range(nucl_num,53)
integer(qmckl_exit_code) :: info
double precision :: e_coord(3), n_coord(3)
integer*8 :: n_poly, iprim, iprim_start, iprim_end
integer :: l, il, k, iprecision
integer*8 :: ipoint, inucl, ishell
integer*8 :: ishell_start, ishell_end
integer :: lstart(0:20)
double precision :: shell_vgl(3)
double precision :: x, y, z, r2, ar2, two_a
double precision :: vmax, cutoff, v
double precision, allocatable :: poly_vgl(:,:), ao_vgl(:,:)
integer , allocatable :: powers(:,:), ao_index(:)
allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num))
! Pre-computed data
do l=0,20
lstart(l) = l*(l+1)*(l+2)/6 +1
end do
k=1
do inucl=1,nucl_num
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
l = shell_ang_mom(ishell)
ao_index(ishell) = k
k = k + lstart(l+1) - lstart(l)
end do
end do
info = QMCKL_SUCCESS
n_coord(1) = 0.d0
n_coord(2) = 0.d0
n_coord(3) = 0.d0
e_coord(2) = 0.d0
e_coord(3) = 0.d0
nucleus_range = 50.d0
do inucl=1,nucl_num
x = 50.d0
do iprecision = 53,2,-1
cutoff = 1.d0 / ( 2.d0** (iprecision-2) )
vmax = 0.d0
do while ( (vmax < cutoff) .and. (x > 0.d0) )
x = x - .1d0
vmax = 0.d0
e_coord(1) = x
r2 = x*x
! Compute polynomials
info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, &
nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, &
poly_vgl, 5_8)
! Loop over shells
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
shell_vgl(1) = 0.d0
shell_vgl(2) = 0.d0
shell_vgl(3) = 0.d0
iprim_start = shell_prim_index(ishell) + 1
iprim_end = shell_prim_index(ishell) + shell_prim_num(ishell)
do iprim = iprim_start, iprim_end
ar2 = expo(iprim)*r2
v = coef_normalized(iprim) * dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
shell_vgl(1) = shell_vgl(1) + v
shell_vgl(2) = shell_vgl(2) + two_a * x
shell_vgl(3) = shell_vgl(3) + two_a * (3.d0 - 2.d0*ar2)
end do
k = ao_index(ishell)
l = shell_ang_mom(ishell)
do il = lstart(l), lstart(l+1)-1
vmax = max(vmax, poly_vgl(1,il) * shell_vgl(1) * ao_factor(k))
vmax = max(vmax, ( poly_vgl(2,il) * shell_vgl(1) + poly_vgl(1,il) * shell_vgl(2) ) * ao_factor(k))
vmax = max(vmax, ( poly_vgl(5,il) * shell_vgl(3) + poly_vgl(1,il) * shell_vgl(3) + &
2.d0 * (poly_vgl(2,il) * shell_vgl(2) ) ) * ao_factor(k) )
k = k+1
end do
end do
end do
nucleus_range(inucl,iprecision) = x
end do
end do
deallocate(poly_vgl, powers)
end function qmckl_compute_nucleus_range_gaussian
#+end_src
** Values only
:PROPERTIES:
:Name: qmckl_compute_ao_value
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
*** Unoptimized version
#+NAME: qmckl_ao_value_args_doc
| Variable | Type | In/Out | Description |
|-----------------------+-----------------------------------+--------+----------------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~ao_num~ | ~int64_t~ | in | Number of AOs |
| ~shell_num~ | ~int64_t~ | in | Number of shells |
| ~point_num~ | ~int64_t~ | in | Number of points |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~coord~ | ~double[3][point_num]~ | in | Coordinates |
| ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus |
| ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus |
| ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero |
| ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus |
| ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell |
| ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs |
| ~shell_vgl~ | ~double[point_num][5][shell_num]~ | in | Value, gradients and Laplacian of the shells |
| ~ao_value~ | ~double[point_num][ao_num]~ | out | Values of the AOs |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_ao_value_doc(context, &
ao_num, shell_num, point_num, nucl_num, &
coord, nucl_coord, nucleus_index, nucleus_shell_num, &
nucleus_range, nucleus_max_ang_mom, shell_ang_mom, &
ao_factor, shell_vgl, ao_value) &
bind(C) result(info)
use qmckl_constants
use qmckl, only: qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: ao_num
integer (c_int64_t) , intent(in) , value :: shell_num
integer (c_int64_t) , intent(in) , value :: point_num
integer (c_int64_t) , intent(in) , value :: nucl_num
real (c_double ) , intent(in) :: coord(point_num,3)
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num)
integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num)
real (c_double ) , intent(in) :: nucleus_range(nucl_num)
integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num)
integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num)
real (c_double ) , intent(in) :: ao_factor(ao_num)
real (c_double ) , intent(in) :: shell_vgl(shell_num,5,point_num)
real (c_double ) , intent(out) :: ao_value(ao_num,point_num)
integer(qmckl_exit_code) :: info
double precision :: e_coord(3), n_coord(3)
integer*8 :: n_poly
integer :: l, il, k
integer*8 :: ipoint, inucl, ishell
integer*8 :: ishell_start, ishell_end
integer :: lstart(0:20)
double precision :: x, y, z, r2
double precision :: cutoff
double precision, allocatable :: poly_vgl(:,:)
integer , allocatable :: powers(:,:), ao_index(:)
allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num))
! Pre-computed data
do l=0,20
lstart(l) = l*(l+1)*(l+2)/6 +1
end do
k=1
do inucl=1,nucl_num
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
l = shell_ang_mom(ishell)
ao_index(ishell) = k
k = k + lstart(l+1) - lstart(l)
end do
end do
info = QMCKL_SUCCESS
! Don't compute polynomials when the radial part is zero.
<<fortran_cutoff>>
do ipoint = 1, point_num
e_coord(1) = coord(ipoint,1)
e_coord(2) = coord(ipoint,2)
e_coord(3) = coord(ipoint,3)
ao_value(:,ipoint) = 0.d0
do inucl=1,nucl_num
n_coord(1) = nucl_coord(inucl,1)
n_coord(2) = nucl_coord(inucl,2)
n_coord(3) = nucl_coord(inucl,3)
! Test if the point is in the range of the nucleus
x = e_coord(1) - n_coord(1)
y = e_coord(2) - n_coord(2)
z = e_coord(3) - n_coord(3)
r2 = x*x + y*y + z*z
if (r2 > cutoff*nucleus_range(inucl)) then
cycle
end if
! Compute polynomials
info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, &
nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, &
poly_vgl, 5_8)
! Loop over shells
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
k = ao_index(ishell)
l = shell_ang_mom(ishell)
do il = lstart(l), lstart(l+1)-1
! Value
ao_value(k,ipoint) = &
poly_vgl(1,il) * shell_vgl(ishell,1,ipoint) * ao_factor(k)
k = k+1
end do
end do
end do
end do
deallocate(poly_vgl, powers)
end function qmckl_compute_ao_value_doc
#+end_src
*** HPC version
#+NAME: qmckl_ao_value_args_hpc_gaussian
| Variable | Type | In/Out | Description |
|-----------------------+-----------------------------+--------+----------------------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~ao_num~ | ~int64_t~ | in | Number of AOs |
| ~shell_num~ | ~int64_t~ | in | Number of shells |
| ~prim_num~ | ~int64_t~ | in | Number of primitives |
| ~point_num~ | ~int64_t~ | in | Number of points |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~coord~ | ~double[3][point_num]~ | in | Coordinates |
| ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus |
| ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus |
| ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero |
| ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus |
| ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell |
| ~shell_prim_index~ | ~int64_t[shell_num]~ | in | Index of the 1st primitive of each shell |
| ~shell_prim_num~ | ~int64_t[shell_num]~ | in | Number of primitives per shell |
| ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs |
| ~ao_expo~ | ~double[prim_num]~ | in | Value, gradients and Laplacian of the shells |
| ~coef_normalized~ | ~double[prim_num]~ | in | Value, gradients and Laplacian of the shells |
| ~ao_value~ | ~double[point_num][ao_num]~ | out | Values of the AOs |
#+NAME:ao_value_constants
#+begin_src c :exports none
int32_t lstart[32] __attribute__((aligned(64)));
for (int32_t l=0 ; l<32 ; ++l) {
lstart[l] = l*(l+1)*(l+2)/6;
}
int64_t ao_index[shell_num+1] __attribute__((aligned(64)));
int64_t size_max = 0;
int64_t prim_max = 0;
int64_t shell_max = 0;
{
int64_t k=0;
for (int inucl=0 ; inucl < nucl_num ; ++inucl) {
prim_max = prim_num_per_nucleus[inucl] > prim_max ?
