64 KiB
Sherman-Morrison-Woodbury
- Headers
- Helper Functions
- Naïve Sherman-Morrison
- Woodbury 2x2
- Woodbury 3x3
- Sherman-Morrison with update splitting
- Woodbury 2x2 with Sherman-Morrison and update splitting
- Woodbury 3x3 with Sherman-Morrison and update splitting
- Woodbury 3x3 and 2x2 with Sherman-Morrison and update splitting
- End of files
Low- and high-level functions that use the Sherman-Morrison and Woodbury matrix inversion formulas to update the inverse of a non-singualr matrix
Headers
#include "qmckl.h"
#include "assert.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
int main() {
qmckl_context context;
context = qmckl_context_create();
qmckl_exit_code rc;
Helper Functions
Helper functions that are used by the Sherman-Morrison-Woodbury kernels. These functions can only be used internally by higher level functions.
qmckl_slagel_splitting
qmckl_slagel_splitting
is used internally to apply a list of rank-1 updates while splitting an update if necessary.
In case of a split it applies the first half of the update while putting the second half in waiting queue to be applied at the end.
For a given update $u_j$ we define a threshold value $\epsilon_j$, which is the minimum value of $1+v_j^TS^{-1}u_j$ for a non-singular matrix $S$. If $1+v_j^TS^{-1}u_j \geq \epsilon_j$, the update is applied as usual. Otherwise, $u_j$ will be redefined as $\frac{u_j}{2}$, and the other half (to be applied at the end) will be defined using vectors $\frac{u_{j'}}{2}$ and $v_{j'}^T=v_{j'}^T$.
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the rank-1 updates |
uint64_t | Updates_index[N_updates] | in | Array containing positions of the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse Slater-matrix |
double | later_updates[Dim * N_updates] | inout | Array containing the split updates for later |
uint64_t | later_index[N_updates] | inout | Array containing the positions of the split updates for later |
uint64_t | later | inout | Number of split updates for later |
Requirements
Dim >= 2
N_updates >= 1
Updates
is allocated with at least $1 \times 2 \times 8$ bytesUpdates_index
is allocated with at least $1 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$Slater_inv
is allocated with at least $Dim \times Dim \times 8$ byteslater_updates
is allocated with at least $1 \times 2 \times 8$ byteslater_index
is allocated with at least $1 \times 8$ byteslater >= 0
C header
qmckl_exit_code qmckl_slagel_splitting_c (
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv,
double* later_updates,
uint64_t* later_index,
uint64_t* later );
Source Fortran
Source C
#include <stdbool.h>
#include <math.h>
#include "qmckl.h"
qmckl_exit_code qmckl_slagel_splitting_c(uint64_t Dim,
uint64_t N_updates,
const double *Updates,
const uint64_t *Updates_index,
const double breakdown,
double *Slater_inv,
double *later_updates,
uint64_t *later_index,
uint64_t *later) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called slagel_splitting with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = S^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (fabs(den) < breakdown) {
// U_l = U_l / 2 (do the split)
for (uint64_t i = 0; i < Dim; i++) {
later_updates[*later * Dim + i] = Updates[l * Dim + i] / 2.0;
C[i] /= 2.0;
}
later_index[*later] = Updates_index[l];
(*later)++;
den = 1 + C[Updates_index[l] - 1];
}
double iden = 1 / den;
// D = v^T x S^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
Performance
This function performce better for cycles with 1 rank-1 update and with a high fail-rate.
Naïve Sherman-Morrison
qmckl_sherman_morrison
This is the simplest of the available Sherman-Morrison-Woodbury kernels. It applies rank-1 updates one by one in the order that is given. It only checks if the denominator in the Sherman-Morrison formula is not too close to zero when an update is evaluated. It will exit with an error code of the denominator is too close to zero.
