194 KiB
Jastrow Factor
- Context
- Computation
- Asymptotic component for \(f_{ee}\)
- Electron-electron component \(f_{ee}\)
- Electron-electron component derivative \(f'_{ee}\)
- Electron-nucleus component \(f_{en}\)
- Electron-nucleus component derivative \(f'_{en}\)
- Electron-electron rescaled distances for each order
- Electron-electron rescaled distances for each order and derivatives
- Electron-nucleus rescaled distances for each order
- Electron-nucleus rescaled distances for each order and derivatives
- Prepare for electron-electron-nucleus Jastrow \(f_{een}\)
- Electron-electron-nucleus Jastrow \(f_{een}\)
- Electron-electron-nucleus Jastrow \(f_{een}\) derivative
Functions for the calculation of the Jastrow factor \(f_{ee}, f_{en}, f_{een}\).
These are stored in the factor_ee
, factor_en
, and factor_een
variables.
The jastrow
structure contains all the information required to build
these factors along with their derivatives.
Context
The following data stored in the context:
int32_t |
uninitialized |
in | Keeps bit set for uninitialized data |
int64_t |
aord_num |
in | The number of a coeffecients |
int64_t |
bord_num |
in | The number of b coeffecients |
int64_t |
cord_num |
in | The number of c coeffecients |
int64_t |
type_nucl_num |
in | Number of Nucleii types |
int64_t |
type_nucl_vector[nucl_num] |
in | IDs of types of Nucleii |
double |
aord_vector[aord_num + 1][type_nucl_num] |
in | Order of a polynomial coefficients |
double |
bord_vector[bord_num + 1] |
in | Order of b polynomial coefficients |
double |
cord_vector[cord_num][type_nucl_num] |
in | Order of c polynomial coefficients |
double |
factor_ee[walk_num] |
out | Jastrow factor: electron-electron part |
uint64_t |
factor_ee_date |
out | Jastrow factor: electron-electron part |
double |
factor_en[walk_num] |
out | Jastrow factor: electron-nucleus part |
uint64_t |
factor_en_date |
out | Jastrow factor: electron-nucleus part |
double |
factor_een[walk_num] |
out | Jastrow factor: electron-electron-nucleus part |
uint64_t |
factor_een_date |
out | Jastrow factor: electron-electron-nucleus part |
double |
factor_ee_deriv_e[4][nelec][walk_num] |
out | Derivative of the Jastrow factor: electron-electron-nucleus part |
uint64_t |
factor_ee_deriv_e_date |
out | Keep track of the date for the derivative |
double |
factor_en_deriv_e[4][nelec][walk_num] |
out | Derivative of the Jastrow factor: electron-electron-nucleus part |
uint64_t |
factor_en_deriv_e_date |
out | Keep track of the date for the en derivative |
double |
factor_een_deriv_e[4][nelec][walk_num] |
out | Derivative of the Jastrow factor: electron-electron-nucleus part |
uint64_t |
factor_een_deriv_e_date |
out | Keep track of the date for the een derivative |
computed data:
int64_t |
dim_cord_vect |
Number of unique C coefficients |
uint64_t |
dim_cord_vect_date |
Number of unique C coefficients |
double |
asymp_jasb[2] |
Asymptotic component |
uint64_t |
asymp_jasb_date |
Asymptotic component |
double |
cord_vect_full[dim_cord_vect][nucl_num] |
vector of non-zero coefficients |
uint64_t |
cord_vect_full_date |
Keep track of changes here |
int64_t |
lkpm_combined_index[4][dim_cord_vect] |
Transform l,k,p, and m into consecutive indices |
uint64_t |
lkpm_combined_index_date |
Transform l,k,p, and m into consecutive indices |
double |
tmp_c[elec_num][nucl_num][ncord + 1][ncord][walk_num] |
vector of non-zero coefficients |
double |
dtmp_c[elec_num][4][nucl_num][ncord + 1][ncord][walk_num] |
vector of non-zero coefficients |
double |
een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] |
The electron-electron rescaled distances raised to the powers defined by cord |
uint64_t |
een_rescaled_e_date |
Keep track of the date of creation |
double |
een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] |
The electron-electron rescaled distances raised to the powers defined by cord |
uint64_t |
een_rescaled_n_date |
Keep track of the date of creation |
double |
een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num] |
The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons |
uint64_t |
een_rescaled_e_deriv_e_date |
Keep track of the date of creation |
double |
een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num] |
The electron-electron rescaled distances raised to the powers defined by cord derivatives wrt electrons |
uint64_t |
een_rescaled_n_deriv_e_date |
Keep track of the date of creation |
For H2O we have the following data:
import numpy as np
elec_num = 10
nucl_num = 2
up_num = 5
down_num = 5
nucl_coord = np.array([ [0.000000, 0.000000 ],
[0.000000, 0.000000 ],
[0.000000, 2.059801 ] ])
elec_coord = [[[-0.250655104764153 , 0.503070975550133 , -0.166554344502303],
[-0.587812193472177 , -0.128751981129274 , 0.187773606533075],
[ 1.61335569047166 , -0.615556732874863 , -1.43165470979934 ],
[-4.901239896295210E-003 , -1.120440036458986E-002 , 1.99761909330422 ],
[ 0.766647499681200 , -0.293515395797937 , 3.66454589201239 ],
[-0.127732483187947 , -0.138975497694196 , -8.669850480215846E-002],
[-0.232271834949124 , -1.059321673434182E-002 , -0.504862241464867],
[ 1.09360863531826 , -2.036103063808752E-003 , -2.702796910818986E-002],
[-0.108090166832043 , 0.189161729653261 , 2.15398313919894],
[ 0.397978144318712 , -0.254277292595981 , 2.54553335476344]]];
ee_distance_rescaled = [
[ 0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.550227800352402 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.919155060185168 ,0.937695909123175 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.893325429242815 ,0.851181978173561 ,0.978501685226877 ,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.982457268305353 ,0.976125002619471 ,0.994349933143149 ,
0.844077311588328 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.482407528408731 ,0.414816073699124 ,0.894716035479343 ,
0.876540187084407 ,0.978921170036895 ,0.000000000000000E+000,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.459541909660400 ,0.545007215761510 ,0.883752955884551 ,
0.918958134888791 ,0.986386936267237 ,0.362209822236419 ,
0.000000000000000E+000 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.763732576854455 ,0.817282762358449 ,0.801802919535959 ,
0.900089095449775 ,0.975704636491453 ,0.707836537586060 ,
0.755705808346586 ,0.000000000000000E+000 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.904249454052971 ,0.871097965261373 ,0.982717262706270 ,
0.239901207363622 ,0.836519456769083 ,0.896135326270534 ,
0.930694340243023 ,0.917708540815567 ,0.000000000000000E+000,
0.000000000000000E+000],
[ 0.944400908070716 ,0.922589018494961 ,0.984615718580670 ,
0.514328661540623 ,0.692362267147064 ,0.931894098453677 ,
0.956034127544344 ,0.931221472309472 ,0.540903688625053 ,
0.000000000000000E+000]]
en_distance_rescaled = np.transpose(np.array([
[ 0.443570948411811 , 0.467602196999105 , 0.893870160799932 ,
0.864347190364447 , 0.976608182392358 , 0.187563183468210 ,
0.426404699872689 , 0.665107090128166 , 0.885246991424583 ,
0.924902909715270 ],
[ 0.899360150637444 , 0.860035135365386 , 0.979659405613798 ,
6.140678415933776E-002, 0.835118398056681 , 0.884071658981068 ,
0.923860000907362 , 0.905203414522289 , 0.211286300932359 ,
0.492104840907350 ]]))
# symmetrize it
for i in range(elec_num):
for j in range(elec_num):
ee_distance_rescaled[i][j] = ee_distance_rescaled[j][i]
type_nucl_num = 1
aord_num = 5
bord_num = 5
cord_num = 23
dim_cord_vect= 23
type_nucl_vector = [ 1, 1]
aord_vector = [
[0.000000000000000E+000],
[0.000000000000000E+000],
[-0.380512000000000E+000],
[-0.157996000000000E+000],
[-3.155800000000000E-002],
[2.151200000000000E-002]]
bord_vector = [ 0.500000000000000E-000, 0.153660000000000E-000, 6.722620000000000E-002,
2.157000000000000E-002, 7.309600000000000E-003, 2.866000000000000E-003]
cord_vector = [ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ]
