mirror of
https://github.com/TREX-CoE/qmckl.git
synced 2024-11-03 20:54:09 +01:00
1170 lines
51 KiB
HTML
1170 lines
51 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2023-09-11 Mon 15:07 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<title>Code examples</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="TREX CoE" />
|
|
<style type="text/css">
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
.title { text-align: center;
|
|
margin-bottom: .2em; }
|
|
.subtitle { text-align: center;
|
|
font-size: medium;
|
|
font-weight: bold;
|
|
margin-top:0; }
|
|
.todo { font-family: monospace; color: red; }
|
|
.done { font-family: monospace; color: green; }
|
|
.priority { font-family: monospace; color: orange; }
|
|
.tag { background-color: #eee; font-family: monospace;
|
|
padding: 2px; font-size: 80%; font-weight: normal; }
|
|
.timestamp { color: #bebebe; }
|
|
.timestamp-kwd { color: #5f9ea0; }
|
|
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
|
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
|
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
|
.underline { text-decoration: underline; }
|
|
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
|
p.verse { margin-left: 3%; }
|
|
pre {
|
|
border: 1px solid #ccc;
|
|
box-shadow: 3px 3px 3px #eee;
|
|
padding: 8pt;
|
|
font-family: monospace;
|
|
overflow: auto;
|
|
margin: 1.2em;
|
|
}
|
|
pre.src {
|
|
position: relative;
|
|
overflow: visible;
|
|
padding-top: 1.2em;
|
|
}
|
|
pre.src:before {
|
|
display: none;
|
|
position: absolute;
|
|
background-color: white;
|
|
top: -10px;
|
|
right: 10px;
|
|
padding: 3px;
|
|
border: 1px solid black;
|
|
}
|
|
pre.src:hover:before { display: inline;}
|
|
/* Languages per Org manual */
|
|
pre.src-asymptote:before { content: 'Asymptote'; }
|
|
pre.src-awk:before { content: 'Awk'; }
|
|
pre.src-C:before { content: 'C'; }
|
|
/* pre.src-C++ doesn't work in CSS */
|
|
pre.src-clojure:before { content: 'Clojure'; }
|
|
pre.src-css:before { content: 'CSS'; }
|
|
pre.src-D:before { content: 'D'; }
|
|
pre.src-ditaa:before { content: 'ditaa'; }
|
|
pre.src-dot:before { content: 'Graphviz'; }
|
|
pre.src-calc:before { content: 'Emacs Calc'; }
|
|
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
|
pre.src-fortran:before { content: 'Fortran'; }
|
|
pre.src-gnuplot:before { content: 'gnuplot'; }
|
|
pre.src-haskell:before { content: 'Haskell'; }
|
|
pre.src-hledger:before { content: 'hledger'; }
|
|
pre.src-java:before { content: 'Java'; }
|
|
pre.src-js:before { content: 'Javascript'; }
|
|
pre.src-latex:before { content: 'LaTeX'; }
|
|
pre.src-ledger:before { content: 'Ledger'; }
|
|
pre.src-lisp:before { content: 'Lisp'; }
|
|
pre.src-lilypond:before { content: 'Lilypond'; }
|
|
pre.src-lua:before { content: 'Lua'; }
|
|
pre.src-matlab:before { content: 'MATLAB'; }
|
|
pre.src-mscgen:before { content: 'Mscgen'; }
|
|
pre.src-ocaml:before { content: 'Objective Caml'; }
|
|
pre.src-octave:before { content: 'Octave'; }
|
|
pre.src-org:before { content: 'Org mode'; }
|
|
pre.src-oz:before { content: 'OZ'; }
|
|
pre.src-plantuml:before { content: 'Plantuml'; }
|
|
pre.src-processing:before { content: 'Processing.js'; }
|
|
pre.src-python:before { content: 'Python'; }
|
|
pre.src-R:before { content: 'R'; }
|
|
pre.src-ruby:before { content: 'Ruby'; }
|
|
pre.src-sass:before { content: 'Sass'; }
|
|
pre.src-scheme:before { content: 'Scheme'; }
|
|
pre.src-screen:before { content: 'Gnu Screen'; }
|
|
pre.src-sed:before { content: 'Sed'; }
|
|
pre.src-sh:before { content: 'shell'; }
|
|
pre.src-sql:before { content: 'SQL'; }
|
|
pre.src-sqlite:before { content: 'SQLite'; }
|
|
/* additional languages in org.el's org-babel-load-languages alist */
|
|
pre.src-forth:before { content: 'Forth'; }
|
|
pre.src-io:before { content: 'IO'; }
|
|
pre.src-J:before { content: 'J'; }
|
|
pre.src-makefile:before { content: 'Makefile'; }
|
|
pre.src-maxima:before { content: 'Maxima'; }
|
|
pre.src-perl:before { content: 'Perl'; }
|
|
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
|
pre.src-scala:before { content: 'Scala'; }
|
|
pre.src-shell:before { content: 'Shell Script'; }
|
|
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
|
/* additional language identifiers per "defun org-babel-execute"
|
|
in ob-*.el */
|
|
pre.src-cpp:before { content: 'C++'; }
|
|
pre.src-abc:before { content: 'ABC'; }
|
|
pre.src-coq:before { content: 'Coq'; }
|
|
pre.src-groovy:before { content: 'Groovy'; }
|
|
/* additional language identifiers from org-babel-shell-names in
|
|
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
|
the execution function name together. */
|
|
pre.src-bash:before { content: 'bash'; }
|
|
pre.src-csh:before { content: 'csh'; }
|
|
pre.src-ash:before { content: 'ash'; }
|
|
pre.src-dash:before { content: 'dash'; }
|
|
pre.src-ksh:before { content: 'ksh'; }
|
|
pre.src-mksh:before { content: 'mksh'; }
|
|
pre.src-posh:before { content: 'posh'; }
|
|
/* Additional Emacs modes also supported by the LaTeX listings package */
|
|
pre.src-ada:before { content: 'Ada'; }
|
|
pre.src-asm:before { content: 'Assembler'; }
|
|
pre.src-caml:before { content: 'Caml'; }
|
|
pre.src-delphi:before { content: 'Delphi'; }
|
|
pre.src-html:before { content: 'HTML'; }
|
|
pre.src-idl:before { content: 'IDL'; }
|
|
pre.src-mercury:before { content: 'Mercury'; }
|
|
pre.src-metapost:before { content: 'MetaPost'; }
|
|
pre.src-modula-2:before { content: 'Modula-2'; }
|
|
pre.src-pascal:before { content: 'Pascal'; }
|
|
pre.src-ps:before { content: 'PostScript'; }
|
|