The formula that is applied is \[ (S + uv^T)^{-1} = S^{-1} - \frac{S^{-1} uv^T S^{-1}}{1 + v^T S^{-1} u} \]
where $S$ is the Slater-matrix, $u$ and $v^T$ are the column and row vectors containing the updates, $S^{-1}$ is the inverse of the Slater-matrix.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notQMCKL_NULL_CONTEXT
Dim >= 2
N_updates >= 1
Updates
is allocated with at least $1 \times 2 \times 8$ bytesUpdates_index
is allocated with at least $1 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$Slater_inv
is allocated with at least $Dim \times Dim \times 8$ bytes
C header
qmckl_exit_code qmckl_sherman_morrison_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_f(context, Dim, N_updates, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison(context, Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_sherman_morrison_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG
// std::cerr << "Called qmckl_sherman_morrison with " << N_updates << " updates" << std::endl;
// #endif
double C[Dim];
double D[Dim];
uint64_t l = 0;
// For each update
while (l < N_updates) {
// C = A^{-1} x U_l
for (uint64_t i = 0; i < Dim; i++) {
C[i] = 0;
for (uint64_t j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (fabs(den) < breakdown) {
return QMCKL_FAILURE;
}
double iden = 1 / den;
// D = v^T x A^{-1}
for (uint64_t j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// A^{-1} = A^{-1} - C x D / den
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
return QMCKL_SUCCESS;
}
Performance
This function performs better when there is only 1 rank-1 update in the update cycle and the fail-rate of rank-1 updates is high.
Woodbury 2x2
qmckl_woodbury_2
The simplest version of the generalised Sherman-Morrison-Woodbury kernels. It is used to apply two rank-1 updates at once. The formula used in this algorithm is called the Woodbury Matrix Identity \[ (S + U V)^{-1} = S^{-1} - C B^{-1} D \] where $S$ is the Slater-matrix $U$ and $V$ are the matrices containing the updates and the canonical basis matrix $S^{-1}$ is the inverse of the Slater-matrix $C:= S^{-1}U$, a Dim $\times 2$ matrix $B := 1 + VC$, the $2 \times 2$ matrix that is going to be inverted $D := VS^{-1}$, a $2 \times Dim$ matrix
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
double | Updates[2*Dim] | in | Array containing the updates |
uint64_t | Updates_index[2] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notqmckl_null_context
dim >= 2
updates
is allocated with at least $2 \times 2 \times 8$ bytesupdates_index
is allocated with $2 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$slater_inv
is allocated with at least $dim \times dim \times 8$ bytes
C header
qmckl_exit_code qmckl_woodbury_2_c (
const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_woodbury_2_f(context, Dim, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim
integer*8 , intent(in) :: Updates_index(2)
real*8 , intent(in) :: Updates(2*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_woodbury_2_f
info = qmckl_woodbury_2(context, Dim, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_woodbury_2_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_woodbury_2_c(const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
/*
C := S^{-1} * U, dim x 2
B := 1 + V * C, 2 x 2
D := V * S^{-1}, 2 x dim
*/
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called Woodbury 2x2 kernel" << std::endl;
// #endif
const uint64_t row1 = (Updates_index[0] - 1);
const uint64_t row2 = (Updates_index[1] - 1);
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[2 * Dim];
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < 2; j++) {
C[i * 2 + j] = 0;
for (uint64_t k = 0; k < Dim; k++) {
C[i * 2 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
// Compute B = 1 + V * C
const double B0 = C[row1 * 2] + 1;
const double B1 = C[row1 * 2 + 1];
const double B2 = C[row2 * 2];
const double B3 = C[row2 * 2 + 1] + 1;
// Check if determinant of inverted matrix is not zero
double det = B0 * B3 - B1 * B2;
if (fabs(det) < breakdown) {
return QMCKL_FAILURE;
}
// Compute B^{-1} with explicit formula for 2x2 inversion
double Binv[4], idet = 1.0 / det;
Binv[0] = idet * B3;
Binv[1] = -1.0 * idet * B1;
Binv[2] = -1.0 * idet * B2;
Binv[3] = idet * B0;
// Compute tmp = B^{-1} x (V.S^{-1})
double tmp[2 * Dim];
for (uint64_t i = 0; i < 2; i++) {
for (uint64_t j = 0; j < Dim; j++) {
tmp[i * Dim + j] = Binv[i * 2] * Slater_inv[row1 * Dim + j];
tmp[i * Dim + j] += Binv[i * 2 + 1] * Slater_inv[row2 * Dim + j];
}
}
// Compute (S + U V)^{-1} = S^{-1} - C x tmp
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
Slater_inv[i * Dim + j] -= C[i * 2] * tmp[j];
Slater_inv[i * Dim + j] -= C[i * 2 + 1] * tmp[Dim + j];
}
}
return QMCKL_SUCCESS;
}
Performance
This function is most efficient when used in cases where there are only 2 rank-1 updates.