cord_vector_full = [
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
[ 0.571702000000000E-000, -0.514253000000000E-000, -0.513043000000000E-000,
9.486000000000000E-003, -4.205000000000000E-003, 0.426325800000000E-000,
8.288150000000000E-002, 5.118600000000000E-003, -2.997800000000000E-003,
-5.270400000000000E-003, -7.499999999999999E-005, -8.301649999999999E-002,
1.454340000000000E-002, 5.143510000000000E-002, 9.250000000000000E-004,
-4.099100000000000E-003, 4.327600000000000E-003, -1.654470000000000E-003,
2.614000000000000E-003, -1.477000000000000E-003, -1.137000000000000E-003,
-4.010475000000000E-002, 6.106710000000000E-003 ],
]
lkpm_combined_index = [[1 , 1 , 2 , 0],
[0 , 0 , 2 , 1],
[1 , 2 , 3 , 0],
[2 , 1 , 3 , 0],
[0 , 1 , 3 , 1],
[1 , 0 , 3 , 1],
[1 , 3 , 4 , 0],
[2 , 2 , 4 , 0],
[0 , 2 , 4 , 1],
[3 , 1 , 4 , 0],
[1 , 1 , 4 , 1],
[2 , 0 , 4 , 1],
[0 , 0 , 4 , 2],
[1 , 4 , 5 , 0],
[2 , 3 , 5 , 0],
[0 , 3 , 5 , 1],
[3 , 2 , 5 , 0],
[1 , 2 , 5 , 1],
[4 , 1 , 5 , 0],
[2 , 1 , 5 , 1],
[0 , 1 , 5 , 2],
[3 , 0 , 5 , 1],
[1 , 0 , 5 , 2]]
kappa = 1.0
kappa_inv = 1.0/kappa
Data structure
typedef struct qmckl_jastrow_struct{
int32_t uninitialized;
int64_t aord_num;
int64_t bord_num;
int64_t cord_num;
int64_t type_nucl_num;
uint64_t asymp_jasb_date;
uint64_t tmp_c_date;
uint64_t dtmp_c_date;
uint64_t factor_ee_date;
uint64_t factor_en_date;
uint64_t factor_een_date;
uint64_t factor_ee_deriv_e_date;
uint64_t factor_en_deriv_e_date;
uint64_t factor_een_deriv_e_date;
int64_t* type_nucl_vector;
double * aord_vector;
double * bord_vector;
double * cord_vector;
double * asymp_jasb;
double * factor_ee;
double * factor_en;
double * factor_een;
double * factor_ee_deriv_e;
double * factor_en_deriv_e;
double * factor_een_deriv_e;
int64_t dim_cord_vect;
uint64_t dim_cord_vect_date;
double * cord_vect_full;
uint64_t cord_vect_full_date;
int64_t* lkpm_combined_index;
uint64_t lkpm_combined_index_date;
double * tmp_c;
double * dtmp_c;
double * een_rescaled_e;
double * een_rescaled_n;
uint64_t een_rescaled_e_date;
uint64_t een_rescaled_n_date;
double * een_rescaled_e_deriv_e;
double * een_rescaled_n_deriv_e;
uint64_t een_rescaled_e_deriv_e_date;
uint64_t een_rescaled_n_deriv_e_date;
bool provided;
char * type;
} qmckl_jastrow_struct;
The uninitialized
integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and provided == true
.
Some values are initialized by default, and are not concerned by
this mechanism.
qmckl_exit_code qmckl_init_jastrow(qmckl_context context);
qmckl_exit_code qmckl_init_jastrow(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
ctx->jastrow.uninitialized = (1 << 6) - 1;
/* Default values */
return QMCKL_SUCCESS;
}
Access functions
Along with these core functions, calculation of the jastrow factor requires the following additional information to be set:
When all the data for the AOs have been provided, the following
function returns true
.
bool qmckl_jastrow_provided (const qmckl_context context);
#+NAME:post
Initialization functions
To prepare for the Jastrow and its derivative, all the following functions need to be called.
qmckl_exit_code qmckl_set_jastrow_ord_num (qmckl_context context, const int64_t aord_num, const int64_t bord_num, const int64_t cord_num);
qmckl_exit_code qmckl_set_jastrow_type_nucl_num (qmckl_context context, const int64_t type_nucl_num);
qmckl_exit_code qmckl_set_jastrow_type_nucl_vector (qmckl_context context, const int64_t* type_nucl_vector, const int64_t nucl_num);
qmckl_exit_code qmckl_set_jastrow_aord_vector (qmckl_context context, const double * aord_vector);
qmckl_exit_code qmckl_set_jastrow_bord_vector (qmckl_context context, const double * bord_vector);
qmckl_exit_code qmckl_set_jastrow_cord_vector (qmckl_context context, const double * cord_vector);
qmckl_exit_code qmckl_set_jastrow_dependencies (qmckl_context context);
#+NAME:pre2
#+NAME:post2
When the required information is completely entered, other data structures are computed to accelerate the calculations. The intermediates factors are precontracted using BLAS LEVEL 3 operations for an optimal FLOP count.
Test
/* Reference input data */
int64_t walk_num = n2_walk_num;
int64_t elec_num = n2_elec_num;
int64_t elec_up_num = n2_elec_up_num;
int64_t elec_dn_num = n2_elec_dn_num;
double rescale_factor_kappa_ee = 1.0;
double rescale_factor_kappa_en = 1.0;
double nucl_rescale_factor_kappa = 1.0;
double* elec_coord = &(n2_elec_coord[0][0][0]);
const double* nucl_charge = n2_charge;
int64_t nucl_num = n2_nucl_num;
double* charge = n2_charge;
double* nucl_coord = &(n2_nucl_coord[0][0]);
/* Provide Electron data */
qmckl_exit_code rc;
assert(!qmckl_electron_provided(context));
int64_t n;
rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_electron_provided(context));
rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_up_num);
rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_dn_num);
rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_num);
double k_ee = 0.;
double k_en = 0.;
rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == 1.0);
rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == 1.0);
rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == rescale_factor_kappa_ee);
rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == rescale_factor_kappa_en);
int64_t w;
rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_electron_walk_num (context, walk_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_SUCCESS);
assert(w == walk_num);
assert(qmckl_electron_provided(context));
rc = qmckl_set_electron_coord (context, 'N', elec_coord);
assert(rc == QMCKL_SUCCESS);
double elec_coord2[walk_num*3*elec_num];
rc = qmckl_get_electron_coord (context, 'N', elec_coord2);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*elec_num ; ++i) {
assert( elec_coord[i] == elec_coord2[i] );
}
/* Provide Nucleus data */
assert(!qmckl_nucleus_provided(context));
rc = qmckl_get_nucleus_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));
rc = qmckl_get_nucleus_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == nucl_num);
double k;
rc = qmckl_get_nucleus_rescale_factor (context, &k);
assert(rc == QMCKL_SUCCESS);
assert(k == 1.0);
rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_nucleus_rescale_factor (context, &k);
assert(rc == QMCKL_SUCCESS);
assert(k == nucl_rescale_factor_kappa);
double nucl_coord2[3*nucl_num];
rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_nucleus_coord (context, 'T', &(nucl_coord[0]));
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_nucleus_provided(context));
rc = qmckl_get_nucleus_coord (context, 'N', nucl_coord2);
assert(rc == QMCKL_SUCCESS);
for (int64_t k=0 ; k<3 ; ++k) {
for (int64_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_coord[nucl_num*k+i] == nucl_coord2[3*i+k] );
}
}
rc = qmckl_get_nucleus_coord (context, 'T', nucl_coord2);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*nucl_num ; ++i) {
assert( nucl_coord[i] == nucl_coord2[i] );
}
double nucl_charge2[nucl_num];
rc = qmckl_get_nucleus_charge(context, nucl_charge2);
assert(rc == QMCKL_NOT_PROVIDED);
rc = qmckl_set_nucleus_charge(context, nucl_charge);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_get_nucleus_charge(context, nucl_charge2);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<nucl_num ; ++i) {
assert( nucl_charge[i] == nucl_charge2[i] );
}
assert(qmckl_nucleus_provided(context));
Computation
The computed data is stored in the context so that it can be reused by different kernels. To ensure that the data is valid, for each computed data the date of the context is stored when it is computed. To know if some data needs to be recomputed, we check if the date of the dependencies are more recent than the date of the data to compute. If it is the case, then the data is recomputed and the current date is stored.