pre.src-prolog:before { content: 'Prolog'; }
|
|
pre.src-simula:before { content: 'Simula'; }
|
|
pre.src-tcl:before { content: 'tcl'; }
|
|
pre.src-tex:before { content: 'TeX'; }
|
|
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
|
pre.src-verilog:before { content: 'Verilog'; }
|
|
pre.src-vhdl:before { content: 'VHDL'; }
|
|
pre.src-xml:before { content: 'XML'; }
|
|
pre.src-nxml:before { content: 'XML'; }
|
|
/* add a generic configuration mode; LaTeX export needs an additional
|
|
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
|
pre.src-conf:before { content: 'Configuration File'; }
|
|
|
|
table { border-collapse:collapse; }
|
|
caption.t-above { caption-side: top; }
|
|
caption.t-bottom { caption-side: bottom; }
|
|
td, th { vertical-align:top; }
|
|
th.org-right { text-align: center; }
|
|
th.org-left { text-align: center; }
|
|
th.org-center { text-align: center; }
|
|
td.org-right { text-align: right; }
|
|
td.org-left { text-align: left; }
|
|
td.org-center { text-align: center; }
|
|
dt { font-weight: bold; }
|
|
.footpara { display: inline; }
|
|
.footdef { margin-bottom: 1em; }
|
|
.figure { padding: 1em; }
|
|
.figure p { text-align: center; }
|
|
.equation-container {
|
|
display: table;
|
|
text-align: center;
|
|
width: 100%;
|
|
}
|
|
.equation {
|
|
vertical-align: middle;
|
|
}
|
|
.equation-label {
|
|
display: table-cell;
|
|
text-align: right;
|
|
vertical-align: middle;
|
|
}
|
|
.inlinetask {
|
|
padding: 10px;
|
|
border: 2px solid gray;
|
|
margin: 10px;
|
|
background: #ffffcc;
|
|
}
|
|
#org-div-home-and-up
|
|
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
|
textarea { overflow-x: auto; }
|
|
.linenr { font-size: smaller }
|
|
.code-highlighted { background-color: #ffff00; }
|
|
.org-info-js_info-navigation { border-style: none; }
|
|
#org-info-js_console-label
|
|
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
|
.org-info-js_search-highlight
|
|
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
|
.org-svg { width: 90%; }
|
|
/*]]>*/-->
|
|
</style>
|
|
<link rel="stylesheet" title="Standard" href="qmckl.css" type="text/css" />
|
|
|
|
<script type="text/javascript" src="org-info.js">
|
|
/**
|
|
*
|
|
* @source: org-info.js
|
|
*
|
|
* @licstart The following is the entire license notice for the
|
|
* JavaScript code in org-info.js.
|
|
*
|
|
* Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
|
*
|
|
*
|
|
* The JavaScript code in this tag is free software: you can
|
|
* redistribute it and/or modify it under the terms of the GNU
|
|
* General Public License (GNU GPL) as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option)
|
|
* any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
*
|
|
* As additional permission under GNU GPL version 3 section 7, you
|
|
* may distribute non-source (e.g., minimized or compacted) forms of
|
|
* that code without the copy of the GNU GPL normally required by
|
|
* section 4, provided you include this license notice and a URL
|
|
* through which recipients can access the Corresponding Source.
|
|
*
|
|
* @licend The above is the entire license notice
|
|
* for the JavaScript code in org-info.js.
|
|
*
|
|
*/
|
|
</script>
|
|
|
|
<script type="text/javascript">
|
|
|
|
/*
|
|
@licstart The following is the entire license notice for the
|
|
JavaScript code in this tag.
|
|
|
|
Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
|
|
|
The JavaScript code in this tag is free software: you can
|
|
redistribute it and/or modify it under the terms of the GNU
|
|
General Public License (GNU GPL) as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option)
|
|
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
|
|
As additional permission under GNU GPL version 3 section 7, you
|
|
may distribute non-source (e.g., minimized or compacted) forms of
|
|
that code without the copy of the GNU GPL normally required by
|
|
section 4, provided you include this license notice and a URL
|
|
through which recipients can access the Corresponding Source.
|
|
|
|
|
|
@licend The above is the entire license notice
|
|
for the JavaScript code in this tag.
|
|
*/
|
|
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
org_html_manager.set("TOC_DEPTH", "4");
|
|
org_html_manager.set("LINK_HOME", "index.html");
|
|
org_html_manager.set("LINK_UP", "");
|
|
org_html_manager.set("LOCAL_TOC", "1");
|
|
org_html_manager.set("VIEW_BUTTONS", "0");
|
|
org_html_manager.set("MOUSE_HINT", "underline");
|
|
org_html_manager.set("FIXED_TOC", "0");
|
|
org_html_manager.set("TOC", "1");
|
|
org_html_manager.set("VIEW", "info");
|
|
org_html_manager.setup(); // activate after the parameters are set
|
|
/*]]>*///-->
|
|
</script>
|
|
<script type="text/javascript">
|
|
/*
|
|
@licstart The following is the entire license notice for the
|
|
JavaScript code in this tag.
|
|
|
|
Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
|
|
|
The JavaScript code in this tag is free software: you can
|
|
redistribute it and/or modify it under the terms of the GNU
|
|
General Public License (GNU GPL) as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option)
|
|
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
|
|
As additional permission under GNU GPL version 3 section 7, you
|
|
may distribute non-source (e.g., minimized or compacted) forms of
|
|
that code without the copy of the GNU GPL normally required by
|
|
section 4, provided you include this license notice and a URL
|
|
through which recipients can access the Corresponding Source.
|
|
|
|
|
|
@licend The above is the entire license notice
|
|
for the JavaScript code in this tag.