Woodbury 3x3
qmckl_woodbury_3
The 3x3 version of the Woodbury 2x2 kernel. It is used to apply three rank-1 updates at once. The formula used in this kernel is the same as for Woodbury 2x2, except for the sizes of the following matrices:
$C:= S^{-1}U$, a Dim $\times 3$ matrix $B := 1 + VC$, the $3 \times 3$ matrix that is going to be inverted $D := VS^{-1}$, a $3 \times Dim$ matrix
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
double | Updates[3*Dim] | in | Array containing the updates |
uint64_t | Updates_index[3] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notqmckl_null_context
dim >= 2
updates
is allocated with at least $3 \times 2 \times 8$ bytesupdates_index
is allocated with $3 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$slater_inv
is allocated with at least $dim \times dim \times 8$ bytes
C header
qmckl_exit_code qmckl_woodbury_3_c (
const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_woodbury_3_f(context, Dim, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim
integer*8 , intent(in) :: Updates_index(3)
real*8 , intent(in) :: Updates(3*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_woodbury_3_f
info = qmckl_woodbury_3(context, Dim, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_woodbury_3_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_woodbury_3_c(const qmckl_context context,
const uint64_t Dim,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
/*
C := S^{-1} * U, dim x 3
B := 1 + V * C, 3 x 3
D := V * S^{-1}, 3 x dim
,*/
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called Woodbury 3x3 kernel" << std::endl;
// #endif
const uint64_t row1 = (Updates_index[0] - 1);
const uint64_t row2 = (Updates_index[1] - 1);
const uint64_t row3 = (Updates_index[2] - 1);
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[3 * Dim];
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < 3; j++) {
C[i * 3 + j] = 0;
for (uint64_t k = 0; k < Dim; k++) {
C[i * 3 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
// Compute B = 1 + V.C
const double B0 = C[row1 * 3] + 1;
const double B1 = C[row1 * 3 + 1];
const double B2 = C[row1 * 3 + 2];
const double B3 = C[row2 * 3];
const double B4 = C[row2 * 3 + 1] + 1;
const double B5 = C[row2 * 3 + 2];
const double B6 = C[row3 * 3];
const double B7 = C[row3 * 3 + 1];
const double B8 = C[row3 * 3 + 2] + 1;
// Check if determinant of B is not too close to zero
double det;
det = B0 * (B4 * B8 - B5 * B7) - B1 * (B3 * B8 - B5 * B6) +
B2 * (B3 * B7 - B4 * B6);
if (fabs(det) < breakdown) {
return QMCKL_FAILURE;
}
// Compute B^{-1} with explicit formula for 3x3 inversion
double Binv[9], idet = 1.0 / det;
Binv[0] = (B4 * B8 - B7 * B5) * idet;
Binv[1] = -(B1 * B8 - B7 * B2) * idet;
Binv[2] = (B1 * B5 - B4 * B2) * idet;
Binv[3] = -(B3 * B8 - B6 * B5) * idet;
Binv[4] = (B0 * B8 - B6 * B2) * idet;
Binv[5] = -(B0 * B5 - B3 * B2) * idet;
Binv[6] = (B3 * B7 - B6 * B4) * idet;
Binv[7] = -(B0 * B7 - B6 * B1) * idet;
Binv[8] = (B0 * B4 - B3 * B1) * idet;
// Compute tmp = B^{-1} x (V.S^{-1})