Asymptotic component for \(f_{ee}\)
Calculate the asymptotic component asymp_jasb
to be substracted from the final
electron-electron jastrow factor \(f_{ee}\). The asymptotic componenet is calculated
via the bord_vector
and the electron-electron rescale factor rescale_factor_kappa
.
\[ J_{asymp} = \frac{b_1 \kappa^-1}{1 + b_2 \kappa^-1} \]
Get
qmckl_exit_code qmckl_get_jastrow_asymp_jasb(qmckl_context context, double* const asymp_jasb);
Compute
qmckl_context | context | in | Global state |
int64_t | bord_num | in | Number of electrons |
double | bord_vector[bord_num + 1] | in | Number of walkers |
double | rescale_factor_kappa_ee | in | Electron coordinates |
double | asymp_jasb[2] | out | Electron-electron distances |
integer function qmckl_compute_asymp_jasb_f(context, bord_num, bord_vector, rescale_factor_kappa_ee, asymp_jasb) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: bord_num
double precision , intent(in) :: bord_vector(bord_num + 1)
double precision , intent(in) :: rescale_factor_kappa_ee
double precision , intent(out) :: asymp_jasb(2)
integer*8 :: i, p
double precision :: kappa_inv, x, asym_one
kappa_inv = 1.0d0 / rescale_factor_kappa_ee
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
asym_one = bord_vector(1) * kappa_inv / (1.0d0 + bord_vector(2) * kappa_inv)
asymp_jasb(:) = (/asym_one, 0.5d0 * asym_one/)
do i = 1, 2
x = kappa_inv
do p = 2, bord_num
x = x * kappa_inv
asymp_jasb(i) = asymp_jasb(i) + bord_vector(p + 1) * x
end do
end do
end function qmckl_compute_asymp_jasb_f
qmckl_exit_code qmckl_compute_asymp_jasb (
const qmckl_context context,
const int64_t bord_num,
const double* bord_vector,
const double rescale_factor_kappa_ee,
double* const asymp_jasb );
Test
asym_one : 0.43340325572525706 asymp_jasb[0] : 0.5323750557252571 asymp_jasb[1] : 0.31567342786262853
assert(qmckl_electron_provided(context));
int64_t type_nucl_num = n2_type_nucl_num;
int64_t* type_nucl_vector = &(n2_type_nucl_vector[0]);
int64_t aord_num = n2_aord_num;
int64_t bord_num = n2_bord_num;
int64_t cord_num = n2_cord_num;
double* aord_vector = &(n2_aord_vector[0][0]);
double* bord_vector = &(n2_bord_vector[0]);
double* cord_vector = &(n2_cord_vector[0][0]);
/* Initialize the Jastrow data */
rc = qmckl_init_jastrow(context);
assert(!qmckl_jastrow_provided(context));
/* Set the data */
rc = qmckl_set_jastrow_ord_num(context, aord_num, bord_num, cord_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_type_nucl_num(context, type_nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_type_nucl_vector(context, type_nucl_vector, nucl_num);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_aord_vector(context, aord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_bord_vector(context, bord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_cord_vector(context, cord_vector);
assert(rc == QMCKL_SUCCESS);
rc = qmckl_set_jastrow_dependencies(context);
assert(rc == QMCKL_SUCCESS);
/* Check if Jastrow is properly initialized */
assert(qmckl_jastrow_provided(context));
double asymp_jasb[2];
rc = qmckl_get_jastrow_asymp_jasb(context, asymp_jasb);
// calculate asymp_jasb
assert(fabs(asymp_jasb[0]-0.5323750557252571) < 1.e-12);
assert(fabs(asymp_jasb[1]-0.31567342786262853) < 1.e-12);
Electron-electron component \(f_{ee}\)
Calculate the electron-electron jastrow component factor_ee
using the asymp_jasb
componenet and the electron-electron rescaled distances ee_distance_rescaled
.
\[ f_{ee} = \sum_{i,j<i} \left\{ \frac{ \eta B_0 C_{ij}}{1 - B_1 C_{ij}} - J_{asymp} + \sum^{nord}_{k}B_k C_{ij}^k \right\} \]
Get
qmckl_exit_code qmckl_get_jastrow_factor_ee(qmckl_context context, double* const factor_ee);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | up_num | in | Number of alpha electrons |
int64_t | bord_num | in | Number of coefficients |
double | bord_vector[bord_num + 1] | in | List of coefficients |
double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances |
double | asymp_jasb[2] | in | Electron-electron distances |
double | factor_ee[walk_num] | out | Electron-electron distances |
integer function qmckl_compute_factor_ee_f(context, walk_num, elec_num, up_num, bord_num, &
bord_vector, ee_distance_rescaled, asymp_jasb, factor_ee) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num
double precision , intent(in) :: bord_vector(bord_num + 1)
double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num)
double precision , intent(in) :: asymp_jasb(2)
double precision , intent(out) :: factor_ee(walk_num)
integer*8 :: i, j, p, ipar, nw
double precision :: pow_ser, x, spin_fact, power_ser
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
factor_ee = 0.0d0
do nw =1, walk_num
do j = 1, elec_num
do i = 1, j - 1
x = ee_distance_rescaled(nw,i,j)
power_ser = 0.0d0
spin_fact = 1.0d0
ipar = 1
do p = 2, bord_num
x = x * ee_distance_rescaled(nw,i,j)
power_ser = power_ser + bord_vector(p + 1) * x
end do
if(j .LE. up_num .OR. i .GT. up_num) then
spin_fact = 0.5d0
ipar = 2
endif
factor_ee(nw) = factor_ee(nw) + spin_fact * bord_vector(1) * &
ee_distance_rescaled(nw,i,j) / &
(1.0d0 + bord_vector(2) * &
ee_distance_rescaled(nw,i,j)) &
-asymp_jasb(ipar) + power_ser
end do
end do
end do
end function qmckl_compute_factor_ee_f
qmckl_exit_code qmckl_compute_factor_ee (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* asymp_jasb,
double* const factor_ee );
Test
/* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context));
//
//double factor_ee[walk_num];
//rc = qmckl_get_jastrow_factor_ee(context, factor_ee);
//
//// calculate factor_ee
//assert(fabs(factor_ee[0]+4.282760865958113) < 1.e-12);
Electron-electron component derivative \(f'_{ee}\)
Calculate the derivative of the factor_ee
using the ee_distance_rescaled
and
the electron-electron rescaled distances derivatives ee_distance_rescaled_deriv_e
.