|
|
*/
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
function CodeHighlightOn(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(null != target) {
|
|
elem.cacheClassElem = elem.className;
|
|
elem.cacheClassTarget = target.className;
|
|
target.className = "code-highlighted";
|
|
elem.className = "code-highlighted";
|
|
}
|
|
}
|
|
function CodeHighlightOff(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(elem.cacheClassElem)
|
|
elem.className = elem.cacheClassElem;
|
|
if(elem.cacheClassTarget)
|
|
target.className = elem.cacheClassTarget;
|
|
}
|
|
/*]]>*///-->
|
|
</script>
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
displayAlign: "center",
|
|
displayIndent: "0em",
|
|
|
|
"HTML-CSS": { scale: 100,
|
|
linebreaks: { automatic: "false" },
|
|
webFont: "TeX"
|
|
},
|
|
SVG: {scale: 100,
|
|
linebreaks: { automatic: "false" },
|
|
font: "TeX"},
|
|
NativeMML: {scale: 100},
|
|
TeX: { equationNumbers: {autoNumber: "AMS"},
|
|
MultLineWidth: "85%",
|
|
TagSide: "right",
|
|
TagIndent: ".8em"
|
|
}
|
|
});
|
|
</script>
|
|
<script type="text/javascript"
|
|
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href=""> UP </a>
|
|
|
|
|
<a accesskey="H" href="index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Code examples</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org28798e8">1. Overlap matrix in the MO basis</a>
|
|
<ul>
|
|
<li><a href="#org26eb048">1.1. Python</a></li>
|
|
<li><a href="#org6a324c6">1.2. C</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org84ed043">2. Fortran</a>
|
|
<ul>
|
|
<li><a href="#org0086a2d">2.1. Checking errors</a></li>
|
|
<li><a href="#org11a8773">2.2. Computing an atomic orbital on a grid</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org28798e8" class="outline-2">
|
|
<h2 id="org28798e8"><span class="section-number-2">1</span> Overlap matrix in the MO basis</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
<p>
|
|
The focal point of this example is the numerical evaluation of the overlap
|
|
matrix in the MO basis. Utilizing QMCkl, we approximate the MOs at
|
|
discrete grid points to compute the overlap matrix \( S_{ij} \) as follows:
|
|
\[
|
|
S_{ij} = \int \phi_i(\mathbf{r})\, \phi_j(\mathbf{r}) \text{d}\mathbf{r} \approx
|
|
\sum_k \phi_i(\mathbf{r}_k)\, \phi_j(\mathbf{r}_k) \delta\mathbf{r}
|
|
\]
|
|
</p>
|
|
|
|
|
|
<p>
|
|
The code starts by reading a wave function from a TREXIO file. This is
|
|
accomplished using the <code>qmckl_trexio_read</code> function, which populates a
|
|
<code>qmckl_context</code> with the necessary wave function parameters. The context
|
|
serves as the primary interface for interacting with the QMCkl library,
|
|
encapsulating the state and configurations of the system.
|
|
Subsequently, the code retrieves various attributes such as the number of
|
|
nuclei <code>nucl_num</code> and coordinates <code>nucl_coord</code>.
|
|
These attributes are essential for setting up the integration grid.
|
|
</p>
|
|
|
|
<p>
|
|
The core of the example lies in the numerical computation of the overlap
|
|
matrix. To achieve this, the code employs a regular grid in three-dimensional
|
|
space, and the grid points are then populated into the <code>qmckl_context</code> using
|
|
the <code>qmckl_set_point</code> function.
|
|
</p>
|
|
|
|
<p>
|
|
The MO values at these grid points are computed using the
|
|
<code>qmckl_get_mo_basis_mo_value</code> function. These values are then used to
|
|
calculate the overlap matrix through a matrix multiplication operation
|
|
facilitated by the <code>qmckl_dgemm</code> function.
|
|
</p>
|
|
|
|
<p>
|
|
The code is also instrumented to measure the execution time for the MO
|
|
value computation, providing an empirical assessment of the computational
|
|
efficiency. Error handling is robustly implemented at each stage to ensure the
|
|
reliability of the simulation.
|
|
</p>
|
|
|
|
<p>
|
|
In summary, this example serves as a holistic guide for leveraging the QMCkl
|
|
library, demonstrating its ease of use. It provides a concrete starting point
|
|
for researchers and developers interested in integrating QMCkl into their QMC
|
|
code.
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org26eb048" class="outline-3">
|
|
<h3 id="org26eb048"><span class="section-number-3">1.1</span> Python</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<p>
|
|
In this example, we will compute numerically the overlap
|
|
between the molecular orbitals:
|
|
</p>
|
|
|
|
<p>
|
|
\[
|
|
S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r})
|
|
\text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k)
|
|
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
|
|
\]
|
|
\[
|
|
S_{ij} = \langle \phi_i | \phi_j \rangle
|
|
\sim \sum_{k=1}^{N} \langle \phi_i | \mathbf{r}_k \rangle
|
|
\langle \mathbf{r}_k | \phi_j \rangle
|
|
\]
|
|
</p>
|
|
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
|
|
<span style="color: #a020f0;">import</span> qmckl
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
First, we create a context for the QMCkl calculation, and load the
|
|
wave function stored in <code>h2o_5z.h5</code> inside it. It is a Hartree-Fock
|
|
determinant for the water molecule in the cc-pV5Z basis set.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a0522d;">trexio_filename</span> = <span style="color: #8b2252;">"..//share/qmckl/test_data/h2o_5z.h5"</span>
|
|
|
|
<span style="color: #a0522d;">context</span> = qmckl.context_create()
|
|
qmckl.trexio_read(context, trexio_filename)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We now define the grid points \(\mathbf{r}_k\) as a regular grid around the
|
|
molecule.
|
|
</p>
|
|
|
|
<p>
|
|
We fetch the nuclear coordinates from the context,
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a0522d;">nucl_num</span> = qmckl.get_nucleus_num(context)
|
|
|
|
<span style="color: #a0522d;">nucl_charge</span> = qmckl.get_nucleus_charge(context, nucl_num)
|
|
|
|
<span style="color: #a0522d;">nucl_coord</span> = qmckl.get_nucleus_coord(context, <span style="color: #8b2252;">'N'</span>, nucl_num*3)
|
|
<span style="color: #a0522d;">nucl_coord</span> = np.reshape(nucl_coord, (3, nucl_num))
|
|
|
|
<span style="color: #a020f0;">for</span> i <span style="color: #a020f0;">in</span> <span style="color: #483d8b;">range</span>(nucl_num):
|
|
<span style="color: #a020f0;">print</span>(<span style="color: #8b2252;">"%d %+f %+f %+f"</span>%(<span style="color: #483d8b;">int</span>(nucl_charge[i]),
|
|
nucl_coord[i,0],
|
|
nucl_coord[i,1],
|
|
nucl_coord[i,2]) )
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
8 +0.000000 +0.000000 +0.000000
|
|
1 -1.430429 +0.000000 -1.107157
|
|
1 +1.430429 +0.000000 -1.107157
|
|
</pre>
|
|
|
|
<p>
|
|
and compute the coordinates of the grid points:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a0522d;">nx</span> = ( 120, 120, 120 )
|
|
<span style="color: #a0522d;">shift</span> = np.array([5.,5.,5.])