prim_num_per_nucleus[inucl] : prim_max;
shell_max = nucleus_shell_num[inucl] > shell_max ?
nucleus_shell_num[inucl] : shell_max;
const int64_t ishell_start = nucleus_index[inucl];
const int64_t ishell_end = nucleus_index[inucl] + nucleus_shell_num[inucl];
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
const int l = shell_ang_mom[ishell];
ao_index[ishell] = k;
k += lstart[l+1] - lstart[l];
size_max = size_max < lstart[l+1] ? lstart[l+1] : size_max;
}
}
ao_index[shell_num] = ao_num+1;
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
/* Don't compute polynomials when the radial part is zero. */
const int precision = ctx->numprec.precision;
const double cutoff = log( (double) ( ((uint64_t) 1) << (precision-2) ) );
const bool double_precision = precision > 22;
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
#ifdef HAVE_HPC
qmckl_exit_code
qmckl_compute_ao_value_hpc_gaussian (const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int32_t* restrict prim_num_per_nucleus,
const int64_t point_num,
const int64_t nucl_num,
const double* restrict coord,
const double* restrict nucl_coord,
const int64_t* restrict nucleus_index,
const int64_t* restrict nucleus_shell_num,
const double* nucleus_range,
const int32_t* restrict nucleus_max_ang_mom,
const int32_t* restrict shell_ang_mom,
const double* restrict ao_factor,
const qmckl_matrix expo_per_nucleus,
const qmckl_tensor coef_per_nucleus,
double* restrict const ao_value )
{
<<ao_value_constants>>
#ifdef HAVE_OPENMP
#pragma omp parallel if (point_num > 16)
#endif
{
qmckl_exit_code rc;
double ar2[prim_max] __attribute__((aligned(64)));
float ar2_sp[prim_max] __attribute__((aligned(64)));
int32_t powers[3*size_max] __attribute__((aligned(64)));
double poly_vgl[5*size_max] __attribute__((aligned(64)));
double exp_mat[prim_max] __attribute__((aligned(64)));
float exp_mat_sp[prim_max] __attribute__((aligned(64)));
double ce_mat[shell_max] __attribute__((aligned(64)));
int32_t (*coef_mat_sparse_idx)[shell_max][prim_max+1] __attribute__((aligned(64))) =
malloc(nucl_num * sizeof (*coef_mat_sparse_idx));
double (*coef_mat_sparse)[shell_max][prim_max+1] __attribute__((aligned(64))) =
malloc(nucl_num * sizeof (*coef_mat_sparse));
for (int i=0 ; i<nucl_num ; ++i) {
for (int j=0 ; j<shell_max; ++j) {
int l=1;
for (int k=0 ; k<prim_max; ++k) {
const double c = qmckl_ten3(coef_per_nucleus,k, j, i);
if (c != 0.) {
coef_mat_sparse_idx[i][j][l] = k;
coef_mat_sparse[i][j][l] = c;
l+=1;
}
}
coef_mat_sparse_idx[i][j][0] = l;
}
}
#ifdef HAVE_OPENMP
#pragma omp for schedule(guided)
#endif
for (int64_t ipoint=0 ; ipoint < point_num ; ++ipoint) {
/*
double* const ptr = &ao_value[ipoint*ao_num];
for (size_t k=0 ; k<ao_num ; ++k) {
ptr[k] = 0.;
}
,*/
memset(&ao_value[ipoint*ao_num], 0, ao_num*sizeof(double));
const double e_coord[3] __attribute__((aligned(64))) =
{ coord[ipoint],
coord[ipoint + point_num],
coord[ipoint + 2*point_num] };
for (int64_t inucl=0 ; inucl < nucl_num ; ++inucl) {
const double n_coord[3] __attribute__((aligned(64))) =
{ nucl_coord[inucl],
nucl_coord[inucl + nucl_num],
nucl_coord[inucl + 2*nucl_num] };
/* Shift to avoid having exact zeros at the nodes of the AOs */
const double shift = 1.e-20;
const double x = e_coord[0] - n_coord[0];
const double y = e_coord[1] - n_coord[1];
const double z = e_coord[2] - n_coord[2];
const double x2 = x*x;
const double y2 = y*y;
const double z2 = z*z;
const double r2 = x2 + y2 + z2;
/* Test if the point is in the range of the nucleus */
if (r2 > cutoff * nucleus_range[inucl]) {
continue;
}
int64_t n_poly;
switch (nucleus_max_ang_mom[inucl]) {
case 0:
break;
case 1:
poly_vgl[0] = 1.;
poly_vgl[1] = x;
poly_vgl[2] = y;
poly_vgl[3] = z;
break;
case 2:
poly_vgl[0] = 1.;
poly_vgl[1] = x+shift;
poly_vgl[2] = y+shift;
poly_vgl[3] = z+shift;
poly_vgl[4] = x2;
poly_vgl[5] = x*y;
poly_vgl[6] = x*z;
poly_vgl[7] = y2;
poly_vgl[8] = y*z;
poly_vgl[9] = z2;
break;
default:
rc = qmckl_ao_polynomial_transp_vgl_hpc_inline(context, e_coord, n_coord,
nucleus_max_ang_mom[inucl],
&n_poly, powers, (int64_t) 3,
poly_vgl, size_max);
assert (rc == QMCKL_SUCCESS);
break;
}
/* Compute all exponents */
int64_t nidx = 0;
if (double_precision) {
for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) {
const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2;
if (v <= cutoff) {
ar2[iprim] = v;
++nidx;
} else {
break;
}
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
exp_mat[iprim] = exp(-ar2[iprim]);
}
} else {
for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) {
const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2;
if (v <= cutoff) {
ar2_sp[iprim] = (float) v;
++nidx;
} else {
break;
}
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
exp_mat_sp[iprim] = expf(-ar2_sp[iprim]);
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
exp_mat[iprim] = exp_mat_sp[iprim];
}
}
for (int i=0 ; i<nucleus_shell_num[inucl] ; ++i) {
ce_mat[i] = 0.;
const int32_t* restrict idx = &(coef_mat_sparse_idx[inucl][i][0]);
const double* restrict v = &(coef_mat_sparse[inucl][i][0]);
for (int l=1 ; l<coef_mat_sparse_idx[inucl][i][0]; ++l) {
const int k = idx[l];
if (k >= nidx) break;
ce_mat[i] = ce_mat[i] + v[l] * exp_mat[k];
}
}
const int64_t ishell_start = nucleus_index[inucl];
const int64_t ishell_end = nucleus_index[inucl] + nucleus_shell_num[inucl];
const int64_t ipoint_ao_num = ipoint*ao_num;
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
const double s1 = ce_mat[ishell-ishell_start];
if (s1 == 0.0) {
continue;
}
const int64_t k = ao_index[ishell];
double* restrict const ao_value_1 = ao_value + ipoint_ao_num + k;
const int32_t l = shell_ang_mom[ishell];
const int32_t n = lstart[l+1]-lstart[l];
double* restrict poly_vgl_1 = NULL;
if (nidx > 0) {
const double* restrict f = ao_factor + k;
const int64_t idx = lstart[l];
poly_vgl_1 = &(poly_vgl[idx]);
switch (n) {
case 1:
ao_value_1[0] = s1 * f[0];
break;
case 3:
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int il=0 ; il<3 ; ++il) {
ao_value_1[il] = poly_vgl_1[il] * s1 * f[il];
}
break;
case(6):
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int il=0 ; il<6 ; ++il) {
ao_value_1[il] = poly_vgl_1[il] * s1 * f[il];
}
break;
default:
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int il=0 ; il<n ; ++il) {
ao_value_1[il] = poly_vgl_1[il] * s1 * f[il];
}
break;
}
}
}
}
}
free(coef_mat_sparse_idx);
