* comment * Update distance test code The distance test has been updated to the latest version, with a first attempt at using vfc_probes inside it * Functional implementation of vfc_probes in the distance tests This commit has the first functional vfc_ci tests. Verificarlo tests should be written over the existing tests, and they can be enabled with the following configure command: QMCKL_DEVEL=1 ./configure --prefix=$PWD/_install --enable-maintainer-mode --enable-vfc_ci CC="verificarlo-f -Mpreprocess -D VFC_CI" FC="verificarlo-f -Mpreprocess -D VFC_CI" --host=x86_64 The --enable-vfc_ci flag will trigger the linking of the vfc_ci library. Moreover, as of now, the "-Mpreprocess" and "-D VFC_CI" flags have to be specified directly here. There is probably an appropriate macro to place those flags into but I couldn't find it yet, and could only manage to build the tests this way. When the VFC_CI preprocessor is defined, somme additional code to register and export the test probes can be executed (see qmckl_distance.org). As of now, the tests are built as normal, even though they are expected to fail : make all make check From there, the test_qmckl_distance (and potentially the others) executable can be called at will. This will typically be done automatically by vfc_ci, but one could manually execute the executable by defining the following env variables : VFC_PROBES_OUTPUT="test.csv" VFC_BACKENDS="libinterflop_ieee.so" depending on the export file and the Verificarlo backend to be used. The next steps will be to define more tests such as this one, and to integrate them into a Verificarlo CI workflow (by writing a vfc_tests_config.json file and using the automatic CI setup command). * Error in FOrtran interface fixed * Added missing Fortran interfaces * Modify distance test and install process integration All probes are now ignored using only the preprocessor (instead of checking for a facultative argument) in the distance test. Moreover,preprocessing can now be enabled correctly using FCFLAGS (the issue seemed to come from the order of the arguments passed to gfortran/verificarlo-f with the preprocessor arg having to come first). * Add vfc_probes to AO tests vfc_probes have been added to qmckl_ao.org in the same way as qmckl_distance.org, which means that it can be enabled or disabled at compile time using the --enable-vfc_ci option. qmckl_distance.org has been slightly modified with a better indentation, and configure.ac now adds the "-D VFC_CI" flag to CFLAGS when vfc_ci is enabled. * Start work on the vfc tests config file and on a probes wrapper The goal in the next few commits is to make the integration of vfc_probes even easier by using a wrapper to vfc_probe dedicated to qmckl. This will make it easier to create a call to vfc_probe that can be ignored if VFC_CI is not defined in the preprocessor. Once this is done, the integration will be completed by trying to create an actual workflow to automatically build the library and execute CI tests. * Moved qmckl_probes out of src As of now, qmckl_probes have been moved to tools, and can be built via a bash script. This approach seems to make more sense, as this should not be a part of the library itself, but an additional tool to test it. * Functional Makefile setup to enable qmckl_probes The current setup builds qmck_probes by adding it to the main QMckl libray (by adding it to the libtool sources). The Fortran interface's module still need to be compiled separately. TODO : Clean the build setup, improve integration in qmckl_tests and update tests in qmckl_ao with the new syntax. * New probes syntax in AO tests * Clean the probes/Makefile setup The Fortran module is now built a the same time than the main library. The commit also adds a few fixes in the tests and probes wrapper. Co-authored-by: Anthony Scemama <scemama@irsamc.ups-tlse.fr>
96 KiB
qmckl_probe(#+TITLE: Atomic Orbitals
The atomic basis set is defined as a list of shells. Each shell $s$ is centered on a nucleus $A$, possesses a given angular momentum $l$ and a radial function $R_s$. The radial function is a linear combination of \emph{primitive} functions that can be of type Slater ($p=1$) or Gaussian ($p=2$):
\[ R_s(\mathbf{r}) = \mathcal{N}_s |\mathbf{r}-\mathbf{R}_A|^{n_s} \sum_{k=1}^{N_{\text{prim}}} a_{ks}\, f_{ks} \exp \left( - \gamma_{ks} | \mathbf{r}-\mathbf{R}_A | ^p \right). \]
In the case of Gaussian functions, $n_s$ is always zero. The normalization factor $\mathcal{N}_s$ ensures that all the functions of the shell are normalized to unity. Usually, basis sets are given a combination of normalized primitives, so the normalization coefficients of the primitives, $f_{ks}$, need also to be provided.