|
|
<span style="color: #a0522d;">point_num</span> = nx[0] * nx[1] * nx[2]
|
|
|
|
<span style="color: #a0522d;">rmin</span> = np.array( <span style="color: #483d8b;">list</span>([ np.<span style="color: #483d8b;">min</span>(nucl_coord[:,a]) <span style="color: #a020f0;">for</span> a <span style="color: #a020f0;">in</span> <span style="color: #483d8b;">range</span>(3) ]) )
|
|
<span style="color: #a0522d;">rmax</span> = np.array( <span style="color: #483d8b;">list</span>([ np.<span style="color: #483d8b;">max</span>(nucl_coord[:,a]) <span style="color: #a020f0;">for</span> a <span style="color: #a020f0;">in</span> <span style="color: #483d8b;">range</span>(3) ]) )
|
|
|
|
|
|
<span style="color: #a0522d;">linspace</span> = [ <span style="color: #008b8b;">None</span> <span style="color: #a020f0;">for</span> i <span style="color: #a020f0;">in</span> <span style="color: #483d8b;">range</span>(3) ]
|
|
<span style="color: #a0522d;">step</span> = [ <span style="color: #008b8b;">None</span> <span style="color: #a020f0;">for</span> i <span style="color: #a020f0;">in</span> <span style="color: #483d8b;">range</span>(3) ]
|
|
<span style="color: #a020f0;">for</span> a <span style="color: #a020f0;">in</span> <span style="color: #483d8b;">range</span>(3):
|
|
linspace[a], <span style="color: #a0522d;">step</span>[a] = np.linspace(rmin[a]-shift[a],
|
|
rmax[a]+shift[a],
|
|
num=nx[a],
|
|
retstep=<span style="color: #008b8b;">True</span>)
|
|
|
|
<span style="color: #a0522d;">dr</span> = step[0] * step[1] * step[2]
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Now the grid is ready, we can create the list of grid points
|
|
\(\mathbf{r}_k\) on which the MOs \(\phi_i\) will be evaluated, and
|
|
transfer them to the QMCkl context:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a0522d;">point</span> = []
|
|
<span style="color: #a020f0;">for</span> x <span style="color: #a020f0;">in</span> linspace[0]:
|
|
<span style="color: #a020f0;">for</span> y <span style="color: #a020f0;">in</span> linspace[1]:
|
|
<span style="color: #a020f0;">for</span> z <span style="color: #a020f0;">in</span> linspace[2]:
|
|
<span style="color: #a0522d;">point</span> += [ [x, y, z] ]
|
|
|
|
<span style="color: #a0522d;">point</span> = np.array(point)
|
|
<span style="color: #a0522d;">point_num</span> = <span style="color: #483d8b;">len</span>(point)
|
|
qmckl.set_point(context, <span style="color: #8b2252;">'N'</span>, point_num, np.reshape(point, (point_num*3)))
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Then, we evaluate all the MOs at the grid points (and time the execution),
|
|
and thus obtain the matrix \(M_{ki} = \langle \mathbf{r}_k | \phi_i \rangle =
|
|
\phi_i(\mathbf{r}_k)\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a020f0;">import</span> time
|
|
|
|
<span style="color: #a0522d;">mo_num</span> = qmckl.get_mo_basis_mo_num(context)
|
|
|
|
<span style="color: #a0522d;">before</span> = time.time()
|
|
<span style="color: #a0522d;">mo_value</span> = qmckl.get_mo_basis_mo_value(context, point_num*mo_num)
|
|
<span style="color: #a0522d;">after</span> = time.time()
|
|
|
|
<span style="color: #a0522d;">mo_value</span> = np.reshape( mo_value, (point_num, mo_num) ).T # <span style="color: #b22222;">Transpose to get mo_num x point_num</span>
|
|
|
|
<span style="color: #a020f0;">print</span>(<span style="color: #8b2252;">"Number of MOs: "</span>, mo_num)
|
|
<span style="color: #a020f0;">print</span>(<span style="color: #8b2252;">"Number of grid points: "</span>, point_num)
|
|
<span style="color: #a020f0;">print</span>(<span style="color: #8b2252;">"Execution time : "</span>, (after - before), <span style="color: #8b2252;">"seconds"</span>)
|
|
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
Number of MOs: 201
|
|
Number of grid points: 1728000
|
|
Execution time : 5.577778577804565 seconds
|
|
</pre>
|
|
|
|
<p>
|
|
and finally we compute the overlap between all the MOs as
|
|
\(M.M^\dagger\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-python"><span style="color: #a0522d;">overlap</span> = mo_value @ mo_value.T * dr
|
|
<span style="color: #a020f0;">print</span> (overlap)
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
[[ 9.88693941e-01 2.34719693e-03 -1.50518232e-08 ... 3.12084178e-09
|
|
-5.81064929e-10 3.70130091e-02]
|
|
[ 2.34719693e-03 9.99509628e-01 3.18930040e-09 ... -2.46888958e-10
|
|
-1.06064273e-09 -7.65567973e-03]
|
|
[-1.50518232e-08 3.18930040e-09 9.99995073e-01 ... -5.84882580e-06
|
|
-1.21598117e-06 4.59036468e-08]
|
|
...
|
|
[ 3.12084178e-09 -2.46888958e-10 -5.84882580e-06 ... 1.00019107e+00
|
|
-2.03342837e-04 -1.36954855e-08]
|
|
[-5.81064929e-10 -1.06064273e-09 -1.21598117e-06 ... -2.03342837e-04
|
|
9.99262427e-01 1.18264754e-09]
|
|
[ 3.70130091e-02 -7.65567973e-03 4.59036468e-08 ... -1.36954855e-08
|
|
1.18264754e-09 8.97215950e-01]]
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6a324c6" class="outline-3">
|
|
<h3 id="org6a324c6"><span class="section-number-3">1.2</span> C</h3>
|
|
<div class="outline-text-3" id="text-1-2">
|
|
<p>
|
|
In this example, electron-nucleus cusp fitting is added.