free(coef_mat_sparse);
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
*** Interfaces
# #+CALL: generate_c_header(table=qmckl_ao_value_args_doc,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_value"))
# (Commented because the header needs to go into h_private_func)
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_ao_value_doc (
const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int64_t point_num,
const int64_t nucl_num,
const double* coord,
const double* nucl_coord,
const int64_t* nucleus_index,
const int64_t* nucleus_shell_num,
const double* nucleus_range,
const int32_t* nucleus_max_ang_mom,
const int32_t* shell_ang_mom,
const double* ao_factor,
const double* shell_vgl,
double* const ao_value );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
#ifdef HAVE_HPC
qmckl_exit_code qmckl_compute_ao_value_hpc_gaussian (
const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int32_t* prim_num_per_nucleus,
const int64_t point_num,
const int64_t nucl_num,
const double* coord,
const double* nucl_coord,
const int64_t* nucleus_index,
const int64_t* nucleus_shell_num,
const double* nucleus_range,
const int32_t* nucleus_max_ang_mom,
const int32_t* shell_ang_mom,
const double* ao_factor,
const qmckl_matrix expo_per_nucleus,
const qmckl_tensor coef_per_nucleus,
double* const ao_value );
#endif
#+end_src
**** Provide :noexport:
#+CALL: write_provider_header( group="ao_basis", data="ao_value" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_ao_value(qmckl_context context);
#+end_src
#+CALL: write_provider_pre( group="ao_basis", data="ao_value", dimension="ctx->ao_basis.ao_num * ctx->point.num")
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_ao_value(qmckl_context context)
{
qmckl_exit_code rc = QMCKL_SUCCESS;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_ao_basis_ao_value",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->ao_basis.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_ao_basis_ao_value",
NULL);
}
/* Compute if necessary */
if (ctx->point.date > ctx->ao_basis.ao_value_date) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.ao_num * ctx->point.num * sizeof(double);
if (ctx->ao_basis.ao_value != NULL) {
qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero;
rc = qmckl_get_malloc_info(context, ctx->ao_basis.ao_value, &mem_info_test);
/* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the
memory was not allocated with qmckl_malloc */
if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) {
rc = qmckl_free(context, ctx->ao_basis.ao_value);
assert (rc == QMCKL_SUCCESS);
ctx->ao_basis.ao_value = NULL;
}
}
/* Allocate array */
if (ctx->ao_basis.ao_value == NULL) {
double* ao_value = (double*) qmckl_malloc(context, mem_info);
if (ao_value == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_ao_basis_ao_value",
NULL);
}
ctx->ao_basis.ao_value = ao_value;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
if (ctx->ao_basis.ao_vgl_date == ctx->point.date) {
// ao_vgl has been computed at this step: Just copy the data.
double * v = &(ctx->ao_basis.ao_value[0]);
double * vgl = &(ctx->ao_basis.ao_vgl[0]);
for (int i=0 ; i<ctx->point.num ; ++i) {
for (int k=0 ; k<ctx->ao_basis.ao_num ; ++k) {
v[k] = vgl[k];
}
v += ctx->ao_basis.ao_num;
vgl += ctx->ao_basis.ao_num * 5;
}
} else {
#ifdef HAVE_HPC
if (ctx->ao_basis.type == 'G') {
rc = qmckl_compute_ao_value_hpc_gaussian(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->ao_basis.prim_num_per_nucleus,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.expo_per_nucleus,
ctx->ao_basis.coef_per_nucleus,
ctx->ao_basis.ao_value);
/*
} else if (ctx->ao_basis.type == 'S') {
rc = qmck_compute_ao_value_hpc_slater(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->ao_basis.prim_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.shell_prim_index,
ctx->ao_basis.shell_prim_num,
ctx->ao_basis.ao_factor,
ctx->ao_basis.exponent,
ctx->ao_basis.coefficient_normalized,
ctx->ao_basis.ao_value);
,*/
} else {
/* Provide required data */
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL);
}
rc = qmckl_compute_ao_value_doc(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.shell_vgl,
ctx->ao_basis.ao_value);
}
#else
/* Provide required data */
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL);
}
rc = qmckl_compute_ao_value_doc(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.shell_vgl,
ctx->ao_basis.ao_value);
#endif
}
#+end_src
#+CALL: write_provider_post( group="ao_basis", data="ao_value" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->ao_basis.ao_value_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none
import numpy as np
from math import sqrt
h0 = 1.e-4
def f(a,x,y):
return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )
elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] )
elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] )
nucl_1 = np.array( [ -2.302574592081335e+00, -3.542027060505035e-01, -5.334129934317614e-02] )
#double ao_value[prim_num][5][elec_num];
x = elec_26_w1 ; y = nucl_1
a = [( 4.0382999999999998e+02, 1.4732000000000000e-03 * 5.9876577632594533e+04),
( 1.2117000000000000e+02, 1.2672500000000000e-02 * 7.2836806319891484e+03),
( 4.6344999999999999e+01, 5.8045100000000002e-02 * 1.3549226646722386e+03),
( 1.9721000000000000e+01, 1.7051030000000000e-01 * 3.0376315094739988e+02),
( 8.8623999999999992e+00, 3.1859579999999998e-01 * 7.4924579607137730e+01),
( 3.9962000000000000e+00, 3.8450230000000002e-01 * 1.8590543353806009e+01),
( 1.7636000000000001e+00, 2.7377370000000001e-01 * 4.4423176930919421e+00),
( 7.0618999999999998e-01, 7.4396699999999996e-02 * 8.9541051939952665e-01)]
norm = sqrt(3.)
# x^2 * g(r)
print ( "[26][0][219] : %25.15e"%(fx(a,x,y)) )
print ( "[26][1][219] : %25.15e"%(df(a,x,y,1)) )
print ( "[26][2][219] : %25.15e"%(df(a,x,y,2)) )
print ( "[26][3][219] : %25.15e"%(df(a,x,y,3)) )
print ( "[26][4][219] : %25.15e"%(lf(a,x,y)) )
print ( "[26][0][220] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[1] - y[1]) ))
print ( "[26][1][220] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[1] - y[1]) + norm*f(a,x,y) * (x[1] - y[1])) )
print ( "[26][0][221] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[2] - y[2])) )
print ( "[26][1][221] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[2] - y[2]) + norm*f(a,x,y) * (x[2] - y[2])) )
