1
0
mirror of https://github.com/TREX-CoE/qmckl.git synced 2025-01-10 21:18:37 +01:00
qmckl/org/examples.org

5.6 KiB

Code examples

In this section, we present examples of usage of QMCkl. For simplicity, we assume that the wave function parameters are stores in a TREXIO file.

Checking errors

All QMCkl functions return an error code. A convenient way to handle errors is to write an error-checking function that displays the error in text format and exits the program.

subroutine qmckl_check_error(rc, message)
use qmckl
implicit none
integer(qmckl_exit_code), intent(in) :: rc
character(len=*)        , intent(in) :: message
character(len=128)                   :: str_buffer
if (rc /= QMCKL_SUCCESS) then
   print *, message
   call qmckl_string_of_error(rc, str_buffer)
   print *, str_buffer
   call exit(rc)
end if
end subroutine qmckl_check_error

Computing an atomic orbital on a grid

The following program, in Fortran, computes the values of an atomic orbital on a regular 3-dimensional grid. The 100^3 grid points are automatically defined, such that the molecule fits in a box with 5 atomic units in the borders.

This program uses the qmckl_check_error function defined above.

To use this program, run

$ ao_grid <trexio_file> <AO_id> <point_num>
<<qmckl_check_error>>

program ao_grid
use qmckl
implicit none

integer(qmckl_context)    :: qmckl_ctx  ! QMCkl context
integer(qmckl_exit_code)  :: rc         ! Exit code of QMCkl functions

character(len=128)            :: trexio_filename
character(len=128)            :: str_buffer
integer                       :: ao_id
integer                       :: point_num_x

integer(c_int64_t)            :: nucl_num
double precision, allocatable :: nucl_coord(:,:)

integer(c_int64_t)            :: point_num
integer(c_int64_t)            :: ao_num
integer(c_int64_t)            :: ipoint, i, j, k
double precision              :: x, y, z, dr(3)
double precision              :: rmin(3), rmax(3)
double precision, allocatable :: points(:,:)
double precision, allocatable :: ao_vgl(:,:,:)

Start by fetching the command-line arguments:

if (iargc() /= 3) then
   print *, 'Syntax: ao_grid <trexio_file> <AO_id> <point_num>'
   call exit(-1)
end if
call getarg(1, trexio_filename)
call getarg(2, str_buffer)
read(str_buffer, *) ao_id
call getarg(3, str_buffer)
read(str_buffer, *) point_num_x

if (point_num_x < 0 .or. point_num_x > 300) then
   print *, 'Error: 0 < point_num < 300'
   call exit(-1)
end if

Create the QMCkl context and initialize it with the wave function present in the TREXIO file:

qmckl_ctx = qmckl_context_create()
rc  = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*len(trim(trexio_filename)))
call qmckl_check_error(rc, 'Read TREXIO')

We need to check that ao_id is in the range, so we get the total number of AOs from QMCkl:

rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num)
call qmckl_check_error(rc, 'Getting ao_num')

if (ao_id < 0 .or. ao_id > ao_num) then
   print *, 'Error: 0 < ao_id < ', ao_num
   call exit(-1)
end if

Now we will compute the limits of the box in which the molecule fits. For that, we first need to ask QMCkl the coordinates of nuclei.

rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num)
call qmckl_check_error(rc, 'Get nucleus num')

allocate( nucl_coord(3, nucl_num) )
rc = qmckl_get_nucleus_coord(qmckl_ctx, 'N', nucl_coord, 3_8*nucl_num)
call qmckl_check_error(rc, 'Get nucleus coord')

We now compute the coordinates of opposite points of the box, and the distance between points along the 3 directions:

rmin(1) = minval( nucl_coord(1,:) ) - 5.d0
rmin(2) = minval( nucl_coord(2,:) ) - 5.d0
rmin(3) = minval( nucl_coord(3,:) ) - 5.d0
   
rmax(1) = maxval( nucl_coord(1,:) ) + 5.d0
rmax(2) = maxval( nucl_coord(2,:) ) + 5.d0
rmax(3) = maxval( nucl_coord(3,:) ) + 5.d0

dr(1:3) = (rmax(1:3) - rmin(1:3)) / dble(point_num_x-1)

We now produce the list of point coordinates where the AO will be evaluated:

point_num = point_num_x**3
allocate( points(point_num, 3) )
ipoint=0
z = rmin(3)
do k=1,point_num_x
   y = rmin(2)
   do j=1,point_num_x
      x = rmin(1)
      do i=1,point_num_x
         ipoint = ipoint+1
         points(ipoint,1) = x
         points(ipoint,2) = y
         points(ipoint,3) = z
         x = x + dr(1)
      end do
      y = y + dr(2)
   end do
   z = z + dr(3)
end do

We give the points to QMCkl:

rc = qmckl_set_point(qmckl_ctx, 'T', points, point_num)
call qmckl_check_error(rc, 'Setting points')

We allocate the space required to retrieve the values, gradients and Laplacian of all AOs, and ask to retrieve the values of the AOs computed at the point positions.

allocate( ao_vgl(ao_num, 5, point_num) )
rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num)
call qmckl_check_error(rc, 'Setting points')

We finally print the value of the AO:

do ipoint=1, point_num
   print '(3(F16.10,X),E20.10)', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint)
end do
deallocate( nucl_coord, points, ao_vgl )
end program ao_grid