Atomic orbitals (AOs) are defined as
\[ \chi_i (\mathbf{r}) = \mathcal{M}_i\, P_{\eta(i)}(\mathbf{r})\, R_{\theta(i)} (\mathbf{r}) \]
where $\theta(i)$ returns the shell on which the AO is expanded, and $\eta(i)$ denotes which angular function is chosen. Here, the parameter $\mathcal{M}_i$ is an extra parameter which allows the normalization of the different functions of the same shell to be different, as in GAMESS for example.
In this section we describe first how the basis set is stored in the context, and then we present the kernels used to compute the values, gradients and Laplacian of the atomic basis functions.
Context
The following arrays are stored in the context:
type |
Gaussian ('G' ) or Slater ('S' ) |
|
shell_num |
Number of shells | |
prim_num |
Total number of primitives | |
nucleus_index |
[nucl_num] |
Index of the first shell of each nucleus |
shell_ang_mom |
[shell_num] |
Angular momentum of each shell |
shell_prim_num |
[shell_num] |
Number of primitives in each shell |
shell_prim_index |
[shell_num] |
Address of the first primitive of each shell in the EXPONENT array |
shell_factor |
[shell_num] |
Normalization factor for each shell |
exponent |
[prim_num] |
Array of exponents |
coefficient |
[prim_num] |
Array of coefficients |
prim_factor |
[prim_num] |
Normalization factors of the primtives |
Computed data:
nucleus_prim_index |
[nucl_num] |
Index of the first primitive for each nucleus |
---|---|---|
primitive_vgl |
[prim_num][5][walk_num][elec_num] |
Value, gradients, Laplacian of the primitives at electron positions |
primitive_vgl_date |
uint64_t |
Late modification date of Value, gradients, Laplacian of the primitives at electron positions |
shell_vgl |
[prim_num][5][walk_num][elec_num] |
Value, gradients, Laplacian of the primitives at electron positions |
shell_vgl_date |
uint64_t |
Late modification date of Value, gradients, Laplacian of the shells at electron positions |
nucl_shell_index |
[nucl_num] |
Index of the first shell for each nucleus |
exponent_sorted |
[prim_num] |
Array of exponents for sorted primitives |
coeff_norm_sorted |
[prim_num] |
Array of normalized coefficients for sorted primitives |
prim_factor_sorted |
[prim_num] |
Normalization factors of the sorted primtives |
nuclear_radius |
[nucl_num] |
Distance beyond which all the AOs are zero |
For H_2 with the following basis set,
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = 'G' shell_num = 12 prim_num = 20 nucleus_index = [0 , 6] shell_ang_mom = [0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2] shell_factor = [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.] shell_prim_num = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] shell_prim_index = [0 , 5 , 6 , 7 , 8 , 9 , 10, 15, 16, 17, 18, 19] exponent = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] coefficient = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0] prim_factor = [ 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00, 1.0006253235944540e+01, 2.4169531573445120e+00, 7.9610924849766440e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 3.0734305383061117e-01, 1.2929684417481876e-01, 2.1842769845268308e+00, 4.3649547399719840e-01, 1.8135965626177861e+00 ]
Data structure
typedef struct qmckl_ao_basis_struct {
int32_t uninitialized;
int64_t shell_num;
int64_t prim_num;
int64_t * nucleus_index;
int64_t * nucleus_shell_num;
int32_t * shell_ang_mom;
int64_t * shell_prim_num;
int64_t * nucleus_prim_index;
int64_t * shell_prim_index;
double * shell_factor;
double * exponent ;
double * coefficient ;
double * prim_factor ;
double * primitive_vgl;
int64_t primitive_vgl_date;
double * shell_vgl;
int64_t shell_vgl_date;
bool provided;
char type;
} qmckl_ao_basis_struct;
The uninitialized
integer contains one bit set to one for each
initialization function which has not been called. It becomes equal
to zero after all initialization functions have been called. The
struct is then initialized and provided == true
.
Some values are initialized by default, and are not concerned by
this mechanism.
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context);
qmckl_exit_code qmckl_init_ao_basis(qmckl_context context) {
if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
return false;
}
qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
assert (ctx != NULL);
ctx->ao_basis.uninitialized = (1 << 12) - 1;
/* Default values */
/* ctx->ao_basis.