double tmp[3 * Dim];
for (uint64_t i = 0; i < 3; i++) {
for (uint64_t j = 0; j < Dim; j++) {
tmp[i * Dim + j] = Binv[i * 3] * Slater_inv[row1 * Dim + j];
tmp[i * Dim + j] += Binv[i * 3 + 1] * Slater_inv[row2 * Dim + j];
tmp[i * Dim + j] += Binv[i * 3 + 2] * Slater_inv[row3 * Dim + j];
}
}
// Compute (S + U V)^{-1} = S^{-1} - C x tmp
for (uint64_t i = 0; i < Dim; i++) {
for (uint64_t j = 0; j < Dim; j++) {
Slater_inv[i * Dim + j] -= C[i * 3] * tmp[j];
Slater_inv[i * Dim + j] -= C[i * 3 + 1] * tmp[Dim + j];
Slater_inv[i * Dim + j] -= C[i * 3 + 2] * tmp[2 * Dim + j];
}
}
return QMCKL_SUCCESS;
}
Performance…
This function is most efficient when used in cases where there are only 3 rank-1 updates.
Sherman-Morrison with update splitting
qmckl_sherman_morrison_splitting
This is a variation on the 'Naive' Sherman-Morrison kernel. Whenever the denominator $1+v_j^T S^{-1} u_j$ in the Sherman-Morrison formula is deemed to be too close to zero, the update $u_j$ is split in half: $u_j \rightarrow \frac{1}{1} u_j$. One half is applied immediately –necessarily increasing the value of the denominator because of the split– while the other halve is put in a queue that will be applied when all the remaining updates have been treated. The kernel is executed recursively until the queue is eiter empty and all updates are applied successfully, or the size of the queue equals the number of initial updates. In the last case the Slater-matrix that would have resulted from applying the updates is un-invertable and therefore the kernel exits with an exit code.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notQMCKL_NULL_CONTEXT
Dim >= 2
N_updates >= 1
Updates
is allocated with at least $1 \times 2 \times 8$ bytesUpdates_index
is allocated with at least $1 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$Slater_inv
is allocated with at least $Dim \times Dim \times 8$ bytes
C header
qmckl_exit_code qmckl_sherman_morrison_splitting_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_splitting_f(context, Dim, N_updates, &
Updates, Updates_index, breakdown, Slater_inv) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(in) :: breakdown
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
info = qmckl_sherman_morrison_splitting(context, Dim, N_updates, Updates, Updates_index, breakdown, Slater_inv)
end function qmckl_sherman_morrison_splitting_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_splitting_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_splitting with " << N_updates << " updates" << std::endl;
// #endif
qmckl_exit_code rc;
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
rc = qmckl_slagel_splitting_c(Dim, N_updates, Updates, Updates_index,
breakdown, Slater_inv, later_updates, later_index, &later);
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(context, Dim, later,
later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
Performance…
This kernel performs best when there are only 1 rank-1 update cycles and/or when the fail-rate is high.