print ( "[26][0][222] : %25.15e"%(f(a,x,y) * (x[1] - y[1]) * (x[1] - y[1])) )
print ( "[26][1][222] : %25.15e"%(df(a,x,y,1)* (x[1] - y[1]) * (x[1] - y[1])) )
print ( "[26][0][223] : %25.15e"%(norm*f(a,x,y) * (x[1] - y[1]) * (x[2] - y[2])) )
print ( "[26][1][223] : %25.15e"%(norm*df(a,x,y,1)* (x[1] - y[1]) * (x[2] - y[2])) )
print ( "[26][0][224] : %25.15e"%(f(a,x,y) * (x[2] - y[2]) * (x[2] - y[2])) )
print ( "[26][1][224] : %25.15e"%(df(a,x,y,1)* (x[2] - y[2]) * (x[2] - y[2])) )
#+end_src
#+RESULTS:
#+begin_src c :tangle (eval c_test) :exports none
{
#define shell_num chbrclf_shell_num
#define ao_num chbrclf_ao_num
double* elec_coord = &(chbrclf_elec_coord[0][0][0]);
assert(qmckl_electron_provided(context));
int64_t point_num = elec_num;
rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3);
assert(rc == QMCKL_SUCCESS);
double ao_value[point_num][ao_num];
rc = qmckl_get_ao_basis_ao_value(context, &(ao_value[0][0]),
(int64_t) point_num*ao_num);
assert (rc == QMCKL_SUCCESS);
printf("\n");
printf(" ao_value ao_value[26][219] %25.15e\n", ao_value[26][219]);
printf(" ao_value ao_value[26][220] %25.15e\n", ao_value[26][220]);
printf(" ao_value ao_value[26][221] %25.15e\n", ao_value[26][221]);
printf(" ao_value ao_value[26][222] %25.15e\n", ao_value[26][222]);
printf(" ao_value ao_value[26][223] %25.15e\n", ao_value[26][223]);
printf(" ao_value ao_value[26][224] %25.15e\n", ao_value[26][224]);
printf("\n");
printf("%e %e\n", ao_value[26][219], 1.020298798341620e-08);
assert( fabs(ao_value[26][219] - ( 1.020298798341620e-08)) < 1.e-14 );
assert( fabs(ao_value[26][220] - ( 1.516643537739178e-08)) < 1.e-14 );
assert( fabs(ao_value[26][221] - ( -4.686370882518819e-09)) < 1.e-14 );
assert( fabs(ao_value[26][222] - ( 7.514816980753531e-09)) < 1.e-14 );
assert( fabs(ao_value[26][223] - ( -4.021908374204471e-09)) < 1.e-14 );
assert( fabs(ao_value[26][224] - ( 7.175045873560788e-10)) < 1.e-14 );
}
#+end_src
** Value, gradients, Laplacian
:PROPERTIES:
:Name: qmckl_compute_ao_vgl
:CRetType: qmckl_exit_code
:FRetType: qmckl_exit_code
:END:
*** Reference version
#+NAME: qmckl_ao_vgl_args_doc
| Variable | Type | In/Out | Description |
|-----------------------+-----------------------------------+--------+----------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~ao_num~ | ~int64_t~ | in | Number of AOs |
| ~shell_num~ | ~int64_t~ | in | Number of shells |
| ~point_num~ | ~int64_t~ | in | Number of points |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~coord~ | ~double[3][point_num]~ | in | Coordinates |
| ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus |
| ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus |
| ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero |
| ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus |
| ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell |
| ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs |
| ~shell_vgl~ | ~double[point_num][5][shell_num]~ | in | Value, gradients and Laplacian of the shells |
| ~ao_vgl~ | ~double[point_num][5][ao_num]~ | out | Value, gradients and Laplacian of the AOs |
#+begin_src f90 :comments org :tangle (eval f) :noweb yes
function qmckl_compute_ao_vgl_doc(context, &
ao_num, shell_num, point_num, nucl_num, &
coord, nucl_coord, nucleus_index, nucleus_shell_num, &
nucleus_range, nucleus_max_ang_mom, shell_ang_mom, &
ao_factor, shell_vgl, ao_vgl) &
bind(C) result(info)
use qmckl_constants
use qmckl, only : qmckl_ao_polynomial_vgl, qmckl_get_numprec_precision
implicit none
integer (qmckl_context), intent(in) , value :: context
integer (c_int64_t) , intent(in) , value :: ao_num
integer (c_int64_t) , intent(in) , value :: shell_num
integer (c_int64_t) , intent(in) , value :: point_num
integer (c_int64_t) , intent(in) , value :: nucl_num
real (c_double ) , intent(in) :: coord(point_num,3)
real (c_double ) , intent(in) :: nucl_coord(nucl_num,3)
integer (c_int64_t) , intent(in) :: nucleus_index(nucl_num)
integer (c_int64_t) , intent(in) :: nucleus_shell_num(nucl_num)
real (c_double ) , intent(in) :: nucleus_range(nucl_num)
integer (c_int32_t) , intent(in) :: nucleus_max_ang_mom(nucl_num)
integer (c_int32_t) , intent(in) :: shell_ang_mom(shell_num)
real (c_double ) , intent(in) :: ao_factor(ao_num)
real (c_double ) , intent(in) :: shell_vgl(shell_num,5,point_num)
real (c_double ) , intent(out) :: ao_vgl(ao_num,5,point_num)
integer(qmckl_exit_code) :: info
double precision :: e_coord(3), n_coord(3)
integer*8 :: n_poly
integer :: l, il, k
integer*8 :: ipoint, inucl, ishell
integer*8 :: ishell_start, ishell_end
integer :: lstart(0:20)
double precision :: x, y, z, r2
double precision :: cutoff
double precision, allocatable :: poly_vgl(:,:)
integer , allocatable :: powers(:,:), ao_index(:)
allocate(poly_vgl(5,ao_num), powers(3,ao_num), ao_index(ao_num))
! Pre-computed data
do l=0,20
lstart(l) = l*(l+1)*(l+2)/6 +1
end do
k=1
do inucl=1,nucl_num
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
l = shell_ang_mom(ishell)
ao_index(ishell) = k
k = k + lstart(l+1) - lstart(l)
end do
end do
info = QMCKL_SUCCESS
! Don't compute polynomials when the radial part is zero.
<<fortran_cutoff>>
do ipoint = 1, point_num
e_coord(1) = coord(ipoint,1)
e_coord(2) = coord(ipoint,2)
e_coord(3) = coord(ipoint,3)
ao_vgl(:,:,ipoint) = 0.d0
do inucl=1,nucl_num
n_coord(1) = nucl_coord(inucl,1)
n_coord(2) = nucl_coord(inucl,2)
n_coord(3) = nucl_coord(inucl,3)
! Test if the point is in the range of the nucleus
x = e_coord(1) - n_coord(1)
y = e_coord(2) - n_coord(2)
z = e_coord(3) - n_coord(3)
r2 = x*x + y*y + z*z
if (r2 > cutoff*nucleus_range(inucl)) then
cycle
end if
! Compute polynomials
info = qmckl_ao_polynomial_vgl(context, e_coord, n_coord, &
nucleus_max_ang_mom(inucl), n_poly, powers, 3_8, &
poly_vgl, 5_8)
! Loop over shells
ishell_start = nucleus_index(inucl) + 1
ishell_end = nucleus_index(inucl) + nucleus_shell_num(inucl)
do ishell = ishell_start, ishell_end
k = ao_index(ishell)
l = shell_ang_mom(ishell)
do il = lstart(l), lstart(l+1)-1
! Value
ao_vgl(k,1,ipoint) = &
poly_vgl(1,il) * shell_vgl(ishell,1,ipoint) * ao_factor(k)
! Grad_x
ao_vgl(k,2,ipoint) = ( &
poly_vgl(2,il) * shell_vgl(ishell,1,ipoint) + &
poly_vgl(1,il) * shell_vgl(ishell,2,ipoint) &
) * ao_factor(k)
! Grad_y
ao_vgl(k,3,ipoint) = ( &
poly_vgl(3,il) * shell_vgl(ishell,1,ipoint) + &
poly_vgl(1,il) * shell_vgl(ishell,3,ipoint) &