,*/
return QMCKL_SUCCESS;
}
Access functions
When all the data for the AOs have been provided, the following
function returns true
.
bool qmckl_ao_basis_provided (const qmckl_context context);
#+NAME:post
Initialization functions
To set the basis set, all the following functions need to be called.
qmckl_exit_code qmckl_set_ao_basis_type (qmckl_context context, const char t);
qmckl_exit_code qmckl_set_ao_basis_shell_num (qmckl_context context, const int64_t shell_num);
qmckl_exit_code qmckl_set_ao_basis_prim_num (qmckl_context context, const int64_t prim_num);
qmckl_exit_code qmckl_set_ao_basis_nucleus_index (qmckl_context context, const int64_t * nucleus_index);
qmckl_exit_code qmckl_set_ao_basis_nucleus_shell_num(qmckl_context context, const int64_t * nucleus_shell_num);
qmckl_exit_code qmckl_set_ao_basis_shell_ang_mom (qmckl_context context, const int32_t * shell_ang_mom);
qmckl_exit_code qmckl_set_ao_basis_shell_prim_num (qmckl_context context, const int64_t * shell_prim_num);
qmckl_exit_code qmckl_set_ao_basis_shell_prim_index (qmckl_context context, const int64_t * shell_prim_index);
qmckl_exit_code qmckl_set_ao_basis_shell_factor (qmckl_context context, const double * shell_factor);
qmckl_exit_code qmckl_set_ao_basis_exponent (qmckl_context context, const double * exponent);
qmckl_exit_code qmckl_set_ao_basis_coefficient (qmckl_context context, const double * coefficient);
qmckl_exit_code qmckl_set_ao_basis_prim_factor (qmckl_context context, const double * prim_factor);
#+NAME:pre2
#+NAME:post2
When the basis set is completely entered, other data structures are computed to accelerate the calculations. The primitives within each contraction are sorted in ascending order of their exponents, such that as soon as a primitive is zero all the following functions vanish. Also, it is possible to compute a nuclear radius beyond which all the primitives are zero up to the numerical accuracy defined in the context.
Fortran interfaces
Radial part
General functions for Gaussian basis functions
qmckl_ao_gaussian_vgl
computes the values, gradients and
Laplacians at a given point of n
Gaussian functions centered at
the same point:
\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
context |
input | Global state |
X(3) |
input | Array containing the coordinates of the points |
R(3) |
input | Array containing the x,y,z coordinates of the center |
n |
input | Number of computed Gaussians |
A(n) |
input | Exponents of the Gaussians |
VGL(ldv,5) |
output | Value, gradients and Laplacian of the Gaussians |
ldv |
input | Leading dimension of array VGL |
Requirements
context
is not 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least $3 \times 8$ bytesR
is allocated with at least $3 \times 8$ bytesA
is allocated with at least $n \times 8$ bytesVGL
is allocated with at least $n \times 5 \times 8$ bytes
qmckl_exit_code
qmckl_ao_gaussian_vgl(const qmckl_context context,
const double *X,
const double *R,
const int64_t *n,
const int64_t *A,
const double *VGL,
const int64_t ldv);
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info)
use qmckl
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer*8 , intent(in) :: n
real*8 , intent(in) :: A(n)
real*8 , intent(out) :: VGL(ldv,5)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
real*8 :: Y(3), r2, t, u, v
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (n <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldv < n) then
info = QMCKL_INVALID_ARG_7
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3)
do i=1,n
VGL(i,1) = dexp(-A(i) * r2)
end do
do i=1,n
VGL(i,5) = A(i) * VGL(i,1)