|
|
</p>
|
|
|
|
<p>
|
|
In this example, we will compute numerically the overlap
|
|
between the molecular orbitals:
|
|
</p>
|
|
|
|
<p>
|
|
\[
|
|
S_{ij} = \int \phi_i(\mathbf{r}) \phi_j(\mathbf{r})
|
|
\text{d}\mathbf{r} \sim \sum_{k=1}^{N} \phi_i(\mathbf{r}_k)
|
|
\phi_j(\mathbf{r}_k) \delta \mathbf{r}
|
|
\]
|
|
\[
|
|
S_{ij} = \langle \phi_i | \phi_j \rangle
|
|
\sim \sum_{k=1}^{N} \langle \phi_i | \mathbf{r}_k \rangle
|
|
\langle \mathbf{r}_k | \phi_j \rangle
|
|
\]
|
|
</p>
|
|
|
|
<p>
|
|
We apply the cusp fitting procedure, so the MOs might deviate
|
|
slightly from orthonormality.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #483d8b;">#include</span> <span style="color: #8b2252;"><qmckl.h></span>
|
|
<span style="color: #483d8b;">#include</span> <span style="color: #8b2252;"><stdio.h></span>
|
|
<span style="color: #483d8b;">#include</span> <span style="color: #8b2252;"><string.h></span>
|
|
<span style="color: #483d8b;">#include</span> <span style="color: #8b2252;"><sys/time.h></span>
|
|
|
|
<span style="color: #228b22;">int</span> <span style="color: #0000ff;">main</span>(<span style="color: #228b22;">int</span> <span style="color: #a0522d;">argc</span>, <span style="color: #228b22;">char</span>** <span style="color: #a0522d;">argv</span>)
|
|
{
|
|
<span style="color: #a020f0;">const</span> <span style="color: #228b22;">char</span>* <span style="color: #a0522d;">trexio_filename</span> = <span style="color: #8b2252;">"..//share/qmckl/test_data/h2o_5z.h5"</span>;
|
|
<span style="color: #228b22;">qmckl_exit_code</span> <span style="color: #a0522d;">rc</span> = QMCKL_SUCCESS;
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
First, we create a context for the QMCkl calculation, and load the
|
|
wave function stored in <code>h2o_5z.h5</code> inside it. It is a Hartree-Fock
|
|
determinant for the water molecule in the cc-pV5Z basis set.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">qmckl_context</span> <span style="color: #a0522d;">context</span> = qmckl_context_create();
|
|
|
|
rc = qmckl_trexio_read(context, trexio_filename, strlen(trexio_filename));
|
|
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error reading TREXIO file:\n%s\n"</span>, qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We impose the electron-nucleus cusp fitting to occur when the
|
|
electrons are close to the nuclei. The critical distance
|
|
is 0.5 atomic units for hydrogens and 0.1 for the oxygen.
|
|
To identify which atom is an oxygen and which are hydrogens, we
|
|
fetch the nuclear charges from the context.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">nucl_num</span>;
|
|
|
|
rc = qmckl_get_nucleus_num(context, &nucl_num);
|
|
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error getting nucl_num:\n%s\n"</span>, qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">nucl_charge</span>[nucl_num];
|
|
|
|
rc = qmckl_get_nucleus_charge(context, &(nucl_charge[0]), nucl_num);
|
|
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error getting nucl_charge:\n%s\n"</span>, qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">r_cusp</span>[nucl_num];
|
|
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">i</span>=0 ; i<nucl_num ; ++i) {
|
|
|
|
<span style="color: #a020f0;">switch</span> ((<span style="color: #228b22;">int</span>) nucl_charge[i]) {
|
|
|
|
<span style="color: #a020f0;">case</span> 1:
|
|
r_cusp[i] = 0.5;
|
|
<span style="color: #a020f0;">break</span>;
|
|
|
|
<span style="color: #a020f0;">case</span> 8:
|
|
r_cusp[i] = 0.1;
|
|
<span style="color: #a020f0;">break</span>;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
rc = qmckl_set_mo_basis_r_cusp(context, &(r_cusp[0]), nucl_num);
|
|
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error setting r_cusp:\n%s\n"</span>, qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<p>
|
|
We now define the grid points \(\mathbf{r}_k\) as a regular grid around the
|
|
molecule.
|
|
We fetch the nuclear coordinates from the context,
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">double</span> <span style="color: #a0522d;">nucl_coord</span>[nucl_num][3];
|
|
|
|
rc = qmckl_get_nucleus_coord(context, <span style="color: #8b2252;">'N'</span>, &(nucl_coord[0][0]), nucl_num*3);
|
|
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error getting nucl_coord:\n%s\n"</span>, qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">i</span>=0 ; i<nucl_num ; ++i) {
|
|
printf(<span style="color: #8b2252;">"%d %+f %+f %+f\n"</span>,
|
|
(<span style="color: #228b22;">int32_t</span>) nucl_charge[i],
|
|
nucl_coord[i][0],
|
|
nucl_coord[i][1],
|
|
nucl_coord[i][2]);
|
|
}
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
8 +0.000000 +0.000000 +0.000000
|
|
1 -1.430429 +0.000000 -1.107157
|
|
1 +1.430429 +0.000000 -1.107157
|
|
</pre>
|
|
|
|
<p>
|
|
and compute the coordinates of the grid points:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">nx</span>[3] = { 120, 120, 120 };
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">shift</span>[3] = {5.,5.,5.};
|
|
<span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">point_num</span> = nx[0] * nx[1] * nx[2];
|
|
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">rmin</span>[3] = { nucl_coord[0][0], nucl_coord[0][1], nucl_coord[0][2] } ;
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">rmax</span>[3] = { nucl_coord[0][0], nucl_coord[0][1], nucl_coord[0][2] } ;
|
|
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">i</span>=0 ; i<nucl_num ; ++i) {
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">int</span> <span style="color: #a0522d;">j</span>=0 ; j<3 ; ++j) {
|
|
rmin[j] = nucl_coord[i][j] < rmin[j] ? nucl_coord[i][j] : rmin[j];
|
|
rmax[j] = nucl_coord[i][j] > rmax[j] ? nucl_coord[i][j] : rmax[j];
|
|
}
|
|
}
|
|
|
|
<span style="color: #228b22;">rmin</span>[0] -= shift[0]; <span style="color: #228b22;">rmin</span>[1] -= shift[1]; <span style="color: #228b22;">rmin</span>[2] -= shift[2];
|
|
<span style="color: #228b22;">rmax</span>[0] += shift[0]; <span style="color: #228b22;">rmax</span>[1] += shift[1]; <span style="color: #228b22;">rmax</span>[2] += shift[2];
|
|
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">step</span>[3];
|
|
|
|
<span style="color: #228b22;">double</span>* <span style="color: #a0522d;">linspace</span>[3];