) * ao_factor(k)
! Grad_z
ao_vgl(k,4,ipoint) = ( &
poly_vgl(4,il) * shell_vgl(ishell,1,ipoint) + &
poly_vgl(1,il) * shell_vgl(ishell,4,ipoint) &
) * ao_factor(k)
! Lapl_z
ao_vgl(k,5,ipoint) = ( &
poly_vgl(5,il) * shell_vgl(ishell,1,ipoint) + &
poly_vgl(1,il) * shell_vgl(ishell,5,ipoint) + &
2.d0 * ( &
poly_vgl(2,il) * shell_vgl(ishell,2,ipoint) + &
poly_vgl(3,il) * shell_vgl(ishell,3,ipoint) + &
poly_vgl(4,il) * shell_vgl(ishell,4,ipoint) ) &
) * ao_factor(k)
k = k+1
end do
end do
end do
end do
deallocate(poly_vgl, powers)
end function qmckl_compute_ao_vgl_doc
#+end_src
*** HPC version
#+NAME: qmckl_ao_vgl_args_hpc_gaussian
| Variable | Type | In/Out | Description |
|-----------------------+--------------------------------+--------+-------------------------------------------|
| ~context~ | ~qmckl_context~ | in | Global state |
| ~ao_num~ | ~int64_t~ | in | Number of AOs |
| ~shell_num~ | ~int64_t~ | in | Number of shells |
| ~prim_num~ | ~int64_t~ | in | Number of primitives |
| ~point_num~ | ~int64_t~ | in | Number of points |
| ~nucl_num~ | ~int64_t~ | in | Number of nuclei |
| ~coord~ | ~double[3][point_num]~ | in | Coordinates |
| ~nucl_coord~ | ~double[3][nucl_num]~ | in | Nuclear coordinates |
| ~nucleus_index~ | ~int64_t[nucl_num]~ | in | Index of the 1st shell of each nucleus |
| ~nucleus_shell_num~ | ~int64_t[nucl_num]~ | in | Number of shells per nucleus |
| ~nucleus_range~ | ~double[nucl_num]~ | in | Range beyond which all is zero |
| ~nucleus_max_ang_mom~ | ~int32_t[nucl_num]~ | in | Maximum angular momentum per nucleus |
| ~shell_ang_mom~ | ~int32_t[shell_num]~ | in | Angular momentum of each shell |
| ~shell_prim_index~ | ~int64_t[shell_num]~ | in | Index of the 1st primitive of each shell |
| ~shell_prim_num~ | ~int64_t[shell_num]~ | in | Number of primitives per shell |
| ~ao_factor~ | ~double[ao_num]~ | in | Normalization factor of the AOs |
| ~ao_expo~ | ~double[prim_num]~ | in | Exponents of the primitives |
| ~coef_normalized~ | ~double[prim_num]~ | in | Normalized coefficients of the primitives |
| ~ao_vgl~ | ~double[point_num][5][ao_num]~ | out | Value, gradients and Laplacian of the AOs |
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
#ifdef HAVE_HPC
qmckl_exit_code
qmckl_compute_ao_vgl_hpc_gaussian (
const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int32_t* restrict prim_num_per_nucleus,
const int64_t point_num,
const int64_t nucl_num,
const double* restrict coord,
const double* restrict nucl_coord,
const int64_t* restrict nucleus_index,
const int64_t* restrict nucleus_shell_num,
const double* nucleus_range,
const int32_t* restrict nucleus_max_ang_mom,
const int32_t* restrict shell_ang_mom,
const double* restrict ao_factor,
const qmckl_matrix expo_per_nucleus,
const qmckl_tensor coef_per_nucleus,
double* restrict const ao_vgl )
{
<<ao_value_constants>>
#ifdef HAVE_OPENMP
#pragma omp parallel if (point_num > 16)
#endif
{
qmckl_exit_code rc;
double ar2[prim_max] __attribute__((aligned(64)));
float ar2_sp[prim_max] __attribute__((aligned(64)));
int32_t powers[3*size_max] __attribute__((aligned(64)));
double exp_mat[prim_max][8] __attribute__((aligned(64))) ;
float exp_mat_sp[prim_max] __attribute__((aligned(64)));
double ce_mat[shell_max][8] __attribute__((aligned(64))) ;
int32_t (*coef_mat_sparse_idx)[shell_max][prim_max+1] __attribute__((aligned(64))) =
malloc(nucl_num * sizeof (*coef_mat_sparse_idx));
double (*coef_mat_sparse)[shell_max][prim_max+1] __attribute__((aligned(64))) =
malloc(nucl_num * sizeof (*coef_mat_sparse));
for (int i=0 ; i<nucl_num ; ++i) {
for (int j=0 ; j<shell_max; ++j) {
int l=1;
for (int k=0 ; k<prim_max; ++k) {
const double c = qmckl_ten3(coef_per_nucleus,k, j, i);
if (c != 0.) {
coef_mat_sparse_idx[i][j][l] = k;
coef_mat_sparse[i][j][l] = c;
l+=1;
}
}
coef_mat_sparse_idx[i][j][0] = l;
}
}
double poly_vgl_l1[4][4] __attribute__((aligned(64))) =
{{1.0, 0.0, 0.0, 0.0},
{0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 1.0, 0.0},
{0.0, 0.0, 0.0, 1.0}};
double poly_vgl_l2[5][10]__attribute__((aligned(64))) =
{{1., 0., 0., 0., 0., 0., 0., 0., 0., 0.},
{0., 1., 0., 0., 0., 0., 0., 0., 0., 0.},
{0., 0., 1., 0., 0., 0., 0., 0., 0., 0.},
{0., 0., 0., 1., 0., 0., 0., 0., 0., 0.},
{0., 0., 0., 0., 2., 0., 0., 2., 0., 2.}};
double poly_vgl[5][size_max] __attribute__((aligned(64)));
#ifdef HAVE_OPENMP
#pragma omp for
#endif
for (int64_t ipoint=0 ; ipoint < point_num ; ++ipoint) {
/*
double* const ptr = &ao_vgl[ipoint*5*ao_num];
for (size_t k=0 ; k<5*ao_num ; ++k) {
ptr[k] = 0.;
}
,*/
memset(&ao_vgl[ipoint*ao_num*5], 0, 5*ao_num*sizeof(double));
const double e_coord[3] __attribute__((aligned(64))) =
{ coord[ipoint],
coord[ipoint + point_num],
coord[ipoint + 2*point_num] };
for (int64_t inucl=0 ; inucl < nucl_num ; ++inucl) {
const double n_coord[3] __attribute__((aligned(64))) =
{ nucl_coord[inucl],
nucl_coord[inucl + nucl_num],
nucl_coord[inucl + 2*nucl_num] };
const double shift = 1.e-20;
const double x = e_coord[0] - n_coord[0];
const double y = e_coord[1] - n_coord[1];
const double z = e_coord[2] - n_coord[2];
const double x2 = x*x;
const double y2 = y*y;
const double z2 = z*z;
const double r2 = x2 + y2 + z2;
/* Test if the point is in the range of the nucleus */
if (r2 > cutoff * nucleus_range[inucl]) {
continue;
}
int64_t n_poly;
switch (nucleus_max_ang_mom[inucl]) {
case 0:
break;
case 1:
poly_vgl_l1[0][1] = x+shift;
poly_vgl_l1[0][2] = y+shift;
poly_vgl_l1[0][3] = z+shift;
break;
case 2:
poly_vgl_l2[0][1] = x+shift;
poly_vgl_l2[0][2] = y+shift;
poly_vgl_l2[0][3] = z+shift;
poly_vgl_l2[0][4] = x2+shift;
poly_vgl_l2[0][5] = x*y+shift;
poly_vgl_l2[0][6] = x*z+shift;
poly_vgl_l2[0][7] = y2+shift;
poly_vgl_l2[0][8] = y*z+shift;
poly_vgl_l2[0][9] = z2+shift;
poly_vgl_l2[1][4] = x+x;
poly_vgl_l2[1][5] = y;
poly_vgl_l2[1][6] = z;
poly_vgl_l2[2][5] = x;
poly_vgl_l2[2][7] = y+y;
poly_vgl_l2[2][8] = z;
poly_vgl_l2[3][6] = x;
poly_vgl_l2[3][8] = y;
poly_vgl_l2[3][9] = z+z;
break;
default:
rc = qmckl_ao_polynomial_transp_vgl_hpc_inline(context, e_coord, n_coord,
nucleus_max_ang_mom[inucl],
&n_poly, powers, (int64_t) 3,
&(poly_vgl[0][0]), size_max);
assert (rc == QMCKL_SUCCESS);
break;
}
/* Compute all exponents */
int64_t nidx = 0;
if (double_precision) {
for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) {
const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2;