end do
t = -2.d0 * ( X(1) - R(1) )
u = -2.d0 * ( X(2) - R(2) )
v = -2.d0 * ( X(3) - R(3) )
do i=1,n
VGL(i,2) = t * VGL(i,5)
VGL(i,3) = u * VGL(i,5)
VGL(i,4) = v * VGL(i,5)
end do
t = 4.d0 * r2
do i=1,n
VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5)
end do
end function qmckl_ao_gaussian_vgl_f
#ifdef VFC_CI
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context, probes) bind(C)
#else
integer(c_int32_t) function test_qmckl_ao_gaussian_vgl(context) bind(C)
#endif
use qmckl
use qmckl_probes_f
implicit none
integer(c_int64_t), intent(in), value :: context
logical(C_BOOL) :: vfc_err
#ifdef VFC_CI
type(vfc_probes) :: probes
integer(C_INT) :: vfc_err
#endif
integer*8 :: n, ldv, j, i
double precision :: X(3), R(3), Y(3), r2
double precision, allocatable :: VGL(:,:), A(:)
double precision :: epsilon
epsilon = qmckl_get_numprec_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
r2 = Y(1)**2 + Y(2)**2 + Y(3)**2
n = 10;
ldv = 100;
allocate (A(n), VGL(ldv,5))
do i=1,n
A(i) = 0.0013 * dble(ishft(1,i))
end do
test_qmckl_ao_gaussian_vgl = &
qmckl_ao_gaussian_vgl(context, X, R, n, A, VGL, ldv)
vfc_err = qmckl_probe("ao"//C_NULL_CHAR, "gaussian_vgl"//C_NULL_CHAR, &
DBLE(test_qmckl_ao_gaussian_vgl))
if (test_qmckl_ao_gaussian_vgl /= 0) return
#endif
test_qmckl_ao_gaussian_vgl = -1
#ifndef VFC_CI
do i=1,n
test_qmckl_ao_gaussian_vgl = -11
if (dabs(1.d0 - VGL(i,1) / (&
dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -12
if (dabs(1.d0 - VGL(i,2) / (&
-2.d0 * A(i) * Y(1) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -13
if (dabs(1.d0 - VGL(i,3) / (&
-2.d0 * A(i) * Y(2) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -14
if (dabs(1.d0 - VGL(i,4) / (&
-2.d0 * A(i) * Y(3) * dexp(-A(i) * r2) &
)) > epsilon ) return
test_qmckl_ao_gaussian_vgl = -15
if (dabs(1.d0 - VGL(i,5) / (&
A(i) * (4.d0*r2*A(i) - 6.d0) * dexp(-A(i) * r2) &
)) > epsilon ) return
end do
#endif
test_qmckl_ao_gaussian_vgl = 0
deallocate(VGL)
end function test_qmckl_ao_gaussian_vgl
TODO General functions for Slater basis functions
TODO General functions for Radial functions on a grid
DONE Computation of primitives
Get
qmckl_exit_code qmckl_get_ao_basis_primitive_vgl(qmckl_context context, double* const primitive_vgl);
Provide
Compute
qmckl_context | context | in | Global state |
int64_t | prim_num | in | Number of primitives |
int64_t | elec_num | in | Number of electrons |
int64_t | nucl_num | in | Number of nuclei |
int64_t | walk_num | in | Number of walkers |
int64_t | nucleus_prim_index[nucl_num] | in | Index of the 1st primitive of each nucleus |
double | elec_coord[walk_num][3][elec_num] | in | Electron coordinates |
double | nucl_coord[3][elec_num] | in | Nuclear coordinates |
double | expo[prim_num] | in | Exponents of the primitives |
double | primitive_vgl[prim_num][5][walk_num][elec_num] | out | Value, gradients and Laplacian of the primitives |
integer function qmckl_compute_ao_basis_primitive_gaussian_vgl_f(context, &
prim_num, elec_num, nucl_num, walk_num, &
nucleus_prim_index, elec_coord, nucl_coord, expo, primitive_vgl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: prim_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: nucleus_prim_index(nucl_num+1)
double precision , intent(in) :: elec_coord(elec_num,3,walk_num)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(in) :: expo(prim_num)
double precision , intent(out) :: primitive_vgl(elec_num,walk_num,5,prim_num)
integer*8 :: inucl, iprim, iwalk, ielec
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
info = QMCKL_SUCCESS
! Don't compute exponentials when the result will be almost zero.