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">int</span> <span style="color: #a0522d;">i</span>=0 ; i<3 ; ++i) {
|
|
|
|
linspace[i] = (<span style="color: #228b22;">double</span>*) calloc( <span style="color: #a020f0;">sizeof</span>(<span style="color: #228b22;">double</span>), nx[i] );
|
|
|
|
<span style="color: #a020f0;">if</span> (linspace[i] == <span style="color: #008b8b;">NULL</span>) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Allocation failed (linspace)\n"</span>);
|
|
exit(1);
|
|
}
|
|
|
|
step[i] = (rmax[i] - rmin[i]) / ((<span style="color: #228b22;">double</span>) (nx[i]-1));
|
|
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">j</span>=0 ; j<nx[i] ; ++j) {
|
|
linspace[i][j] = rmin[i] + j*step[i];
|
|
}
|
|
|
|
}
|
|
|
|
<span style="color: #228b22;">double</span> <span style="color: #a0522d;">dr</span> = step[0] * step[1] * step[2];
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Now the grid is ready, we can create the list of grid points
|
|
\(\mathbf{r}_k\) on which the MOs \(\phi_i\) will be evaluated, and
|
|
transfer them to the QMCkl context:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"><span style="color: #228b22;">double</span>* <span style="color: #a0522d;">point</span> = (<span style="color: #228b22;">double</span>*) calloc(<span style="color: #a020f0;">sizeof</span>(<span style="color: #228b22;">double</span>), 3*point_num);
|
|
|
|
<span style="color: #a020f0;">if</span> (point == <span style="color: #008b8b;">NULL</span>) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Allocation failed (point)\n"</span>);
|
|
exit(1);
|
|
}
|
|
|
|
<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">m</span> = 0;
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">i</span>=0 ; i<nx[0] ; ++i) {
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">j</span>=0 ; j<nx[1] ; ++j) {
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">k</span>=0 ; k<nx[2] ; ++k) {
|
|
|
|
point[m] = linspace[0][i];
|
|
m++;
|
|
|
|
point[m] = linspace[1][j];
|
|
m++;
|
|
|
|
point[m] = linspace[2][k];
|
|
m++;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
rc = qmckl_set_point(context, <span style="color: #8b2252;">'N'</span>, point_num, point, (point_num*3));
|
|
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error setting points:\n%s\n"</span>, qmckl_string_of_error(rc));
|
|
exit(1);
|
|
}
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Then, we evaluate all the MOs at the grid points (and time the execution),
|
|
and thus obtain the matrix \(M_{ki} = \langle \mathbf{r}_k | \phi_i
|
|
\rangle = \phi_i(\mathbf{r}_k)\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c">
|
|
<span style="color: #228b22;">int64_t</span> <span style="color: #a0522d;">mo_num</span>;
|
|
rc = qmckl_get_mo_basis_mo_num(context, &mo_num);
|
|
|
|
<span style="color: #228b22;">long</span> <span style="color: #a0522d;">before</span>, <span style="color: #a0522d;">after</span>;
|
|
<span style="color: #a020f0;">struct</span> <span style="color: #228b22;">timeval</span> <span style="color: #a0522d;">timecheck</span>;
|
|
|
|
<span style="color: #228b22;">double</span>* <span style="color: #a0522d;">mo_value</span> = (<span style="color: #228b22;">double</span>*) calloc(<span style="color: #a020f0;">sizeof</span>(<span style="color: #228b22;">double</span>), point_num*mo_num);
|
|
<span style="color: #a020f0;">if</span> (mo_value == <span style="color: #008b8b;">NULL</span>) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Allocation failed (mo_value)\n"</span>);
|
|
exit(1);
|
|
}
|
|
|
|
gettimeofday(&timecheck, <span style="color: #008b8b;">NULL</span>);
|
|
before = (<span style="color: #228b22;">long</span>)timecheck.tv_sec * 1000 + (<span style="color: #228b22;">long</span>)timecheck.tv_usec / 1000;
|
|
|
|
rc = qmckl_get_mo_basis_mo_value(context, mo_value, point_num*mo_num);
|
|
<span style="color: #a020f0;">if</span> (rc != QMCKL_SUCCESS) {
|
|
fprintf(stderr, <span style="color: #8b2252;">"Error getting mo_value)\n"</span>);
|
|
exit(1);
|
|
}
|
|
|
|
gettimeofday(&timecheck, <span style="color: #008b8b;">NULL</span>);
|
|
after = (<span style="color: #228b22;">long</span>)timecheck.tv_sec * 1000 + (<span style="color: #228b22;">long</span>)timecheck.tv_usec / 1000;
|
|
|
|
printf(<span style="color: #8b2252;">"Number of MOs: %ld\n"</span>, mo_num);
|
|
printf(<span style="color: #8b2252;">"Number of grid points: %ld\n"</span>, point_num);
|
|
printf(<span style="color: #8b2252;">"Execution time : %f seconds\n"</span>, (after - before)*1.e-3);
|
|
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
Number of MOs: 201
|
|
Number of grid points: 1728000
|
|
Execution time : 5.608000 seconds
|
|
</pre>
|
|
|
|
<p>
|
|
and finally we compute the overlap between all the MOs as
|
|
\(M.M^\dagger\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-c"> <span style="color: #228b22;">double</span>* <span style="color: #a0522d;">overlap</span> = (<span style="color: #228b22;">double</span>*) <span style="color: #0000ff;">malloc</span> (<span style="color: #228b22;">mo_num</span>*<span style="color: #0000ff;">mo_num</span>*<span style="color: #a020f0;">sizeof</span>(<span style="color: #228b22;">double</span>));
|
|
|
|
rc = qmckl_dgemm(context, <span style="color: #8b2252;">'N'</span>, <span style="color: #8b2252;">'T'</span>, mo_num, mo_num, point_num, dr,
|
|
mo_value, mo_num, mo_value, mo_num, 0.0,
|
|
overlap, mo_num);
|
|
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">i</span>=0 ; i<mo_num ; ++i) {
|
|
printf(<span style="color: #8b2252;">"%4ld"</span>, i);
|
|
<span style="color: #a020f0;">for</span> (<span style="color: #228b22;">size_t</span> <span style="color: #a0522d;">j</span>=0 ; j<mo_num ; ++j) {
|
|
printf(<span style="color: #8b2252;">" %f"</span>, overlap[i*mo_num+j]);
|
|
}
|
|
printf(<span style="color: #8b2252;">"\n"</span>);
|
|
}
|
|
|
|
}
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
0 0.988765 0.002336 0.000000 -0.000734 0.000000 0.000530 0.000000 0.000446 0.000000 -0.000000 -0.000511 -0.000000 -0.000267 0.000000 0.000000 0.001007 0.000000 0.000168 -0.000000 -0.000000 -0.000670 -0.000000 0.000000 -0.000251 -0.000261 -0.000000 -0.000000 -0.000000 -0.000397 -0.000000 -0.000810 0.000000 0.000231 -0.000000 -0.000000 0.000000 -0.000000
|
|
...