Woodbury 2x2 with Sherman-Morrison and update splitting
qmckl_sherman_morrison_smw2s
The Woodbury 2x2 kernel with Sherman-Morrison and update splitting combines the low-level Woodbury 2x2 kernel and Sherman-Morrison with update splitting. For a given number of updates $N$ it splits the number of updates in blocks of two updates. The blocks of two updates are then applied one by one using Woodbury 2x2. If a block of updates fails, both updates in the block are applied with Sherman-Morrison instead, split if necessary and with their second half put in a queue. After all blocks are processed the remaining one update –in case there was an odd number of updates to begin with– is also aplpied with Sherman-Morrison and split if necessary. The queue containing the collected second halves of all the processed updates is processed at the very end to avoid having many intermediate queues containing only a few updates that risks an increased probability of artificially created non-singular intermediate matrices, resulting from division up the total number of updates in blocks of three.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notQMCKL_NULL_CONTEXT
Dim >= 2
N_updates >= 1
Updates
is allocated with at least $1 \times 2 \times 8$ bytesUpdates_index
is allocated with at least $1 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$Slater_inv
is allocated with at least $Dim \times Dim \times 8$ bytes
C header
qmckl_exit_code qmckl_sherman_morrison_smw2s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_smw2s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
info = qmckl_sherman_morrison_smw2s (context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw2s_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw2s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_2 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_exit_code rc;
uint64_t n_of_2blocks = N_updates / 2;
uint64_t remainder = N_updates % 2;
uint64_t length_2block = 2 * Dim;
// Apply first 2*n_of_2blocks updates in n_of_2blocks blocks of 2 updates with
// Woodbury 2x2 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_2blocks > 0) {
for (uint64_t i = 0; i < n_of_2blocks; i++) {
const double *Updates_2block = &Updates[i * length_2block];
const uint64_t *Updates_index_2block = &Updates_index[i * 2];
rc = qmckl_woodbury_2_c(context, Dim, Updates_2block, Updates_index_2block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder == 1) { // Apply last remaining update with slagel_splitting
const double *Updates_1block = &Updates[n_of_2blocks * length_2block];
const uint64_t *Updates_index_1block = &Updates_index[2 * n_of_2blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
Performance…
This kernel performs best for the case of two rank-1 update and a low fail-rate.
Woodbury 3x3 with Sherman-Morrison and update splitting
qmckl_sherman_morrison_smw3s
The Woodbury 3x3 kernel with Sherman-Morrison and update splitting combines the low-level Woodbury 3x3 kernel and Sherman-Morrison with update splitting. It works the same as Woodbury 2x2 with Sherman-Morrison and update splitting, except that the updates are divided in blocks of three rank-1 updates instead of blocks of two rank-1 updates.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notQMCKL_NULL_CONTEXT
Dim >= 2
N_updates >= 1
Updates
is allocated with at least $1 \times 2 \times 8$ bytesUpdates_index
is allocated with at least $1 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$Slater_inv
is allocated with at least $Dim \times Dim \times 8$ bytes
C header
qmckl_exit_code qmckl_sherman_morrison_smw3s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_smw3s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_smw3s(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw3s_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw3s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_3 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_exit_code rc;
uint64_t n_of_3blocks = N_updates / 3;
uint64_t remainder = N_updates % 3;
uint64_t length_3block = 3 * Dim;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
// Woodbury 3x3 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_3blocks > 0) {
for (uint64_t i = 0; i < n_of_3blocks; i++) {
const double *Updates_3block = &Updates[i * length_3block];
const uint64_t *Updates_index_3block = &Updates_index[i * 3];
rc = qmckl_woodbury_3_c(context, Dim, Updates_3block, Updates_index_3block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 3, Updates_3block, Updates_index_3block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder != 0) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
const double *Updates_remainder_block = &Updates[n_of_3blocks * length_3block];
const uint64_t *Updates_index_remainder_block = &Updates_index[3 * n_of_3blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, remainder, Updates_remainder_block, Updates_index_remainder_block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
Performance…
This kernel performs best for the case of three rank-1 update and a low fail-rate.
Woodbury 3x3 and 2x2 with Sherman-Morrison and update splitting
qmckl_sherman_morrison_smw32s
The Woodbury 3x3 and 2x2 kernel with Sherman-Morrison and update splitting combines the low-level Woodbury 3x3 kernel, the Woobury 2x2 kernel and Sherman-Morrison with update splitting. It works the almost the same as Woodbury 3x3 with Sherman-Morrison and update splitting, except that when there is a remainder of two rank-1 updates, it is first tried with Woodbury 2x2 instead of sending them all to Sherman-Morrison with update splitting. For example, in the case of 5 updates the updates are applied in 1 block of 3 updates end 1 block of 2 updates.