cutoff = -dlog(1.d-15)
do inucl=1,nucl_num
! C is zero-based, so shift bounds by one
do iprim = nucleus_prim_index(inucl)+1, nucleus_prim_index(inucl+1)
do iwalk = 1, walk_num
do ielec = 1, elec_num
x = elec_coord(ielec,1,iwalk) - nucl_coord(inucl,1)
y = elec_coord(ielec,2,iwalk) - nucl_coord(inucl,2)
z = elec_coord(ielec,3,iwalk) - nucl_coord(inucl,3)
r2 = x*x + y*y + z*z
ar2 = expo(iprim)*r2
if (ar2 > cutoff) cycle
v = dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
primitive_vgl(ielec, iwalk, 1, iprim) = v
primitive_vgl(ielec, iwalk, 2, iprim) = two_a * x
primitive_vgl(ielec, iwalk, 3, iprim) = two_a * y
primitive_vgl(ielec, iwalk, 4, iprim) = two_a * z
primitive_vgl(ielec, iwalk, 5, iprim) = two_a * (3.d0 - 2.d0*ar2)
end do
end do
end do
end do
end function qmckl_compute_ao_basis_primitive_gaussian_vgl_f
Test
Ideas for improvement
// m : walkers
// j : electrons
// l : primitives
k=0;
for (m=0 ; m<walk_num ; ++m) {
for (j=0 ; j<elec_num ; ++j) {
for (i=0 ; i<nucl_num ; ++i) {
r2 = nucl_elec_dist[i][j];
if (r2 < nucl_radius2[i]) {
for (l=0 ; l<prim_num ; ++l) {
tmp[k].i = i;
tmp[k].j = j;
tmp[k].m = m;
tmp[k].ar2 = -expo[l] *r2;
++k;
}
}
}
}
}
// sort(tmp) in increasing ar2;
// Identify first ar2 above numerical accuracy threshold
// Compute vectorized exponentials on significant values
Computation of shells
Get
qmckl_exit_code qmckl_get_ao_basis_shell_vgl(qmckl_context context, double* const shell_vgl);
Provide
Compute
qmckl_context |
context |
in | Global state |
int64_t |
prim_num |
in | Number of primitives |
int64_t |
shell_num |
in | Number of shells |
int64_t |
elec_num |
in | Number of electrons |
int64_t |
nucl_num |
in | Number of nuclei |
int64_t |
walk_num |
in | Number of walkers |
int64_t |
nucleus_shell_num[nucl_num] |
in | Number of shells for each nucleus |
int64_t |
nucleus_index[nucl_num] |
in | Index of the 1st shell of each nucleus |
int64_t |
shell_prim_index[shell_num] |
in | Index of the 1st primitive of each shell |
int64_t |
shell_prim_num[shell_num] |
in | Number of primitives per shell |
double |
elec_coord[walk_num][3][elec_num] |
in | Electron coordinates |
double |
nucl_coord[3][elec_num] |
in | Nuclear coordinates |
double |
expo[prim_num] |
in | Exponents of the primitives |
double |
coef[prim_num] |
in | Coefficients of the primitives |
double |
shell_vgl[shell_num][5][walk_num][elec_num] |
out | Value, gradients and Laplacian of the shells |
integer function qmckl_compute_ao_basis_shell_gaussian_vgl_f(context, &
prim_num, shell_num, elec_num, nucl_num, walk_num, &
nucleus_shell_num, nucleus_index, shell_prim_index, shell_prim_num, &
elec_coord, nucl_coord, expo, coef, shell_vgl) &
result(info)
use qmckl
implicit none
integer(qmckl_context), intent(in) :: context
integer*8 , intent(in) :: prim_num
integer*8 , intent(in) :: shell_num
integer*8 , intent(in) :: nucl_num
integer*8 , intent(in) :: elec_num
integer*8 , intent(in) :: walk_num
integer*8 , intent(in) :: nucleus_shell_num(nucl_num)
integer*8 , intent(in) :: nucleus_index(nucl_num)
integer*8 , intent(in) :: shell_prim_index(shell_num)
integer*8 , intent(in) :: shell_prim_num(shell_num)
double precision , intent(in) :: elec_coord(elec_num,3,walk_num)
double precision , intent(in) :: nucl_coord(nucl_num,3)
double precision , intent(in) :: expo(prim_num)
double precision , intent(in) :: coef(prim_num)
double precision , intent(out) :: shell_vgl(elec_num,walk_num,5,shell_num)
integer*8 :: inucl, iprim, iwalk, ielec, ishell
double precision :: x, y, z, two_a, ar2, r2, v, cutoff
info = QMCKL_SUCCESS
! Don't compute exponentials when the result will be almost zero.