if (v <= cutoff) {
ar2[iprim] = v;
++nidx;
} else {
break;
}
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
exp_mat[iprim][0] = exp(-ar2[iprim]);
}
} else {
for (int64_t iprim = 0 ; iprim < prim_num_per_nucleus[inucl] ; ++iprim) {
const double v = qmckl_mat(expo_per_nucleus, iprim, inucl) * r2;
if (v <= cutoff) {
ar2[iprim] = v;
ar2_sp[iprim] = (float) v;
++nidx;
} else {
break;
}
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
exp_mat_sp[iprim] = expf(-ar2_sp[iprim]);
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
exp_mat[iprim][0] = exp_mat_sp[iprim];
}
}
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int64_t iprim = 0 ; iprim < nidx ; ++iprim) {
double f = qmckl_mat(expo_per_nucleus, iprim, inucl) * exp_mat[iprim][0];
f = -f-f;
exp_mat[iprim][1] = f * x;
exp_mat[iprim][2] = f * y;
exp_mat[iprim][3] = f * z;
exp_mat[iprim][4] = f * (3.0 - 2.0 * ar2[iprim]);
}
/* --- */
// if (do_sparse) {
for (int i=0 ; i<nucleus_shell_num[inucl] ; ++i) {
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int j=0 ; j<8 ; ++j) {
ce_mat[i][j] = 0.;
}
const int32_t* restrict idx = &(coef_mat_sparse_idx[inucl][i][0]);
const double* restrict v = &(coef_mat_sparse[inucl][i][0]);
for (int l=1 ; l<idx[0]; ++l) {
const int k = idx[l];
if (k >= nidx) break;
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int j=0 ; j<8 ; ++j) {
ce_mat[i][j] = ce_mat[i][j] + v[l] * exp_mat[k][j];
}
}
}
const int64_t ishell_start = nucleus_index[inucl];
const int64_t ishell_end = nucleus_index[inucl] + nucleus_shell_num[inucl];
const int64_t ipoint_5_ao_num = ipoint*5*ao_num;
for (int64_t ishell = ishell_start ; ishell < ishell_end ; ++ishell) {
const double s1 = ce_mat[ishell-ishell_start][0];
const int64_t k = ao_index[ishell];
double* restrict const ao_vgl_1 = ao_vgl + ipoint_5_ao_num + k;
const int32_t l = shell_ang_mom[ishell];
const int32_t n = lstart[l+1]-lstart[l];
double* restrict const ao_vgl_2 = ao_vgl_1 + ao_num;
double* restrict const ao_vgl_3 = ao_vgl_1 + (ao_num<<1);
double* restrict const ao_vgl_4 = ao_vgl_1 + (ao_num<<1) + ao_num;
double* restrict const ao_vgl_5 = ao_vgl_1 + (ao_num<<2);
if (s1 == 0.0) {
/*
for (int64_t il=0 ; il<n ; ++il) {
ao_vgl_1[il] = 0.0;
ao_vgl_2[il] = 0.0;
ao_vgl_3[il] = 0.0;
ao_vgl_4[il] = 0.0;
ao_vgl_5[il] = 0.0;
}
,*/
continue;
}
const double s2 = ce_mat[ishell-ishell_start][1];
const double s3 = ce_mat[ishell-ishell_start][2];
const double s4 = ce_mat[ishell-ishell_start][3];
const double s5 = ce_mat[ishell-ishell_start][4];
double* restrict poly_vgl_1 = NULL;
double* restrict poly_vgl_2 = NULL;
double* restrict poly_vgl_3 = NULL;
double* restrict poly_vgl_4 = NULL;
double* restrict poly_vgl_5 = NULL;
if (nidx > 0) {
const double* restrict f = ao_factor + k;
const int64_t idx = lstart[l];
switch (nucleus_max_ang_mom[inucl]) {
case 0:
break;
case 1:
poly_vgl_1 = &(poly_vgl_l1[0][idx]);
poly_vgl_2 = &(poly_vgl_l1[1][idx]);
poly_vgl_3 = &(poly_vgl_l1[2][idx]);
poly_vgl_4 = &(poly_vgl_l1[3][idx]);
break;
case 2:
poly_vgl_1 = &(poly_vgl_l2[0][idx]);
poly_vgl_2 = &(poly_vgl_l2[1][idx]);
poly_vgl_3 = &(poly_vgl_l2[2][idx]);
poly_vgl_4 = &(poly_vgl_l2[3][idx]);
poly_vgl_5 = &(poly_vgl_l2[4][idx]);
break;
default:
poly_vgl_1 = &(poly_vgl[0][idx]);
poly_vgl_2 = &(poly_vgl[1][idx]);
poly_vgl_3 = &(poly_vgl[2][idx]);
poly_vgl_4 = &(poly_vgl[3][idx]);
poly_vgl_5 = &(poly_vgl[4][idx]);
}
switch (n) {
case 1:
ao_vgl_1[0] = s1 * f[0];
ao_vgl_2[0] = s2 * f[0];
ao_vgl_3[0] = s3 * f[0];
ao_vgl_4[0] = s4 * f[0];
ao_vgl_5[0] = s5 * f[0];
break;
case 3:
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int il=0 ; il<3 ; ++il) {
ao_vgl_1[il] = poly_vgl_1[il] * s1 * f[il];
ao_vgl_2[il] = (poly_vgl_2[il] * s1 + poly_vgl_1[il] * s2) * f[il];
ao_vgl_3[il] = (poly_vgl_3[il] * s1 + poly_vgl_1[il] * s3) * f[il];
ao_vgl_4[il] = (poly_vgl_4[il] * s1 + poly_vgl_1[il] * s4) * f[il];
ao_vgl_5[il] = (poly_vgl_1[il] * s5 +
2.0*(poly_vgl_2[il] * s2 +
poly_vgl_3[il] * s3 +
poly_vgl_4[il] * s4 )) * f[il];
}
break;
case 6:
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int il=0 ; il<6 ; ++il) {
ao_vgl_1[il] = poly_vgl_1[il] * s1 * f[il];
ao_vgl_2[il] = (poly_vgl_2[il] * s1 + poly_vgl_1[il] * s2) * f[il];
ao_vgl_3[il] = (poly_vgl_3[il] * s1 + poly_vgl_1[il] * s3) * f[il];
ao_vgl_4[il] = (poly_vgl_4[il] * s1 + poly_vgl_1[il] * s4) * f[il];
ao_vgl_5[il] = (poly_vgl_5[il] * s1 + poly_vgl_1[il] * s5 +
2.0*(poly_vgl_2[il] * s2 +
poly_vgl_3[il] * s3 +
poly_vgl_4[il] * s4 )) * f[il];
}
break;
default:
#ifdef HAVE_OPENMP
#pragma omp simd
#endif
for (int il=0 ; il<n ; ++il) {
ao_vgl_1[il] = poly_vgl_1[il] * s1 * f[il];
ao_vgl_2[il] = (poly_vgl_2[il] * s1 + poly_vgl_1[il] * s2) * f[il];
ao_vgl_3[il] = (poly_vgl_3[il] * s1 + poly_vgl_1[il] * s3) * f[il];
ao_vgl_4[il] = (poly_vgl_4[il] * s1 + poly_vgl_1[il] * s4) * f[il];
ao_vgl_5[il] = (poly_vgl_5[il] * s1 + poly_vgl_1[il] * s5 +
2.0*(poly_vgl_2[il] * s2 +
poly_vgl_3[il] * s3 +
poly_vgl_4[il] * s4 )) * f[il];
}
break;
}
/*
} else {
for (int64_t il=0 ; il<n ; ++il) {
ao_vgl_1[il] = 0.0;
ao_vgl_2[il] = 0.0;
ao_vgl_3[il] = 0.0;
ao_vgl_4[il] = 0.0;
ao_vgl_5[il] = 0.0;
}
,*/
}
}
}
}
free(coef_mat_sparse_idx);
free(coef_mat_sparse);
}
return QMCKL_SUCCESS;
}
#endif
#+end_src
*** Interfaces
# #+CALL: generate_c_header(table=qmckl_ao_vgl_args_doc,rettyp=get_value("CRetType"),fname="qmckl_compute_ao_vgl"))
# (Commented because the header needs to go into h_private_func)
#+begin_src c :tangle (eval h_private_func) :comments org
qmckl_exit_code qmckl_compute_ao_vgl_doc (
const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int64_t point_num,
const int64_t nucl_num,
const double* coord,
const double* nucl_coord,
const int64_t* nucleus_index,
const int64_t* nucleus_shell_num,
const double* nucleus_range,
const int32_t* nucleus_max_ang_mom,
const int32_t* shell_ang_mom,
const double* ao_factor,
const double* shell_vgl,
double* const ao_vgl );
#+end_src
#+begin_src c :tangle (eval h_private_func) :comments org
#ifdef HAVE_HPC
qmckl_exit_code qmckl_compute_ao_vgl_hpc_gaussian (
const qmckl_context context,
const int64_t ao_num,
const int64_t shell_num,
const int32_t* prim_num_per_nucleus,
const int64_t point_num,
const int64_t nucl_num,
const double* coord,
const double* nucl_coord,
const int64_t* nucleus_index,
const int64_t* nucleus_shell_num,
const double* nucleus_range,