There are four components, the gradient which has 3 components in the \(x, y, z\)
directions and the laplacian as the last component.
TODO: Add equation
Get
qmckl_exit_code qmckl_get_jastrow_factor_ee_deriv_e(qmckl_context context, double* const factor_ee_deriv_e);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | up_num | in | Number of alpha electrons |
int64_t | bord_num | in | Number of coefficients |
double | bord_vector[bord_num + 1] | in | List of coefficients |
double | ee_distance_rescaled[walk_num][elec_num][elec_num] | in | Electron-electron distances |
double | ee_distance_rescaled_deriv_e[walk_num][4][elec_num][elec_num] | in | Electron-electron distances |
double | asymp_jasb[2] | in | Electron-electron distances |
double | factor_ee_deriv_e[walk_num][4][elec_num] | out | Electron-electron distances |
integer function qmckl_compute_factor_ee_deriv_e_f(context, walk_num, elec_num, up_num, bord_num, &
bord_vector, ee_distance_rescaled, ee_distance_rescaled_deriv_e, &
asymp_jasb, factor_ee_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, bord_num, up_num
double precision , intent(in) :: bord_vector(bord_num + 1)
double precision , intent(in) :: ee_distance_rescaled(walk_num, elec_num, elec_num)
double precision , intent(in) :: ee_distance_rescaled_deriv_e(walk_num, 4, elec_num, elec_num)
double precision , intent(in) :: asymp_jasb(2)
double precision , intent(out) :: factor_ee_deriv_e(elec_num,4,walk_num)
integer*8 :: i, j, p, ipar, nw, ii
double precision :: x, spin_fact, y
double precision :: den, invden, invden2, invden3, xinv
double precision :: lap1, lap2, lap3, third
double precision, dimension(3) :: pow_ser_g
double precision, dimension(4) :: dx
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (bord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
factor_ee_deriv_e = 0.0d0
third = 1.0d0 / 3.0d0
do nw =1, walk_num
do j = 1, elec_num
do i = 1, elec_num
x = ee_distance_rescaled(nw, i, j)
if(abs(x) < 1.0d-18) cycle
pow_ser_g = 0.0d0
spin_fact = 1.0d0
den = 1.0d0 + bord_vector(2) * x
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0d0 / (x + 1.0d-18)
ipar = 1
do ii = 1, 4
dx(ii) = ee_distance_rescaled_deriv_e(nw, ii, i, j)
end do
if((i .LE. up_num .AND. j .LE. up_num ) .OR. &
(i .GT. up_num .AND. j .GT. up_num)) then
spin_fact = 0.5d0
endif
lap1 = 0.0d0
lap2 = 0.0d0
lap3 = 0.0d0
do ii = 1, 3
x = ee_distance_rescaled(nw, i, j)
if(abs(x) < 1.0d-18) cycle
do p = 2, bord_num
y = p * bord_vector(p + 1) * x
pow_ser_g(ii) = pow_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * ee_distance_rescaled(nw, i, j)
end do
lap3 = lap3 - 2.0d0 * bord_vector(2) * dx(ii) * dx(ii)
factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + spin_fact * bord_vector(1) * &
dx(ii) * invden2 + pow_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 * (spin_fact * bord_vector(1) * invden3)
factor_ee_deriv_e( j, ii, nw) = factor_ee_deriv_e( j, ii, nw) + lap1 + lap2 + lap3
end do
end do
end do
end function qmckl_compute_factor_ee_deriv_e_f
qmckl_exit_code qmckl_compute_factor_ee_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t up_num,
const int64_t bord_num,
const double* bord_vector,
const double* ee_distance_rescaled,
const double* ee_distance_rescaled_deriv_e,
const double* asymp_jasb,
double* const factor_ee_deriv_e );
Test
///* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context));
//
//// calculate factor_ee_deriv_e
//double factor_ee_deriv_e[walk_num][4][elec_num];
//rc = qmckl_get_jastrow_factor_ee_deriv_e(context, &(factor_ee_deriv_e[0][0][0]));
//
//// check factor_ee_deriv_e
//assert(fabs(factor_ee_deriv_e[0][0][0]-0.16364894652107934) < 1.e-12);
//assert(fabs(factor_ee_deriv_e[0][1][0]+0.6927548119830084 ) < 1.e-12);
//assert(fabs(factor_ee_deriv_e[0][2][0]-0.073267755223968 ) < 1.e-12);
//assert(fabs(factor_ee_deriv_e[0][3][0]-1.5111672803213185 ) < 1.e-12);
Electron-nucleus component \(f_{en}\)
Calculate the electron-electron jastrow component factor_en
using the aord_vector
coeffecients and the electron-nucleus rescaled distances en_distance_rescaled
.
\[ f_{en} = \sum_{i,j<i} \left\{ \frac{ A_0 C_{ij}}{1 - A_1 C_{ij}} + \sum^{nord}_{k}A_k C_{ij}^k \right\} \]
Get
qmckl_exit_code qmckl_get_jastrow_factor_en(qmckl_context context, double* const factor_en);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of nucleii |
int64_t | type_nucl_num | in | Number of unique nuclei |
int64_t | type_nucl_vector[type_nucl_num] | in | IDs of unique nucleii |
int64_t | aord_num | in | Number of coefficients |
double | aord_vector[aord_num + 1][type_nucl_num] | in | List of coefficients |
double | en_distance_rescaled[walk_num][nucl_num][elec_num] | in | Electron-nucleus distances |
double | factor_en[walk_num] | out | Electron-nucleus jastrow |
integer function qmckl_compute_factor_en_f(context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, aord_vector, &
en_distance_rescaled, factor_en) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(type_nucl_num)
double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num)
double precision , intent(in) :: en_distance_rescaled(walk_num, elec_num, nucl_num)
double precision , intent(out) :: factor_en(walk_num)
integer*8 :: i, a, p, ipar, nw
double precision :: x, spin_fact, power_ser
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num <= 0) then
info = QMCKL_INVALID_ARG_7
return
endif
factor_en = 0.0d0
do nw =1, walk_num
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(nw, i, a)
power_ser = 0.0d0
do p = 2, aord_num
x = x * en_distance_rescaled(nw, i, a)
power_ser = power_ser + aord_vector(p + 1, type_nucl_vector(a)) * x
end do
factor_en(nw) = factor_en(nw) + aord_vector(1, type_nucl_vector(a)) * &
en_distance_rescaled(nw, i, a) / &
(1.0d0 + aord_vector(2, type_nucl_vector(a)) * &
en_distance_rescaled(nw, i, a)) &
+ power_ser
end do
end do
end do
end function qmckl_compute_factor_en_f
qmckl_exit_code qmckl_compute_factor_en (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* aord_vector,
const double* en_distance_rescaled,
double* const factor_en );
Test
///* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context));
//
//double factor_en[walk_num];
//rc = qmckl_get_jastrow_factor_en(context, factor_en);
//
//// calculate factor_en
//assert(fabs(factor_en[0]+5.865822569188727) < 1.e-12);
Electron-nucleus component derivative \(f'_{en}\)
Calculate the electron-electron jastrow component factor_en_deriv_e
derivative
with respect to the electron coordinates using the en_distance_rescaled
and
en_distance_rescaled_deriv_e
which are already calculated previously.
TODO: write equations.