! TODO : Use numerical precision here
cutoff = -dlog(1.d-15)
do inucl=1,nucl_num
do ishell=nucleus_index(inucl)+1, nucleus_index(inucl)+nucleus_shell_num(inucl)
! C is zero-based, so shift bounds by one
do iwalk = 1, walk_num
do ielec = 1, elec_num
shell_vgl(ielec, iwalk, 1:5, ishell) = 0.d0
x = elec_coord(ielec,1,iwalk) - nucl_coord(inucl,1)
y = elec_coord(ielec,2,iwalk) - nucl_coord(inucl,2)
z = elec_coord(ielec,3,iwalk) - nucl_coord(inucl,3)
r2 = x*x + y*y + z*z
do iprim = shell_prim_index(ishell)+1, shell_prim_index(ishell)+shell_prim_num(ishell)
ar2 = expo(iprim)*r2
if (ar2 > cutoff) then
cycle
end if
v = coef(iprim) * dexp(-ar2)
two_a = -2.d0 * expo(iprim) * v
shell_vgl(ielec, iwalk, 1, ishell) = &
shell_vgl(ielec, iwalk, 1, ishell) + v
shell_vgl(ielec, iwalk, 2, ishell) = &
shell_vgl(ielec, iwalk, 2, ishell) + two_a * x
shell_vgl(ielec, iwalk, 3, ishell) = &
shell_vgl(ielec, iwalk, 3, ishell) + two_a * y
shell_vgl(ielec, iwalk, 4, ishell) = &
shell_vgl(ielec, iwalk, 4, ishell) + two_a * z
shell_vgl(ielec, iwalk, 5, ishell) = &
shell_vgl(ielec, iwalk, 5, ishell) + two_a * (3.d0 - 2.d0*ar2)
end do
end do
end do
end do
end do
end function qmckl_compute_ao_basis_shell_gaussian_vgl_f
Test
Polynomial part
General functions for Powers of $x-X_i$
The qmckl_ao_power
function computes all the powers of the n
input data up to the given maximum value given in input for each of
the $n$ points:
\[ P_{ik} = X_i^k \]
qmckl_context | context | in | Global state |
int64_t | n | in | Number of values |
double | X[n] | in | Array containing the input values |
int32_t | LMAX[n] | in | Array containing the maximum power for each value |
double | P[n][ldp] | out | Array containing all the powers of X |
int64_t | ldp | in | Leading dimension of array P |
Requirements
context
is notQMCKL_NULL_CONTEXT
n
> 0X
is allocated with at least $n \times 8$ bytesLMAX
is allocated with at least $n \times 4$ bytesP
is allocated with at least $n \times \max_i \text{LMAX}_i \times 8$ bytesLDP
>= $\max_i$LMAX[i]
C Header
qmckl_exit_code qmckl_ao_power (
const qmckl_context context,
const int64_t n,
const double* X,
const int32_t* LMAX,
double* const P,
const int64_t ldp );
Source
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info)
use qmckl
implicit none
integer*8 , intent(in) :: context
integer*8 , intent(in) :: n
real*8 , intent(in) :: X(n)
integer , intent(in) :: LMAX(n)
real*8 , intent(out) :: P(ldp,n)
integer*8 , intent(in) :: ldp
integer*8 :: i,k
info = QMCKL_SUCCESS
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (n <= ldp) then
info = QMCKL_INVALID_ARG_2
return
endif
k = MAXVAL(LMAX)
if (LDP < k) then
info = QMCKL_INVALID_ARG_6
return
endif
if (k <= 0) then
info = QMCKL_INVALID_ARG_4
return
endif
do i=1,n
P(1,i) = X(i)
do k=2,LMAX(i)
P(k,i) = P(k-1,i) * X(i)
end do
end do
end function qmckl_ao_power_f
C interface
Fortran interface
Test
#ifdef VFC_CI
integer(c_int32_t) function test_qmckl_ao_power(context, probes) bind(C)
#else
integer(c_int32_t) function test_qmckl_ao_power(context) bind(C)
use qmckl
use qmckl_probes_f
implicit none
logical(C_BOOL) :: vfc_err
integer(qmckl_context), intent(in), value :: context
integer*8 :: n, LDP
integer, allocatable :: LMAX(:)
double precision, allocatable :: X(:), P(:,:)
integer*8 :: i,j
double precision :: epsilon
epsilon = qmckl_get_numprec_epsilon(context)
n = 100;
LDP = 10;
allocate(X(n), P(LDP,n), LMAX(n))
do j=1,n
X(j) = -5.d0 + 0.1d0 * dble(j)
LMAX(j) = 1 + int(mod(j, 5),4)
end do
test_qmckl_ao_power = qmckl_ao_power(context, n, X, LMAX, P, LDP)
vfc_err = qmckl_probe("ao"//C_NULL_CHAR, "power"//C_NULL_CHAR, &
DBLE(test_qmckl_ao_power))
if (test_qmckl_ao_power /= QMCKL_SUCCESS) return
#endif
test_qmckl_ao_power = QMCKL_FAILURE
do j=1,n
do i=1,LMAX(j)
if ( X(j)**i == 0.d0 ) then
if ( P(i,j) /= 0.d0) return
else
if ( dabs(1.d0 - P(i,j) / (X(j)**i)) > epsilon ) return
end if
end do
end do
test_qmckl_ao_power = QMCKL_SUCCESS
deallocate(X,P,LMAX)
end function test_qmckl_ao_power
General functions for Value, Gradient and Laplacian of a polynomial
A polynomial is centered on a nucleus $\mathbf{R}_i$
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
The gradients with respect to electron coordinates are
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*}and the Laplacian is
\begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1}. \end{eqnarray*}
qmckl_ao_polynomial_vgl
computes the values, gradients and
Laplacians at a given point in space, of all polynomials with an
angular momentum up to lmax
.
