Computation of distances
Table of Contents
Function for the computation of distances between particles.
3 files are produced:
- a header file :
qmckl_distance.h
- a source file :
qmckl_distance.f90
- a C test file :
test_qmckl_distance.c
- a Fortran test file :
test_qmckl_distance_f.f90
1 Squared distance
1.1 qmckl_distance_sq
Computes the matrix of the squared distances between all pairs of points in two sets, one point within each set: \[ C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2 \]
1.1.1 Arguments
context |
input | Global state |
transa |
input | Array A is N : Normal, T : Transposed |
transb |
input | Array B is N : Normal, T : Transposed |
m |
input | Number of points in the first set |
n |
input | Number of points in the second set |
A(lda,3) |
input | Array containing the \(m \times 3\) matrix \(A\) |
lda |
input | Leading dimension of array A |
B(ldb,3) |
input | Array containing the \(n \times 3\) matrix \(B\) |
ldb |
input | Leading dimension of array B |
C(ldc,n) |
output | Array containing the \(m \times n\) matrix \(C\) |
ldc |
input | Leading dimension of array C |
1.1.2 Requirements
context
is not 0m
> 0n
> 0lda
>= 3 iftransa
isN
lda
>= m iftransa
isT
ldb
>= 3 iftransb
isN
ldb
>= n iftransb
isT
ldc
>= m iftransa
is =A
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(m \times n \times 8\) bytes
1.1.3 Performance
This function might be more efficient when A
and B
are
transposed.
1.1.4 Header
qmckl_exit_code qmckl_distance_sq(qmckl_context context, char transa, char transb, int64_t m, int64_t n, double *A, int64_t lda, double *B, int64_t ldb, double *C, int64_t ldc);
1.1.5 Source
integer function qmckl_distance_sq_f(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC) result(info) implicit none integer*8 , intent(in) :: context character , intent(in) :: transa, transb integer*8 , intent(in) :: m, n integer*8 , intent(in) :: lda real*8 , intent(in) :: A(lda,*) integer*8 , intent(in) :: ldb real*8 , intent(in) :: B(ldb,*) integer*8 , intent(in) :: ldc real*8 , intent(out) :: C(ldc,*) integer*8 :: i,j real*8 :: x, y, z integer :: transab info = 0 if (context == 0_8) then info = -1 return endif if (m <= 0_8) then info = -2 return endif if (n <= 0_8) then info = -3 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transa == 'T' .or. transa == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = -4 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = -5 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = -6 return endif if (iand(transab,2) == 0 .and. LDA < 3) then info = -6 return endif if (iand(transab,2) == 2 .and. LDA < m) then info = -7 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do end select end function qmckl_distance_sq_f