Get
qmckl_exit_code qmckl_get_jastrow_factor_en_deriv_e(qmckl_context context, double* const factor_en_deriv_e);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of nucleii |
int64_t | type_nucl_num | in | Number of unique nuclei |
int64_t | type_nucl_vector[type_nucl_num] | in | IDs of unique nucleii |
int64_t | aord_num | in | Number of coefficients |
double | aord_vector[aord_num + 1][type_nucl_num] | in | List of coefficients |
double | en_distance_rescaled[walk_num][nucl_num][elec_num] | in | Electron-nucleus distances |
double | en_distance_rescaled_deriv_e[walk_num][4][nucl_num][elec_num] | in | Electron-nucleus distance derivatives |
double | factor_en_deriv_e[walk_num][4][elec_num] | out | Electron-nucleus jastrow |
integer function qmckl_compute_factor_en_deriv_e_f(context, walk_num, elec_num, nucl_num, type_nucl_num, &
type_nucl_vector, aord_num, aord_vector, &
en_distance_rescaled, en_distance_rescaled_deriv_e, factor_en_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, aord_num, nucl_num, type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(type_nucl_num)
double precision , intent(in) :: aord_vector(aord_num + 1, type_nucl_num)
double precision , intent(in) :: en_distance_rescaled(walk_num, elec_num, nucl_num)
double precision , intent(in) :: en_distance_rescaled_deriv_e(walk_num, 4, elec_num, nucl_num)
double precision , intent(out) :: factor_en_deriv_e(elec_num,4,walk_num)
integer*8 :: i, a, p, ipar, nw, ii
double precision :: x, spin_fact, den, invden, invden2, invden3, xinv
double precision :: y, lap1, lap2, lap3, third
double precision, dimension(3) :: power_ser_g
double precision, dimension(4) :: dx
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (aord_num <= 0) then
info = QMCKL_INVALID_ARG_7
return
endif
factor_en_deriv_e = 0.0d0
third = 1.0d0 / 3.0d0
do nw =1, walk_num
do a = 1, nucl_num
do i = 1, elec_num
x = en_distance_rescaled(nw, i, a)
if(abs(x) < 1.0d-18) continue
power_ser_g = 0.0d0
den = 1.0d0 + aord_vector(2, type_nucl_vector(a)) * x
invden = 1.0d0 / den
invden2 = invden * invden
invden3 = invden2 * invden
xinv = 1.0d0 / x
do ii = 1, 4
dx(ii) = en_distance_rescaled_deriv_e(nw, ii, i, a)
end do
lap1 = 0.0d0
lap2 = 0.0d0
lap3 = 0.0d0
do ii = 1, 3
x = en_distance_rescaled(nw, i, a)
do p = 2, aord_num
y = p * aord_vector(p + 1, type_nucl_vector(a)) * x
power_ser_g(ii) = power_ser_g(ii) + y * dx(ii)
lap1 = lap1 + (p - 1) * y * xinv * dx(ii) * dx(ii)
lap2 = lap2 + y
x = x * en_distance_rescaled(nw, i, a)
end do
lap3 = lap3 - 2.0d0 * aord_vector(2, type_nucl_vector(a)) * dx(ii) * dx(ii)
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + aord_vector(1, type_nucl_vector(a)) &
* dx(ii) * invden2 &
+ power_ser_g(ii)
end do
ii = 4
lap2 = lap2 * dx(ii) * third
lap3 = lap3 + den * dx(ii)
lap3 = lap3 * aord_vector(1, type_nucl_vector(a)) * invden3
factor_en_deriv_e(i, ii, nw) = factor_en_deriv_e(i, ii, nw) + lap1 + lap2 + lap3
end do
end do
end do
end function qmckl_compute_factor_en_deriv_e_f
qmckl_exit_code qmckl_compute_factor_en_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const int64_t aord_num,
const double* aord_vector,
const double* en_distance_rescaled,
const double* en_distance_rescaled_deriv_e,
double* const factor_en_deriv_e );
Test
///* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context));
//
//// calculate factor_en_deriv_e
//double factor_en_deriv_e[walk_num][4][elec_num];
//rc = qmckl_get_jastrow_factor_en_deriv_e(context, &(factor_en_deriv_e[0][0][0]));
//
//// check factor_en_deriv_e
//assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
Electron-electron rescaled distances for each order
een_rescaled_e
stores the table of the rescaled distances between all
pairs of electrons and raised to the power \(p\) defined by cord_num
:
\[ C_{ij,p} = \left( 1 - \exp{-\kappa C_{ij}} \right)^p \]
where \(C_{ij}\) is the matrix of electron-electron distances.
Get
qmckl_exit_code qmckl_get_jastrow_een_rescaled_e(qmckl_context context, double* const distance_rescaled);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | cord_num | in | Order of polynomials |
double | rescale_factor_kappa_ee | in | Factor to rescale ee distances |
double | ee_distance[walk_num][elec_num][elec_num] | in | Electron-electron distances |
double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | out | Electron-electron rescaled distances |
integer function qmckl_compute_een_rescaled_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, &
ee_distance, een_rescaled_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_ee
double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
double precision , intent(out) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
double precision,dimension(:,:),allocatable :: een_rescaled_e_ij
double precision :: x
integer*8 :: i, j, k, l, nw
allocate(een_rescaled_e_ij(elec_num * (elec_num - 1) / 2, cord_num + 1))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_e = 0.0d0
do nw = 1, walk_num
een_rescaled_e_ij = 0.0d0
een_rescaled_e_ij(:, 1) = 1.0d0
k = 0
do j = 1, elec_num
do i = 1, j - 1
k = k + 1
een_rescaled_e_ij(k, 2) = dexp(-rescale_factor_kappa_ee * ee_distance(i, j, nw))
end do
end do
do l = 2, cord_num
do k = 1, elec_num * (elec_num - 1)/2
een_rescaled_e_ij(k, l + 1) = een_rescaled_e_ij(k, l + 1 - 1) * een_rescaled_e_ij(k, 2)
end do
end do
! prepare the actual een table
een_rescaled_e(0, :, :, nw) = 1.0d0
do l = 1, cord_num
k = 0
do j = 1, elec_num
do i = 1, j - 1
k = k + 1
x = een_rescaled_e_ij(k, l + 1)
een_rescaled_e(l, i, j, nw) = x
een_rescaled_e(l, j, i, nw) = x
end do
end do
end do
end do
end function qmckl_compute_een_rescaled_e_f
qmckl_exit_code qmckl_compute_een_rescaled_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* ee_distance,
double* const een_rescaled_e );
Test
//assert(qmckl_electron_provided(context));
//
//
//double een_rescaled_e[walk_num][elec_num][elec_num][(cord_num + 1)];
//rc = qmckl_get_jastrow_een_rescaled_e(context, &(een_rescaled_e[0][0][0][0]));
//
//// value of (0,2,1)
//assert(fabs(een_rescaled_e[0][0][2][1]-0.08084493981483197) < 1.e-12);
//assert(fabs(een_rescaled_e[0][0][3][1]-0.1066745707571846) < 1.e-12);
//assert(fabs(een_rescaled_e[0][0][4][1]-0.01754273169464735) < 1.e-12);
//assert(fabs(een_rescaled_e[0][1][3][2]-0.02214680362033448) < 1.e-12);
//assert(fabs(een_rescaled_e[0][1][4][2]-0.0005700154999202759) < 1.e-12);
//assert(fabs(een_rescaled_e[0][1][5][2]-0.3424402276009091) < 1.e-12);
Electron-electron rescaled distances for each order and derivatives
een_rescaled_e
stores the table of the rescaled distances between all
pairs of electrons and raised to the power \(p\) defined by cord_num
.