qmckl_context | context | in | Global state |
uint64_t | Dim | in | Leading dimension of Slater_inv |
uint64_t | N_updates | in | Number of rank-1 updates to be applied to Slater_inv |
double | Updates[N_updates*Dim] | in | Array containing the updates |
uint64_t | Updates_index[N_updates] | in | Array containing the rank-1 updates |
double | breakdown | in | Break-down parameter on which to fail or not |
double | Slater_inv[Dim*Dim] | inout | Array containing the inverse of a Slater-matrix |
Requirements
context
is notQMCKL_NULL_CONTEXT
Dim >= 2
N_updates >= 1
Updates
is allocated with at least $1 \times 2 \times 8$ bytesUpdates_index
is allocated with at least $1 \times 8$ bytesbreakdown
is a small number such that $0 < breakdown << 1$Slater_inv
is allocated with at least $Dim \times Dim \times 8$ bytes
C header
qmckl_exit_code qmckl_sherman_morrison_smw32s_c (
const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double* Slater_inv );
Source Fortran
integer function qmckl_sherman_morrison_smw32s_f(context, Slater_inv, Dim, N_updates, &
Updates, Updates_index) result(info)
use qmckl
implicit none
integer(qmckl_context) , intent(in) :: context
integer*8 , intent(in), value :: Dim, N_updates
integer*8 , intent(in) :: Updates_index(N_updates)
real*8 , intent(in) :: Updates(N_updates*Dim)
real*8 , intent(inout) :: Slater_inv(Dim*Dim)
!logical, external :: qmckl_sherman_morrison_f
info = qmckl_sherman_morrison_smw32s(context, Dim, N_updates, Updates, Updates_index, Slater_inv)
end function qmckl_sherman_morrison_smw32s_f
Source C
#include <stdbool.h>
#include "qmckl.h"
qmckl_exit_code qmckl_sherman_morrison_smw32s_c(const qmckl_context context,
const uint64_t Dim,
const uint64_t N_updates,
const double* Updates,
const uint64_t* Updates_index,
const double breakdown,
double * Slater_inv) {
// #ifdef DEBUG // Leave commented out since debugging information is not yet implemented in QMCkl.
// std::cerr << "Called qmckl_sherman_morrison_woodbury_3 with " << N_updates
// << " updates" << std::endl;
// #endif
qmckl_exit_code rc;
uint64_t n_of_3blocks = N_updates / 3;
uint64_t remainder = N_updates % 3;
uint64_t length_3block = 3 * Dim;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
// Woodbury 3x3 kernel
double later_updates[Dim * N_updates];
uint64_t later_index[N_updates];
uint64_t later = 0;
if (n_of_3blocks > 0) {
for (uint64_t i = 0; i < n_of_3blocks; i++) {
const double *Updates_3block = &Updates[i * length_3block];
const uint64_t *Updates_index_3block = &Updates_index[i * 3];
rc = qmckl_woodbury_3_c(context, Dim, Updates_3block, Updates_index_3block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 3, Updates_3block, Updates_index_3block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
}
if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
const double *Updates_2block = &Updates[n_of_3blocks * length_3block];
const uint64_t *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
rc = qmckl_woodbury_2_c(context, Dim, Updates_2block, Updates_index_2block, breakdown, Slater_inv);
if (rc != 0) { // Send the entire block to slagel_splitting
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 2, Updates_2block, Updates_index_2block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
}
else if (remainder == 1) { // Apply last remaining update with slagel_splitting
const double *Updates_1block = &Updates[n_of_3blocks * length_3block];
const uint64_t *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
uint64_t l = 0;
rc = qmckl_slagel_splitting_c(Dim, 1, Updates_1block, Updates_index_1block,
breakdown, Slater_inv, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
}
if (later > 0) {
rc = qmckl_sherman_morrison_splitting_c(context, Dim, later, later_updates, later_index, breakdown, Slater_inv);
}
return QMCKL_SUCCESS;
}
Performance…
This kernel performs best when the number of rank-1 updates is larger than 3 and fail-rates are low.
End of files
assert (qmckl_context_destroy(context) == QMCKL_SUCCESS);
return 0;
}