const int32_t* nucleus_max_ang_mom,
const int32_t* shell_ang_mom,
const double* ao_factor,
const qmckl_matrix expo_per_nucleus,
const qmckl_tensor coef_per_nucleus,
double* const ao_vgl );
#endif
#+end_src
**** Provide :noexport:
#+CALL: write_provider_header( group="ao_basis", data="ao_vgl" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval h_private_func) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_ao_vgl(qmckl_context context);
#+end_src
#+CALL: write_provider_pre( group="ao_basis", data="ao_vgl", dimension="ctx->ao_basis.ao_num * 5 * ctx->point.num")
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
qmckl_exit_code qmckl_provide_ao_basis_ao_vgl(qmckl_context context)
{
qmckl_exit_code rc = QMCKL_SUCCESS;
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return qmckl_failwith( context,
QMCKL_INVALID_CONTEXT,
"qmckl_provide_ao_basis_ao_vgl",
NULL);
}
qmckl_context_struct* const ctx = (qmckl_context_struct*) context;
assert (ctx != NULL);
if (!ctx->ao_basis.provided) {
return qmckl_failwith( context,
QMCKL_NOT_PROVIDED,
"qmckl_provide_ao_basis_ao_vgl",
NULL);
}
/* Compute if necessary */
if (ctx->point.date > ctx->ao_basis.ao_vgl_date) {
qmckl_memory_info_struct mem_info = qmckl_memory_info_struct_zero;
mem_info.size = ctx->ao_basis.ao_num * 5 * ctx->point.num * sizeof(double);
if (ctx->ao_basis.ao_vgl != NULL) {
qmckl_memory_info_struct mem_info_test = qmckl_memory_info_struct_zero;
rc = qmckl_get_malloc_info(context, ctx->ao_basis.ao_vgl, &mem_info_test);
/* if rc != QMCKL_SUCCESS, we are maybe in an _inplace function because the
memory was not allocated with qmckl_malloc */
if ((rc == QMCKL_SUCCESS) && (mem_info_test.size != mem_info.size)) {
rc = qmckl_free(context, ctx->ao_basis.ao_vgl);
assert (rc == QMCKL_SUCCESS);
ctx->ao_basis.ao_vgl = NULL;
}
}
/* Allocate array */
if (ctx->ao_basis.ao_vgl == NULL) {
double* ao_vgl = (double*) qmckl_malloc(context, mem_info);
if (ao_vgl == NULL) {
return qmckl_failwith( context,
QMCKL_ALLOCATION_FAILED,
"qmckl_ao_basis_ao_vgl",
NULL);
}
ctx->ao_basis.ao_vgl = ao_vgl;
}
#+end_src
#+begin_src c :comments org :tangle (eval c) :noweb yes :exports none
#ifdef HAVE_HPC
if (ctx->ao_basis.type == 'G') {
rc = qmckl_compute_ao_vgl_hpc_gaussian(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->ao_basis.prim_num_per_nucleus,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.expo_per_nucleus,
ctx->ao_basis.coef_per_nucleus,
ctx->ao_basis.ao_vgl);
/* DEBUG
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL);
}
int64_t K= ctx->ao_basis.ao_num * 5 * ctx->point.num;
double* check = malloc(K*sizeof(double));
rc = qmckl_compute_ao_vgl_doc(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.shell_vgl,
check);
for (int64_t i=0 ; i<K ; ++i) {
if (fabs(check[i] - ctx->ao_basis.ao_vgl[i]) > 1.e-10) {
int a, b, c;
a = i/(ctx->ao_basis.ao_num*5);
b = (i-a*ctx->ao_basis.ao_num*5)/ctx->ao_basis.ao_num;
c = (i-a*ctx->ao_basis.ao_num*5 -b*ctx->ao_basis.ao_num);
printf("%d: %d, %d, %d, %e %e\n", i, a, b, c, check[i], ctx->ao_basis.ao_vgl[i]);
}
}
,*/
/*
} else if (ctx->ao_basis.type == 'S') {
rc = qmck_compute_ao_vgl_hpc_slater(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->ao_basis.prim_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.shell_prim_index,
ctx->ao_basis.shell_prim_num,
ctx->ao_basis.ao_factor,
ctx->ao_basis.exponent,
ctx->ao_basis.coefficient_normalized,
ctx->ao_basis.ao_vgl);
,*/
} else {
/* Provide required data */
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL);
}
rc = qmckl_compute_ao_vgl_doc(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.shell_vgl,
ctx->ao_basis.ao_vgl);
}
#else
rc = qmckl_provide_ao_basis_shell_vgl(context);
if (rc != QMCKL_SUCCESS) {
return qmckl_failwith( context, rc, "qmckl_provide_ao_basis_shell_vgl", NULL);
}
rc = qmckl_compute_ao_vgl_doc(context,
ctx->ao_basis.ao_num,
ctx->ao_basis.shell_num,
ctx->point.num,
ctx->nucleus.num,
ctx->point.coord.data,
ctx->nucleus.coord.data,
ctx->ao_basis.nucleus_index,
ctx->ao_basis.nucleus_shell_num,
ctx->ao_basis.nucleus_range,
ctx->ao_basis.nucleus_max_ang_mom,
ctx->ao_basis.shell_ang_mom,
ctx->ao_basis.ao_factor,
ctx->ao_basis.shell_vgl,
ctx->ao_basis.ao_vgl);
#endif
#+end_src
#+CALL: write_provider_post( group="ao_basis", data="ao_vgl" )
#+RESULTS:
#+begin_src c :comments org :tangle (eval c) :noweb yes :export none
if (rc != QMCKL_SUCCESS) {
return rc;
}
ctx->ao_basis.ao_vgl_date = ctx->date;
}
return QMCKL_SUCCESS;
}
#+end_src
**** Test :noexport:
#+begin_src python :results output :exports none
import numpy as np
from math import sqrt
h0 = 1.e-4
def f(a,x,y):
return np.sum( [c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )
def fx(a,x,y):
return f(a,x,y) * (x[0] - y[0])**2
def df(a,x,y,n):
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( fx(a,x+h,y) - fx(a,x-h,y) ) / (2.*h0)
# return np.sum( [-2.*b * c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] ) * (x-y)[n-1]
def d2f(a,x,y,n):
if n == 1: h = np.array([h0,0.,0.])
elif n == 2: h = np.array([0.,h0,0.])
elif n == 3: h = np.array([0.,0.,h0])
return ( fx(a,x+h,y) - 2.*fx(a,x,y) + fx(a,x-h,y) ) / h0**2
# return np.sum( [( (2.*b*(x-y)[n-1])**2 -2.*b ) * c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )
def lf(a,x,y):
# return np.sum( [( (2.*b*np.linalg.norm(x-y))**2 -6.*b ) * c * np.exp( -b*(np.linalg.norm(x-y))**2) for b,c in a] )
return d2f(a,x,y,1) + d2f(a,x,y,2) + d2f(a,x,y,3)
elec_26_w1 = np.array( [ 1.49050402641, 2.90106987953, -1.05920815468 ] )
elec_15_w2 = np.array( [ -2.20180344582,-1.9113150239, 2.2193744778600002 ] )
nucl_1 = np.array( [ -2.302574592081335e+00, -3.542027060505035e-01, -5.334129934317614e-02] )
#double ao_vgl[prim_num][5][elec_num];
x = elec_26_w1 ; y = nucl_1
a = [( 4.0382999999999998e+02, 1.4732000000000000e-03 * 5.9876577632594533e+04),
( 1.2117000000000000e+02, 1.2672500000000000e-02 * 7.2836806319891484e+03),
( 4.6344999999999999e+01, 5.8045100000000002e-02 * 1.3549226646722386e+03),
( 1.9721000000000000e+01, 1.7051030000000000e-01 * 3.0376315094739988e+02),
( 8.8623999999999992e+00, 3.1859579999999998e-01 * 7.4924579607137730e+01),
( 3.9962000000000000e+00, 3.8450230000000002e-01 * 1.8590543353806009e+01),
( 1.7636000000000001e+00, 2.7377370000000001e-01 * 4.4423176930919421e+00),
( 7.0618999999999998e-01, 7.4396699999999996e-02 * 8.9541051939952665e-01)]
norm = sqrt(3.)