Here we take its derivatives required for the een jastrow.
TODO: write formulae
Get
qmckl_exit_code qmckl_get_jastrow_een_rescaled_e_deriv_e(qmckl_context context, double* const distance_rescaled);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | cord_num | in | Order of polynomials |
double | rescale_factor_kappa_ee | in | Factor to rescale ee distances |
double | coord_new[walk_num][3][elec_num] | in | Electron coordinates |
double | ee_distance[walk_num][elec_num][elec_num] | in | Electron-electron distances |
double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-electron distances |
double | een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num] | out | Electron-electron rescaled distances |
integer function qmckl_compute_factor_een_rescaled_e_deriv_e_f(context, walk_num, elec_num, cord_num, rescale_factor_kappa_ee, &
coord_new, ee_distance, een_rescaled_e, een_rescaled_e_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_ee
double precision , intent(in) :: coord_new(elec_num,3,walk_num)
double precision , intent(in) :: ee_distance(elec_num,elec_num,walk_num)
double precision , intent(in) :: een_rescaled_e(0:cord_num,elec_num,elec_num,walk_num)
double precision , intent(out) :: een_rescaled_e_deriv_e(0:cord_num,elec_num,4,elec_num,walk_num)
double precision,dimension(:,:,:),allocatable :: elec_dist_deriv_e
double precision :: x, rij_inv, kappa_l
integer*8 :: i, j, k, l, nw, ii
allocate(elec_dist_deriv_e(4,elec_num,elec_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_e_deriv_e = 0.0d0
do nw = 1, walk_num
do j = 1, elec_num
do i = 1, elec_num
rij_inv = 1.0d0 / ee_distance(i, j, nw)
do ii = 1, 3
elec_dist_deriv_e(ii, i, j) = (coord_new(i, ii, nw) - coord_new(j, ii, nw)) * rij_inv
end do
elec_dist_deriv_e(4, i, j) = 2.0d0 * rij_inv
end do
elec_dist_deriv_e(:, j, j) = 0.0d0
end do
! prepare the actual een table
do l = 1, cord_num
kappa_l = - dble(l) * rescale_factor_kappa_ee
do j = 1, elec_num
do i = 1, elec_num
do ii = 1, 4
een_rescaled_e_deriv_e(l, i, ii, j, nw) = kappa_l * elec_dist_deriv_e(ii, i, j)
end do
een_rescaled_e_deriv_e(l, i, 4, j, nw) = een_rescaled_e_deriv_e(l, i, 4, j, nw) &
+ een_rescaled_e_deriv_e(l, i, 1, j, nw) * een_rescaled_e_deriv_e(l, i, 1, j, nw) &
+ een_rescaled_e_deriv_e(l, i, 2, j, nw) * een_rescaled_e_deriv_e(l, i, 2, j, nw) &
+ een_rescaled_e_deriv_e(l, i, 3, j, nw) * een_rescaled_e_deriv_e(l, i, 3, j, nw)
do ii = 1, 4
een_rescaled_e_deriv_e(l, i, ii, j, nw) = een_rescaled_e_deriv_e(l, i, ii, j, nw) * &
een_rescaled_e(l, i, j, nw)
end do
end do
end do
end do
end do
end function qmckl_compute_factor_een_rescaled_e_deriv_e_f
qmckl_exit_code qmckl_compute_factor_een_rescaled_e_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t cord_num,
const double rescale_factor_kappa_ee,
const double* coord_new,
const double* ee_distance,
const double* een_rescaled_e,
double* const een_rescaled_e_deriv_e );
Test
//assert(qmckl_electron_provided(context));
Electron-nucleus rescaled distances for each order
een_rescaled_n
stores the table of the rescaled distances between
electrons and nucleii raised to the power \(p\) defined by cord_num
:
\[ C_{ia,p} = \left( 1 - \exp{-\kappa C_{ia}} \right)^p \]
where \(C_{ia}\) is the matrix of electron-nucleus distances.
Get
qmckl_exit_code qmckl_get_jastrow_een_rescaled_n(qmckl_context context, double* const distance_rescaled);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of atoms |
int64_t | cord_num | in | Order of polynomials |
double | rescale_factor_kappa_en | in | Factor to rescale ee distances |
double | en_distance[walk_num][elec_num][nucl_num] | in | Electron-nucleus distances |
double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | out | Electron-nucleus rescaled distances |
integer function qmckl_compute_een_rescaled_n_f(context, walk_num, elec_num, nucl_num, cord_num, rescale_factor_kappa_en, &
en_distance, een_rescaled_n) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_en
double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num)
double precision , intent(out) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_n = 0.0d0
do nw = 1, walk_num
! prepare the actual een table
een_rescaled_n(0, :, :, nw) = 1.0d0
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(1, a, i, nw) = dexp(-rescale_factor_kappa_en * en_distance(i, a, nw))
end do
end do
do l = 2, cord_num
do a = 1, nucl_num
do i = 1, elec_num
een_rescaled_n(l, a, i, nw) = een_rescaled_n(l - 1, a, i, nw) * een_rescaled_n(1, a, i, nw)
end do
end do
end do
end do
end function qmckl_compute_een_rescaled_n_f
qmckl_exit_code qmckl_compute_een_rescaled_n (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const double rescale_factor_kappa_en,
const double* en_distance,
double* const een_rescaled_n );
Test
//assert(qmckl_electron_provided(context));
//
//double een_rescaled_n[walk_num][elec_num][nucl_num][(cord_num + 1)];
//rc = qmckl_get_jastrow_een_rescaled_n(context, &(een_rescaled_n[0][0][0][0]));
//
//// value of (0,2,1)
//assert(fabs(een_rescaled_n[0][2][0][1]-0.10612983920006765) < 1.e-12);
//assert(fabs(een_rescaled_n[0][3][0][1]-0.135652809635553) < 1.e-12);
//assert(fabs(een_rescaled_n[0][4][0][1]-0.023391817607642338) < 1.e-12);
//assert(fabs(een_rescaled_n[0][3][1][2]-0.880957224822116) < 1.e-12);
//assert(fabs(een_rescaled_n[0][4][1][2]-0.027185942659395074) < 1.e-12);
//assert(fabs(een_rescaled_n[0][5][1][2]-0.01343938025140174) < 1.e-12);
Electron-nucleus rescaled distances for each order and derivatives
een_rescaled_n_deriv_e
stores the table of the rescaled distances between
electrons and nucleii raised to the power \(p\) defined by cord_num
:
Get
qmckl_exit_code qmckl_get_jastrow_een_rescaled_n_deriv_e(qmckl_context context, double* const distance_rescaled);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of atoms |
int64_t | cord_num | in | Order of polynomials |
double | rescale_factor_kappa_en | in | Factor to rescale ee distances |
double | coord_new[walk_num][3][elec_num] | in | Electron coordinates |
double | coord[3][nucl_num] | in | Nuclear coordinates |
double | en_distance[walk_num][elec_num][nucl_num] | in | Electron-nucleus distances |
double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus distances |
double | een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num] | out | Electron-nucleus rescaled distances |
integer function qmckl_compute_factor_een_rescaled_n_deriv_e_f(context, walk_num, elec_num, nucl_num, &
cord_num, rescale_factor_kappa_en, &
coord_new, coord, en_distance, een_rescaled_n, een_rescaled_n_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