|
|
200 0.039017 -0.013066 -0.000000 -0.001935 -0.000000 -0.003829 -0.000000 0.000996 -0.000000 0.000000 -0.003733 0.000000 0.000065 -0.000000 -0.000000 -0.002220 -0.000000 -0.001961 0.000000 0.000000 -0.004182 0.000000 -0.000000 -0.000165 -0.002445 0.000000 -0.000000 0.000000 0.001985 0.000000 0.001685 -0.000000 -0.002899 0.000000 0.000000 0.000000 -0.000000 0.002591 0.000000 -0.000000 0.000000 0.002385 0.000000 -0.011086 0.000000 -0.003885 0.000000 -0.000000 0.003602 -0.000000 0.000000 -0.003241 0.000000 0.000000 0.002613 -0.007344 -0.000000 -0.000000 0.000000 0.000017 0.000000 0.000000 0.000000 -0.008719 0.000000 -0.001358 -0.003233 0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.003778 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.001190 0.000000 0.000000 -0.000000 0.005578 -0.000000 -0.001502 0.003899 -0.000000 -0.000000 0.000000 -0.003291 -0.001775 -0.000000 -0.002374 0.000000 -0.000000 -0.000000 -0.000000 -0.001290 -0.000000 0.002178 0.000000 0.000000 0.000000 -0.001252 0.000000 -0.000000 -0.000926 0.000000 -0.000000 -0.013130 -0.000000 0.012124 0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.025194 0.000343 -0.000000 0.000000 -0.000000 -0.004421 0.000000 0.000000 -0.000599 -0.000000 0.005289 0.000000 -0.000000 0.012826 -0.000000 0.000000 0.006190 0.000000 0.000000 -0.000000 0.000000 -0.000321 0.000000 -0.000000 -0.000000 0.000000 -0.000000 0.001499 -0.006629 0.000000 0.000000 0.000000 -0.000000 0.008737 -0.000000 0.006880 0.000000 -0.001851 -0.000000 -0.000000 0.000000 -0.007464 0.000000 0.010298 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.000540 0.000000 -0.006616 -0.000000 0.000000 -0.002927 -0.000000 0.000000 0.010352 0.000000 -0.003103 -0.000000 -0.007640 -0.000000 -0.000000 0.005302 0.000000 0.000000 -0.000000 -0.000000 -0.010181 0.000000 -0.001108 0.000000 0.000000 -0.000000 0.000000 0.000000 -0.000998 -0.009754 0.013562 0.000000 -0.000000 0.887510
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org84ed043" class="outline-2">
|
|
<h2 id="org84ed043"><span class="section-number-2">2</span> Fortran</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
</div>
|
|
<div id="outline-container-org0086a2d" class="outline-3">
|
|
<h3 id="org0086a2d"><span class="section-number-3">2.1</span> Checking errors</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<p>
|
|
All QMCkl functions return an error code. A convenient way to handle
|
|
errors is to write an error-checking function that displays the
|
|
error in text format and exits the program.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90" id="org5e851f8"><span style="color: #a020f0;">subroutine</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, message)
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
<span style="color: #228b22;">integer</span>(qmckl_exit_code), <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> rc</span>
|
|
<span style="color: #228b22;">character</span>(len=*) , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> message</span>
|
|
<span style="color: #228b22;">character</span>(len=128) ::<span style="color: #a0522d;"> str_buffer</span>
|
|
<span style="color: #a020f0;">if</span> (rc /= QMCKL_SUCCESS) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">print</span> *, message
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_string_of_error</span>(rc, str_buffer)
|
|
<span style="color: #a020f0;">print</span> *, str_buffer
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">exit</span>(rc)
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">end subroutine</span> <span style="color: #0000ff;">qmckl_check_error</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org11a8773" class="outline-3">
|
|
<h3 id="org11a8773"><span class="section-number-3">2.2</span> Computing an atomic orbital on a grid</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
<p>
|
|
The following program, in Fortran, computes the values of an atomic
|
|
orbital on a regular 3-dimensional grid. The 100<sup>3</sup> grid points are
|
|
automatically defined, such that the molecule fits in a box with 5
|
|
atomic units in the borders.
|
|
</p>
|
|
|
|
<p>
|
|
This program uses the <code>qmckl_check_error</code> function defined above.
|
|
</p>
|
|
|
|
<p>
|
|
To use this program, run
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-bash">$ ao_grid <trexio_file> <AO_id> <point_num>
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #a020f0;">subroutine</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, message)
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
<span style="color: #228b22;">integer</span>(qmckl_exit_code), <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> rc</span>
|
|
<span style="color: #228b22;">character</span>(len=*) , <span style="color: #a020f0;">intent</span>(in) ::<span style="color: #a0522d;"> message</span>
|
|
<span style="color: #228b22;">character</span>(len=128) ::<span style="color: #a0522d;"> str_buffer</span>
|
|
<span style="color: #a020f0;">if</span> (rc /= QMCKL_SUCCESS) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">print</span> *, message
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_string_of_error</span>(rc, str_buffer)
|
|
<span style="color: #a020f0;">print</span> *, str_buffer
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">exit</span>(rc)
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">end subroutine</span> <span style="color: #0000ff;">qmckl_check_error</span>
|
|
|
|
<span style="color: #a020f0;">program</span> <span style="color: #0000ff;">ao_grid</span>
|
|
<span style="color: #a020f0;">use</span> <span style="color: #0000ff;">qmckl</span>
|
|
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
|
|
|
|
<span style="color: #228b22;">integer</span>(qmckl_context) ::<span style="color: #a0522d;"> qmckl_ctx </span>! <span style="color: #b22222;">QMCkl context</span>
|
|
<span style="color: #228b22;">integer</span>(qmckl_exit_code) ::<span style="color: #a0522d;"> rc </span>! <span style="color: #b22222;">Exit code of QMCkl functions</span>
|
|
|
|
<span style="color: #228b22;">character</span>(len=128) ::<span style="color: #a0522d;"> trexio_filename</span>
|
|
<span style="color: #228b22;">character</span>(len=128) ::<span style="color: #a0522d;"> str_buffer</span>
|
|
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> ao_id</span>
|
|
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> point_num_x</span>
|
|
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>) ::<span style="color: #a0522d;"> nucl_num</span>
|
|
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> nucl_coord(:,:)</span>
|
|
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>) ::<span style="color: #a0522d;"> point_num</span>
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>) ::<span style="color: #a0522d;"> ao_num</span>
|
|
<span style="color: #228b22;">integer</span>(<span style="color: #008b8b;">c_int64_t</span>) ::<span style="color: #a0522d;"> ipoint, i, j, k</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> x, y, z, dr(3)</span>