# x^2 * g(r)
print ( "[26][0][219] : %25.15e"%(fx(a,x,y)) )
print ( "[26][1][219] : %25.15e"%(df(a,x,y,1)) )
print ( "[26][2][219] : %25.15e"%(df(a,x,y,2)) )
print ( "[26][3][219] : %25.15e"%(df(a,x,y,3)) )
print ( "[26][4][219] : %25.15e"%(lf(a,x,y)) )
print ( "[26][0][220] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[1] - y[1]) ))
print ( "[26][1][220] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[1] - y[1]) + norm*f(a,x,y) * (x[1] - y[1])) )
print ( "[26][0][221] : %25.15e"%(norm*f(a,x,y) * (x[0] - y[0]) * (x[2] - y[2])) )
print ( "[26][1][221] : %25.15e"%(norm*df(a,x,y,1)* (x[0] - y[0]) * (x[2] - y[2]) + norm*f(a,x,y) * (x[2] - y[2])) )
print ( "[26][0][222] : %25.15e"%(f(a,x,y) * (x[1] - y[1]) * (x[1] - y[1])) )
print ( "[26][1][222] : %25.15e"%(df(a,x,y,1)* (x[1] - y[1]) * (x[1] - y[1])) )
print ( "[26][0][223] : %25.15e"%(norm*f(a,x,y) * (x[1] - y[1]) * (x[2] - y[2])) )
print ( "[26][1][223] : %25.15e"%(norm*df(a,x,y,1)* (x[1] - y[1]) * (x[2] - y[2])) )
print ( "[26][0][224] : %25.15e"%(f(a,x,y) * (x[2] - y[2]) * (x[2] - y[2])) )
print ( "[26][1][224] : %25.15e"%(df(a,x,y,1)* (x[2] - y[2]) * (x[2] - y[2])) )
#+end_src
#+RESULTS:
#+begin_src c :tangle (eval c_test) :exports none
{
#define shell_num chbrclf_shell_num
#define ao_num chbrclf_ao_num
double* elec_coord = &(chbrclf_elec_coord[0][0][0]);
assert(qmckl_electron_provided(context));
int64_t point_num = elec_num;
rc = qmckl_set_point(context, 'N', point_num, elec_coord, point_num*3);
assert(rc == QMCKL_SUCCESS);
double ao_vgl[point_num][5][ao_num];
rc = qmckl_get_ao_basis_ao_vgl(context, &(ao_vgl[0][0][0]),
(int64_t) 5*point_num*ao_num);
assert (rc == QMCKL_SUCCESS);
printf("\n");
printf(" ao_vgl ao_vgl[26][0][219] %25.15e\n", ao_vgl[26][0][219]);
printf(" ao_vgl ao_vgl[26][1][219] %25.15e\n", ao_vgl[26][1][219]);
printf(" ao_vgl ao_vgl[26][2][219] %25.15e\n", ao_vgl[26][2][219]);
printf(" ao_vgl ao_vgl[26][3][219] %25.15e\n", ao_vgl[26][3][219]);
printf(" ao_vgl ao_vgl[26][4][219] %25.15e\n", ao_vgl[26][4][219]);
printf(" ao_vgl ao_vgl[26][0][220] %25.15e\n", ao_vgl[26][0][220]);
printf(" ao_vgl ao_vgl[26][1][220] %25.15e\n", ao_vgl[26][1][220]);
printf(" ao_vgl ao_vgl[26][2][220] %25.15e\n", ao_vgl[26][2][220]);
printf(" ao_vgl ao_vgl[26][3][220] %25.15e\n", ao_vgl[26][3][220]);
printf(" ao_vgl ao_vgl[26][4][220] %25.15e\n", ao_vgl[26][4][220]);
printf(" ao_vgl ao_vgl[26][0][221] %25.15e\n", ao_vgl[26][0][221]);
printf(" ao_vgl ao_vgl[26][1][221] %25.15e\n", ao_vgl[26][1][221]);
printf(" ao_vgl ao_vgl[26][2][221] %25.15e\n", ao_vgl[26][2][221]);
printf(" ao_vgl ao_vgl[26][3][221] %25.15e\n", ao_vgl[26][3][221]);
printf(" ao_vgl ao_vgl[26][4][221] %25.15e\n", ao_vgl[26][4][221]);
printf(" ao_vgl ao_vgl[26][0][222] %25.15e\n", ao_vgl[26][0][222]);
printf(" ao_vgl ao_vgl[26][1][222] %25.15e\n", ao_vgl[26][1][222]);
printf(" ao_vgl ao_vgl[26][2][222] %25.15e\n", ao_vgl[26][2][222]);
printf(" ao_vgl ao_vgl[26][3][222] %25.15e\n", ao_vgl[26][3][222]);
printf(" ao_vgl ao_vgl[26][4][222] %25.15e\n", ao_vgl[26][4][222]);
printf(" ao_vgl ao_vgl[26][0][223] %25.15e\n", ao_vgl[26][0][223]);
printf(" ao_vgl ao_vgl[26][1][223] %25.15e\n", ao_vgl[26][1][223]);
printf(" ao_vgl ao_vgl[26][2][223] %25.15e\n", ao_vgl[26][2][223]);
printf(" ao_vgl ao_vgl[26][3][223] %25.15e\n", ao_vgl[26][3][223]);
printf(" ao_vgl ao_vgl[26][4][223] %25.15e\n", ao_vgl[26][4][223]);
printf(" ao_vgl ao_vgl[26][0][224] %25.15e\n", ao_vgl[26][0][224]);
printf(" ao_vgl ao_vgl[26][1][224] %25.15e\n", ao_vgl[26][1][224]);
printf(" ao_vgl ao_vgl[26][2][224] %25.15e\n", ao_vgl[26][2][224]);
printf(" ao_vgl ao_vgl[26][3][224] %25.15e\n", ao_vgl[26][3][224]);
printf(" ao_vgl ao_vgl[26][4][224] %25.15e\n", ao_vgl[26][4][224]);
printf("\n");
assert( fabs(ao_vgl[26][0][219] - ( 1.020298798341620e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][1][219] - ( -4.928035238010602e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][2][219] - ( -4.691009312035986e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][3][219] - ( 1.449504046436699e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][4][219] - ( 4.296442111843973e-07)) < 1.e-14 );
assert( fabs(ao_vgl[26][0][220] - ( 1.516643537739178e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][1][220] - ( -7.725221462603871e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][2][220] - ( -6.507140835104833e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][3][220] - ( 2.154644255710413e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][4][220] - ( 6.365449359656352e-07)) < 1.e-14 );
assert( fabs(ao_vgl[26][0][221] - ( -4.686370882518819e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][1][221] - ( 2.387064067626827e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][2][221] - ( 2.154644255710412e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][3][221] - ( -1.998731863512374e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][4][221] - ( -1.966899656441993e-07)) < 1.e-14 );
assert( fabs(ao_vgl[26][0][222] - ( 7.514816980753531e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][1][222] - ( -4.025889138635182e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][2][222] - ( -2.993372555126361e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][3][222] - ( 1.067604670272904e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][4][222] - ( 3.168199650002648e-07)) < 1.e-14 );
assert( fabs(ao_vgl[26][0][223] - ( -4.021908374204471e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][1][223] - ( 2.154644255710413e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][2][223] - ( 1.725594944732276e-08)) < 1.e-14 );
assert( fabs(ao_vgl[26][3][223] - ( -1.715339357718333e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][4][223] - ( -1.688020516893476e-07)) < 1.e-14 );
assert( fabs(ao_vgl[26][0][224] - ( 7.175045873560788e-10)) < 1.e-14 );
assert( fabs(ao_vgl[26][1][224] - ( -3.843864637762753e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][2][224] - ( -3.298857850451910e-09)) < 1.e-14 );
assert( fabs(ao_vgl[26][3][224] - ( -4.073047518790881e-10)) < 1.e-14 );
assert( fabs(ao_vgl[26][4][224] - ( 3.153244195820293e-08)) < 1.e-14 );
}
#+end_src
* End of files :noexport:
#+begin_src c :tangle (eval h_private_type)
#endif
#+end_src
#+begin_src c :tangle (eval h_private_func)
#endif
#+end_src
*** Test
#+begin_src c :tangle (eval c_test)
rc = qmckl_context_destroy(context);
assert (rc == QMCKL_SUCCESS);
return 0;
}
#+end_src
*** Compute file names
#+begin_src emacs-lisp
; The following is required to compute the file names
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq f (concat pwd name "_f.f90"))
(setq fh (concat pwd name "_fh.f90"))
(setq c (concat pwd name ".c"))
(setq h (concat name ".h"))
(setq h_private (concat name "_private.h"))
(setq c_test (concat pwd "test_" name ".c"))
(setq f_test (concat pwd "test_" name "_f.f90"))
; Minted
(require 'ox-latex)
(setq org-latex-listings 'minted)
(add-to-list 'org-latex-packages-alist '("" "listings"))
(add-to-list 'org-latex-packages-alist '("" "color"))
#+end_src
#+RESULTS:
| | color |
| | listings |
# -*- mode: org -*-
# vim: syntax=c
* TODO [0/1] Missing features :noexport:
- [ ] Error messages to tell what is missing when initializing