double precision , intent(in) :: rescale_factor_kappa_en
double precision , intent(in) :: coord_new(elec_num,3,walk_num)
double precision , intent(in) :: coord(nucl_num,3)
double precision , intent(in) :: en_distance(elec_num,nucl_num,walk_num)
double precision , intent(in) :: een_rescaled_n(0:cord_num,nucl_num,elec_num,walk_num)
double precision , intent(out) :: een_rescaled_n_deriv_e(0:cord_num,nucl_num,4,elec_num,walk_num)
double precision,dimension(:,:,:),allocatable :: elnuc_dist_deriv_e
double precision :: x, ria_inv, kappa_l
integer*8 :: i, a, k, l, nw, ii
allocate(elnuc_dist_deriv_e(4, elec_num, nucl_num))
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
! Prepare table of exponentiated distances raised to appropriate power
een_rescaled_n_deriv_e = 0.0d0
do nw = 1, walk_num
! prepare the actual een table
do a = 1, nucl_num
do i = 1, elec_num
ria_inv = 1.0d0 / en_distance(i, a, nw)
do ii = 1, 3
elnuc_dist_deriv_e(ii, i, a) = (coord_new(i, ii, nw) - coord(a, ii)) * ria_inv
end do
elnuc_dist_deriv_e(4, i, a) = 2.0d0 * ria_inv
end do
end do
do l = 0, cord_num
kappa_l = - dble(l) * rescale_factor_kappa_en
do a = 1, nucl_num
do i = 1, elec_num
do ii = 1, 4
een_rescaled_n_deriv_e(l, a, ii, i, nw) = kappa_l * elnuc_dist_deriv_e(ii, i, a)
end do
een_rescaled_n_deriv_e(l, a, 4, i, nw) = een_rescaled_n_deriv_e(l, a, 4, i, nw) &
+ een_rescaled_n_deriv_e(l, a, 1, i, nw) * een_rescaled_n_deriv_e(l, a, 1, i, nw) &
+ een_rescaled_n_deriv_e(l, a, 2, i, nw) * een_rescaled_n_deriv_e(l, a, 2, i, nw) &
+ een_rescaled_n_deriv_e(l, a, 3, i, nw) * een_rescaled_n_deriv_e(l, a, 3, i, nw)
do ii = 1, 4
een_rescaled_n_deriv_e(l, a, ii, i, nw) = een_rescaled_n_deriv_e(l, a, ii, i, nw) * &
een_rescaled_n(l, a, i, nw)
end do
end do
end do
end do
end do
end function qmckl_compute_factor_een_rescaled_n_deriv_e_f
qmckl_exit_code qmckl_compute_factor_een_rescaled_n_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const double rescale_factor_kappa_en,
const double* coord_new,
const double* coord,
const double* en_distance,
const double* een_rescaled_n,
double* const een_rescaled_n_deriv_e );
Test
//assert(qmckl_electron_provided(context));
Prepare for electron-electron-nucleus Jastrow \(f_{een}\)
Prepare cord_vect_full
and lkpm_combined_index
tables required for the
calculation of the three-body jastrow factor_een
and its derivative
factor_een_deriv_e
.
Get
qmckl_exit_code qmckl_get_jastrow_dim_cord_vect(qmckl_context context, int64_t* const dim_cord_vect);
qmckl_exit_code qmckl_get_jastrow_cord_vect_full(qmckl_context context, double* const cord_vect_full);
qmckl_exit_code qmckl_get_jastrow_lkpm_combined_index(qmckl_context context, int64_t* const lkpm_combined_index);
Compute dim_cord_vect
qmckl_context | context | in | Global state |
int64_t | cord_num | in | Order of polynomials |
int64_t | dim_cord_vect | out | dimension of cord_vect_full table |
integer function qmckl_compute_dim_cord_vect_f(context, cord_num, dim_cord_vect) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(out) :: dim_cord_vect
double precision :: x
integer*8 :: i, a, k, l, p, lmax
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
dim_cord_vect = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
endif
do l = lmax, 0, -1
if (iand(p - k - l, 1_8) == 1) cycle
dim_cord_vect = dim_cord_vect + 1
end do
end do
end do
end function qmckl_compute_dim_cord_vect_f
qmckl_exit_code qmckl_compute_dim_cord_vect (
const qmckl_context context,
const int64_t cord_num,
int64_t* const dim_cord_vect );
Compute cord_vect_full
qmckl_context | context | in | Global state |
int64_t | nucl_num | in | Number of atoms |
int64_t | cord_num | in | Order of polynomials |
int64_t | dim_cord_vect | in | dimension of cord full table |
int64_t | type_nucl_num | in | dimension of cord full table |
int64_t | type_nucl_vector[nucl_num] | in | dimension of cord full table |
double | cord_vector[cord_num][type_nucl_num] | in | dimension of cord full table |
double | cord_vect_full[dim_cord_vect][nucl_num] | out | Full list of coefficients |
integer function qmckl_compute_cord_vect_full_f(context, nucl_num, cord_num, dim_cord_vect, type_nucl_num, &
type_nucl_vector, cord_vector, cord_vect_full) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect
integer*8 , intent(in) :: type_nucl_num
integer*8 , intent(in) :: type_nucl_vector(nucl_num)
double precision , intent(in) :: cord_vector(cord_num, type_nucl_num)
double precision , intent(out) :: cord_vect_full(nucl_num,dim_cord_vect)
double precision :: x
integer*8 :: i, a, k, l, nw
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (type_nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (dim_cord_vect <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
do a = 1, nucl_num
cord_vect_full(1:dim_cord_vect,a) = cord_vector(1:dim_cord_vect,type_nucl_vector(a))
end do
end function qmckl_compute_cord_vect_full_f
qmckl_exit_code qmckl_compute_cord_vect_full (
const qmckl_context context,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const int64_t type_nucl_num,
const int64_t* type_nucl_vector,
const double* cord_vector,
double* const cord_vect_full );
Compute lkpm_combined_index
qmckl_context | context | in | Global state |
int64_t | cord_num | in | Order of polynomials |
int64_t | dim_cord_vect | in | dimension of cord full table |
int64_t | lpkm_combined_index[4][dim_cord_vect] | out | Full list of combined indices |
integer function qmckl_compute_lkpm_combined_index_f(context, cord_num, dim_cord_vect, &
lkpm_combined_index) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: cord_num
integer*8 , intent(in) :: dim_cord_vect
integer*8 , intent(out) :: lkpm_combined_index(dim_cord_vect, 4)
double precision :: x
integer*8 :: i, a, k, l, kk, p, lmax, m
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (dim_cord_vect <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
kk = 0
do p = 2, cord_num
do k = p - 1, 0, -1
if (k .ne. 0) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if (iand(p - k - l, 1_8) .eq. 1) cycle
m = (p - k - l)/2
kk = kk + 1
lkpm_combined_index(kk, 1) = l
lkpm_combined_index(kk, 2) = k
lkpm_combined_index(kk, 3) = p
lkpm_combined_index(kk, 4) = m
end do
end do
end do
end function qmckl_compute_lkpm_combined_index_f
qmckl_exit_code qmckl_compute_lkpm_combined_index (
const qmckl_context context,
const int64_t cord_num,
const int64_t dim_cord_vect,
int64_t* const lpkm_combined_index );
Test
//assert(qmckl_electron_provided(context));
//
Electron-electron-nucleus Jastrow \(f_{een}\)
Calculate the electron-electron-nuclear three-body jastrow component factor_een
using the above prepared tables.
TODO: write equations.