|
|
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> rmin(3), rmax(3)</span>
|
|
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> points(:,:)</span>
|
|
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">allocatable</span> ::<span style="color: #a0522d;"> ao_vgl(:,:,:)</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Start by fetching the command-line arguments:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #a020f0;">if</span> (iargc() /= 3) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">print</span> *, <span style="color: #8b2252;">'Syntax: ao_grid <trexio_file> <AO_id> <point_num>'</span>
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">exit</span>(-1)
|
|
<span style="color: #a020f0;">end if</span>
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">getarg</span>(1, trexio_filename)
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">getarg</span>(2, str_buffer)
|
|
<span style="color: #a020f0;">read</span>(str_buffer, *) ao_id
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">getarg</span>(3, str_buffer)
|
|
<span style="color: #a020f0;">read</span>(str_buffer, *) point_num_x
|
|
|
|
<span style="color: #a020f0;">if</span> (point_num_x < 0 <span style="color: #a020f0;">.or.</span> point_num_x > 300) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">print</span> *, <span style="color: #8b2252;">'Error: 0 < point_num < 300'</span>
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">exit</span>(-1)
|
|
<span style="color: #a020f0;">end if</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Create the QMCkl context and initialize it with the wave function
|
|
present in the TREXIO file:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90">qmckl_ctx = qmckl_context_create()
|
|
rc = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*<span style="color: #a020f0;">len</span>(<span style="color: #a020f0;">trim</span>(trexio_filename)))
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, <span style="color: #8b2252;">'Read TREXIO'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We need to check that <code>ao_id</code> is in the range, so we get the total
|
|
number of AOs from QMCkl:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90">rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num)
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, <span style="color: #8b2252;">'Getting ao_num'</span>)
|
|
|
|
<span style="color: #a020f0;">if</span> (ao_id < 0 <span style="color: #a020f0;">.or.</span> ao_id > ao_num) <span style="color: #a020f0;">then</span>
|
|
<span style="color: #a020f0;">print</span> *, <span style="color: #8b2252;">'Error: 0 < ao_id < '</span>, ao_num
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">exit</span>(-1)
|
|
<span style="color: #a020f0;">end if</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Now we will compute the limits of the box in which the molecule fits.
|
|
For that, we first need to ask QMCkl the coordinates of nuclei.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90">rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num)
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, <span style="color: #8b2252;">'Get nucleus num'</span>)
|
|
|
|
<span style="color: #a020f0;">allocate</span>( nucl_coord(3, nucl_num) )
|
|
rc = qmckl_get_nucleus_coord(qmckl_ctx, <span style="color: #8b2252;">'N'</span>, nucl_coord, 3_8*nucl_num)
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, <span style="color: #8b2252;">'Get nucleus coord'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We now compute the coordinates of opposite points of the box, and
|
|
the distance between points along the 3 directions:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90">rmin(1) = <span style="color: #a020f0;">minval</span>( nucl_coord(1,:) ) - 5.d0
|
|
rmin(2) = <span style="color: #a020f0;">minval</span>( nucl_coord(2,:) ) - 5.d0
|
|
rmin(3) = <span style="color: #a020f0;">minval</span>( nucl_coord(3,:) ) - 5.d0
|
|
|
|
rmax(1) = <span style="color: #a020f0;">maxval</span>( nucl_coord(1,:) ) + 5.d0
|
|
rmax(2) = <span style="color: #a020f0;">maxval</span>( nucl_coord(2,:) ) + 5.d0
|
|
rmax(3) = <span style="color: #a020f0;">maxval</span>( nucl_coord(3,:) ) + 5.d0
|
|
|
|
dr(1:3) = (rmax(1:3) - rmin(1:3)) / <span style="color: #a020f0;">dble</span>(point_num_x-1)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We now produce the list of point coordinates where the AO will be
|
|
evaluated:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90">point_num = point_num_x**3
|
|
<span style="color: #a020f0;">allocate</span>( points(point_num, 3) )
|
|
ipoint=0
|
|
z = rmin(3)
|
|
<span style="color: #a020f0;">do</span> k=1,point_num_x
|
|
y = rmin(2)
|
|
<span style="color: #a020f0;">do</span> j=1,point_num_x
|
|
x = rmin(1)
|
|
<span style="color: #a020f0;">do</span> i=1,point_num_x
|
|
ipoint = ipoint+1
|
|
points(ipoint,1) = x
|
|
points(ipoint,2) = y
|
|
points(ipoint,3) = z
|
|
x = x + dr(1)
|
|
<span style="color: #a020f0;">end do</span>
|
|
y = y + dr(2)
|
|
<span style="color: #a020f0;">end do</span>
|
|
z = z + dr(3)
|
|
<span style="color: #a020f0;">end do</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We give the points to QMCkl:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90">rc = qmckl_set_point(qmckl_ctx, <span style="color: #8b2252;">'T'</span>, point_num, points, <span style="color: #a020f0;">size</span>(points)*1_8 )
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, <span style="color: #8b2252;">'Setting points'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We allocate the space required to retrieve the values, gradients and
|
|
Laplacian of all AOs, and ask to retrieve the values of the
|
|
AOs computed at the point positions.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #a020f0;">allocate</span>( ao_vgl(ao_num, 5, point_num) )
|
|
rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num)
|
|
<span style="color: #a020f0;">call</span> <span style="color: #0000ff;">qmckl_check_error</span>(rc, <span style="color: #8b2252;">'Setting points'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We finally print the value and Laplacian of the AO:
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"><span style="color: #a020f0;">do</span> ipoint=1, point_num
|
|
<span style="color: #a020f0;">print</span> <span style="color: #8b2252;">'(3(F10.6,X),2(E20.10,X))'</span>, points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint), ao_vgl(ao_id,5,ipoint)
|
|
<span style="color: #a020f0;">end do</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-f90"> <span style="color: #a020f0;">deallocate</span>( nucl_coord, points, ao_vgl )
|
|
<span style="color: #a020f0;">end program</span> <span style="color: #0000ff;">ao_grid</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: TREX CoE</p>
|
|
<p class="date">Created: 2023-09-11 Mon 15:07</p>
|
|
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
|
|
</div>
|
|
</body>
|
|
</html>
|