qmckl_context | context | in | Global state |
double | X[3] | in | Array containing the coordinates of the points |
double | R[3] | in | Array containing the x,y,z coordinates of the center |
int32_t | lmax | in | Maximum angular momentum |
int64_t | n | inout | Number of computed polynomials |
int32_t | L[n][ldl] | out | Contains a,b,c for all n results |
int64_t | ldl | in | Leading dimension of L |
double | VGL[n][ldv] | out | Value, gradients and Laplacian of the polynomials |
int64_t | ldv | in | Leading dimension of array VGL |
Requirements
context
is notQMCKL_NULL_CONTEXT
n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least $3 \times 8$ bytesR
is allocated with at least $3 \times 8$ bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least $3 \times n \times 4$ bytesVGL
is allocated with at least $5 \times n \times 8$ bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
-
On output, the powers are given in the following order (l=a+b+c):
- Increasing values of
l
- Within a given value of
l
, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"
- Increasing values of
C Header
qmckl_exit_code qmckl_ao_polynomial_vgl (
const qmckl_context context,
const double* X,
const double* R,
const int32_t lmax,
int64_t* n,
int32_t* const L,
const int64_t ldl,
double* const VGL,
const int64_t ldv );
Source
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info)
use qmckl
implicit none
integer*8 , intent(in) :: context
real*8 , intent(in) :: X(3), R(3)
integer , intent(in) :: lmax
integer*8 , intent(out) :: n
integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldl
real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6)
integer*8 , intent(in) :: ldv
integer*8 :: i,j
integer :: a,b,c,d
real*8 :: Y(3)
integer :: lmax_array(3)
real*8 :: pows(-2:lmax,3)
integer, external :: qmckl_ao_power_f
double precision :: xy, yz, xz
double precision :: da, db, dc, dd
info = 0
if (context == QMCKL_NULL_CONTEXT) then
info = QMCKL_INVALID_CONTEXT
return
endif
if (lmax < 0) then
info = QMCKL_INVALID_ARG_4
return
endif
if (ldl < 3) then
info = QMCKL_INVALID_ARG_7
return
endif
if (ldv < 5) then
info = QMCKL_INVALID_ARG_9
return
endif
do i=1,3
Y(i) = X(i) - R(i)
end do
lmax_array(1:3) = lmax
if (lmax == 0) then
VGL(1,1) = 1.d0
vgL(2:5,1) = 0.d0
l(1:3,1) = 0
n=1
else if (lmax > 0) then
pows(-2:0,1:3) = 1.d0
do i=1,lmax
pows(i,1) = pows(i-1,1) * Y(1)
pows(i,2) = pows(i-1,2) * Y(2)
pows(i,3) = pows(i-1,3) * Y(3)
end do
VGL(1:5,1:4) = 0.d0
l (1:3,1:4) = 0
VGL(1 ,1 ) = 1.d0
vgl(1:5,2:4) = 0.d0
l (1,2) = 1
vgl(1,2) = pows(1,1)
vgL(2,2) = 1.d0
l (2,3) = 1
vgl(1,3) = pows(1,2)
vgL(3,3) = 1.d0
l (3,4) = 1
vgl(1,4) = pows(1,3)
vgL(4,4) = 1.d0
n=4
endif
! l>=2
dd = 2.d0
do d=2,lmax
da = dd
do a=d,0,-1
db = dd-da
do b=d-a,0,-1
c = d - a - b
dc = dd - da - db
n = n+1
l(1,n) = a
l(2,n) = b
l(3,n) = c
xy = pows(a,1) * pows(b,2)
yz = pows(b,2) * pows(c,3)
xz = pows(a,1) * pows(c,3)
vgl(1,n) = xy * pows(c,3)
xy = dc * xy
xz = db * xz
yz = da * yz
vgl(2,n) = pows(a-1,1) * yz
vgl(3,n) = pows(b-1,2) * xz