Get
qmckl_exit_code qmckl_get_jastrow_factor_een(qmckl_context context, double* const factor_een);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of nucleii |
int64_t | cord_num | in | order of polynomials |
int64_t | dim_cord_vect | in | dimension of full coefficient vector |
double | cord_vect_full[dim_cord_vect][nucl_num] | in | full coefficient vector |
int64_t | lkpm_combined_index[4][dim_cord_vect] | in | combined indices |
double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-nucleus rescaled |
double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor |
double | factor_een[walk_num] | out | Electron-nucleus jastrow |
integer function qmckl_compute_factor_een_f(context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, &
cord_vect_full, lkpm_combined_index, &
een_rescaled_e, een_rescaled_n, factor_een) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect)
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num)
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num)
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num)
double precision , intent(out) :: factor_een(walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(1, n)
k = lkpm_combined_index(2, n)
p = lkpm_combined_index(3, n)
m = lkpm_combined_index(4, n)
do a = 1, nucl_num
accu2 = 0.0d0
cn = cord_vect_full(n, a)
do j = 1, elec_num
accu = 0.0d0
do i = 1, elec_num
accu = accu + een_rescaled_e(nw, i, j, k) * &
een_rescaled_n(nw, i, a, m)
end do
accu2 = accu2 + accu * een_rescaled_n(nw, j, a, m + l)
end do
factor_een(nw) = factor_een(nw) + accu2 + cn
end do
end do
end do
end function qmckl_compute_factor_een_f
qmckl_exit_code qmckl_compute_factor_een (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
double* const factor_een );
Test
/* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context));
//
//// calculate factor_en_deriv_e
//double factor_een[walk_num];
//rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
//// check factor_en_deriv_e
//assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);
Electron-electron-nucleus Jastrow \(f_{een}\) derivative
Calculate the electron-electron-nuclear three-body jastrow component factor_een_deriv_e
using the above prepared tables.
TODO: write equations.
Get
qmckl_exit_code qmckl_get_jastrow_factor_een_deriv_e(qmckl_context context, double* const factor_een_deriv_e);
Compute
qmckl_context | context | in | Global state |
int64_t | walk_num | in | Number of walkers |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of nucleii |
int64_t | cord_num | in | order of polynomials |
int64_t | dim_cord_vect | in | dimension of full coefficient vector |
double | cord_vect_full[dim_cord_vect][nucl_num] | in | full coefficient vector |
int64_t | lkpm_combined_index[4][dim_cord_vect] | in | combined indices |
double | een_rescaled_e[walk_num][elec_num][elec_num][0:cord_num] | in | Electron-nucleus rescaled |
double | een_rescaled_n[walk_num][elec_num][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor |
double | een_rescaled_e_deriv_e[walk_num][elec_num][4][elec_num][0:cord_num] | in | Electron-nucleus rescaled |
double | een_rescaled_n_deriv_e[walk_num][elec_num][4][nucl_num][0:cord_num] | in | Electron-nucleus rescaled factor |
double | factor_een_deriv_e[walk_num][4][elec_num] | out | Electron-nucleus jastrow |
integer function qmckl_compute_factor_een_deriv_e_f(context, walk_num, elec_num, nucl_num, cord_num, dim_cord_vect, &
cord_vect_full, lkpm_combined_index, &
een_rescaled_e, een_rescaled_n, &
een_rescaled_e_deriv_e, een_rescaled_n_deriv_e, factor_een_deriv_e) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: walk_num, elec_num, cord_num, nucl_num, dim_cord_vect
integer*8 , intent(in) :: lkpm_combined_index(4,dim_cord_vect)
double precision , intent(in) :: cord_vect_full(dim_cord_vect, nucl_num)
double precision , intent(in) :: een_rescaled_e(walk_num, elec_num, elec_num, 0:cord_num)
double precision , intent(in) :: een_rescaled_n(walk_num, elec_num, nucl_num, 0:cord_num)
double precision , intent(in) :: een_rescaled_e_deriv_e(walk_num, elec_num, 4, elec_num, 0:cord_num)
double precision , intent(in) :: een_rescaled_n_deriv_e(walk_num, elec_num, 4, nucl_num, 0:cord_num)
double precision , intent(out) :: factor_een_deriv_e(elec_num, 4, walk_num)
integer*8 :: i, a, j, l, k, p, m, n, nw
double precision :: accu, accu2, cn
double precision :: daccu(1:4), daccu2(1:4)
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (walk_num <= 0) then
info = QMCKL_INVALID_ARG_2
return
endif
if (elec_num <= 0) then
info = QMCKL_INVALID_ARG_3
return
endif
if (nucl_num <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (cord_num <= 0) then
info = QMCKL_INVALID_ARG_5
return
endif
factor_een_deriv_e = 0.0d0
do nw =1, walk_num
do n = 1, dim_cord_vect
l = lkpm_combined_index(1, n)
k = lkpm_combined_index(2, n)
p = lkpm_combined_index(3, n)
m = lkpm_combined_index(4, n)
do a = 1, nucl_num
cn = cord_vect_full(n, a)
do j = 1, elec_num
accu = 0.0d0
accu2 = 0.0d0
daccu = 0.0d0
daccu2 = 0.0d0
do i = 1, elec_num
accu = accu + een_rescaled_e(nw, i, j, k) * &
een_rescaled_n(nw, i, a, m)
accu2 = accu2 + een_rescaled_e(nw, i, j, k) * &
een_rescaled_n(nw, i, a, m + l)
daccu(1:4) = daccu(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * &
een_rescaled_n(nw, i, a, m)
daccu2(1:4) = daccu2(1:4) + een_rescaled_e_deriv_e(nw, j, 1:4, i, k) * &
een_rescaled_n(nw, i, a, m + l)
end do
factor_een_deriv_e(j, 1:4, nw) = factor_een_deriv_e(j, 1:4, nw) + &
(accu * een_rescaled_n_deriv_e(nw, j, 1:4, a, m + l) &
+ daccu(1:4) * een_rescaled_n(nw, j, a, m + l) &
+ daccu2(1:4) * een_rescaled_n(nw, j, a, m) &
+ accu2 * een_rescaled_n_deriv_e(nw, j, 1:4, a, m)) * cn
factor_een_deriv_e(j, 4, nw) = factor_een_deriv_e(j, 4, nw) + 2.0d0 * ( &
daccu (1) * een_rescaled_n_deriv_e(nw, j, 1, a, m + l) + &
daccu (2) * een_rescaled_n_deriv_e(nw, j, 2, a, m + l) + &
daccu (3) * een_rescaled_n_deriv_e(nw, j, 3, a, m + l) + &
daccu2(1) * een_rescaled_n_deriv_e(nw, j, 1, a, m ) + &
daccu2(2) * een_rescaled_n_deriv_e(nw, j, 2, a, m ) + &
daccu2(3) * een_rescaled_n_deriv_e(nw, j, 3, a, m ) ) * cn
end do
end do
end do
end do
end function qmckl_compute_factor_een_deriv_e_f
qmckl_exit_code qmckl_compute_factor_een_deriv_e (
const qmckl_context context,
const int64_t walk_num,
const int64_t elec_num,
const int64_t nucl_num,
const int64_t cord_num,
const int64_t dim_cord_vect,
const double* cord_vect_full,
const int64_t* lkpm_combined_index,
const double* een_rescaled_e,
const double* een_rescaled_n,
const double* een_rescaled_e_deriv_e,
const double* een_rescaled_n_deriv_e,
double* const factor_een_deriv_e );
Test
///* Check if Jastrow is properly initialized */
//assert(qmckl_jastrow_provided(context));
//
//// calculate factor_en_deriv_e
//double factor_een[walk_num];
//rc = qmckl_get_jastrow_factor_een(context, &(factor_een[0]));
//
//// check factor_en_deriv_e
//assert(fabs(factor_en_deriv_e[0][0][0]-0.11609919541763383) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][1][0]+0.23301394780804574) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][2][0]-0.17548337641865783) < 1.e-12);
//assert(fabs(factor_en_deriv_e[0][3][0]+0.9667363412285741 ) < 1.e-12);