vgl(4,n) = pows(c-1,3) * xy
vgl(5,n) = &
(da-1.d0) * pows(a-2,1) * yz + &
(db-1.d0) * pows(b-2,2) * xz + &
(dc-1.d0) * pows(c-2,3) * xy
db = db - 1.d0
end do
da = da - 1.d0
end do
dd = dd + 1.d0
end do
info = QMCKL_SUCCESS
end function qmckl_ao_polynomial_vgl_f
C interface
Fortran interface
Test
#ifdef VFC_CI
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context, probes) bind(C)
#else
integer(c_int32_t) function test_qmckl_ao_polynomial_vgl(context) bind(C)
#endif
use qmckl
use qmckl_probes_f
implicit none
integer(c_int64_t), intent(in), value :: context
logical(C_BOOL) :: vfc_err
#ifdef VFC_CI
type(vfc_probes) :: probes
integer(C_INT) :: vfc_err
#endif
integer :: lmax, d, i
integer, allocatable :: L(:,:)
integer*8 :: n, ldl, ldv, j
double precision :: X(3), R(3), Y(3)
double precision, allocatable :: VGL(:,:)
double precision :: w
double precision :: epsilon
epsilon = qmckl_get_numprec_epsilon(context)
X = (/ 1.1 , 2.2 , 3.3 /)
R = (/ 0.1 , 1.2 , -2.3 /)
Y(:) = X(:) - R(:)
lmax = 4;
ldl = 3;
ldv = 100;
d = (lmax+1)*(lmax+2)*(lmax+3)/6
allocate (L(ldl,d), VGL(ldv,d))
test_qmckl_ao_polynomial_vgl = &
qmckl_ao_polynomial_vgl(context, X, R, lmax, n, L, ldl, VGL, ldv)
vfc_err = qmckl_probe("ao"//C_NULL_CHAR, "polynomial_vgl"//C_NULL_CHAR, &
DBLE(test_qmckl_ao_polynomial_vgl))
if (test_qmckl_ao_polynomial_vgl /= QMCKL_SUCCESS) return
if (n /= d) return
#endif
#ifdef VFC_CI
do j=1,n
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
do i=1,3
if (L(i,j) < 0) return
end do
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (dabs(1.d0 - VGL(1,j) / (&
Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(1,j) < 1) then
if (VGL(2,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(2,j) / (&
L(1,j) * Y(1)**(L(1,j)-1) * Y(2)**L(2,j) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(2,j) < 1) then
if (VGL(3,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(3,j) / (&
L(2,j) * Y(1)**L(1,j) * Y(2)**(L(2,j)-1) * Y(3)**L(3,j) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
if (L(3,j) < 1) then
if (VGL(4,j) /= 0.d0) return
else
if (dabs(1.d0 - VGL(4,j) / (&
L(3,j) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-1) &
)) > epsilon ) return
end if
test_qmckl_ao_polynomial_vgl = QMCKL_FAILURE
w = 0.d0
if (L(1,j) > 1) then
w = w + L(1,j) * (L(1,j)-1) * Y(1)**(L(1,j)-2) * Y(2)**L(2,j) * Y(3)**L(3,j)
end if
if (L(2,j) > 1) then
w = w + L(2,j) * (L(2,j)-1) * Y(1)**L(1,j) * Y(2)**(L(2,j)-2) * Y(3)**L(3,j)
end if
if (L(3,j) > 1) then
w = w + L(3,j) * (L(3,j)-1) * Y(1)**L(1,j) * Y(2)**L(2,j) * Y(3)**(L(3,j)-2)
end if
if (dabs(1.d0 - VGL(5,j) / w) > epsilon ) return
end do
#endif
test_qmckl_ao_polynomial_vgl = QMCKL_SUCCESS
deallocate(L,VGL)
end function test_qmckl_ao_polynomial_vgl
#ifdef VFC_CI
int test_qmckl_ao_polynomial_vgl(qmckl_context context, vfc_probes * probes);
assert(0 == test_qmckl_ao_polynomial_vgl(context, &probes));
#else
int test_qmckl_ao_polynomial_vgl(qmckl_context context);
assert(0 == test_qmckl_ao_polynomial_vgl(context));
#endif