QMCkl source code documentation
Table of Contents
- 1. Introduction
- 2. Documentation
- 3. Acknowledgments
1 Introduction
The ultimate goal of QMCkl is to provide a high-performance implementation of the main kernels of QMC. In this particular repository, we focus on the definition of the API and the tests, and on a pedagogical presentation of the algorithms. We expect the HPC experts to use this repository as a reference for re-writing optimized libraries.
Literate programming is particularly adapted in this context. Source files are written in org-mode format, to provide useful comments and LaTex formulas close to the code. There exists multiple possibilities to convert org-mode files into different formats such as HTML or pdf. For a tutorial on literate programming with org-mode, follow this link.
The code is extracted from the org files using Emacs as a
command-line tool in the Makefile
, and then the produced files are
compiled.
1.1 Language used
Fortran is one of the most common languages used by the community, and is simple enough to make the algorithms readable. Hence we propose in this pedagogical implementation of QMCkl to use Fortran to express the algorithms. For specific internal functions where the C language is more natural, C is used.
As Fortran modules generate compiler-dependent files, the use of modules is restricted to the internal use of the library, otherwise the compliance with C is violated.
The external dependencies should be kept as small as possible, so external libraries should be used only if their used is strongly justified.
1.2 Source code editing
Any text editor can be used to edit org-mode files. For a better user experience Emacs is recommended. For users hating Emacs, it is good to know that Emacs can behave like Vim when switched into ``Evil'' mode. There also exists Spacemacs which helps the transition for Vim users.
For users with a preference for Jupyter notebooks, the following script can convert jupyter notebooks to org-mode files:
#!/bin/bash # $ nb_to_org.sh notebook.ipynb # produces the org-mode file notebook.org set -e nb=$(basename $1 .ipynb) jupyter nbconvert --to markdown ${nb}.ipynb --output ${nb}.md pandoc ${nb}.md -o ${nb}.org rm ${nb}.md
And pandoc can convert multiple markdown formats into org-mode.
1.3 Writing in Fortran
The Fortran source files should provide a C interface using
iso_c_binding
. The name of the Fortran source files should end
with _f.f90
to be properly handled by the Makefile. The names of
the functions defined in fortran should be the same as those
exposed in the API suffixed by _f
. Fortran interface files
should also be written in the qmckl_f.f90
file.
For more guidelines on using Fortran to generate a C interface, see this link.
1.4 Coding style
To improve readability, we maintain a consistent coding style in the library.
- For C source files, we will use (decide on a coding style)
- For Fortran source files, we will use (decide on a coding style)
Coding style can be automatically checked with clang-format.
1.5 Design of the library
The proposed API should allow the library to:
- deal with memory transfers between CPU and accelerators
- use different levels of floating-point precision
We chose a multi-layered design with low-level and high-level functions (see below).
1.5.1 Naming conventions
Use qmckl_
as a prefix for all exported functions and variables.
All exported header files should have a filename with the prefix
qmckl_
.
If the name of the org-mode file is xxx.org
, the name of the
produced C files should be xxx.c
and xxx.h
and the name of the
produced Fortran files should be xxx.f90
Arrays are in uppercase and scalars are in lowercase.
In the names of the variables and functions, only the singular form is allowed.
1.5.2 Application programming interface
The application programming interface (API) is designed to be compatible with the C programming language (not C++), to ensure that the library will be easily usable in any language. This implies that only the following data types are allowed in the API:
- 32-bit and 64-bit floats and arrays (
real
anddouble
) - 32-bit and 64-bit integers and arrays (
int32_t
andint64_t
) - Pointers should be represented as 64-bit integers (even on 32-bit architectures)
- ASCII strings are represented as a pointers to a character arrays and terminated by a zero character (C convention).
Complex numbers can be represented by an array of 2 floats.
To facilitate the use in other languages than C, we provide some bindings in other languages in other repositories.
1.5.3 Global state
Global variables should be avoided in the library, because it is
possible that one single program needs to use multiple instances
of the library. To solve this problem we propose to use a pointer
to a context
variable, built by the library with the
qmckl_context_create
function. The context
contains the global
state of the library, and is used as the first argument of many
QMCkl functions.
The internal structure of the context is not specified, to give a
maximum of freedom to the different implementations. Modifying
the state is done by setters and getters, prefixed by
qmckl_context_set_
an qmckl_context_get_
. When a context
variable is modified by a setter, a copy of the old data structure
is made and updated, and the pointer to the new data structure is
returned, such that the old contexts can still be accessed. It is
also possible to modify the state in an impure fashion, using the
qmckl_context_update_
functions. The context and its old
versions can be destroyed with qmckl_context_destroy
.
1.5.4 Low-level functions
Low-level functions are very simple functions which are leaves of the function call tree (they don't call any other QMCkl function).
These functions are pure, and unaware of the QMCkl
context
. They are not allowed to allocate/deallocate memory, and
if they need temporary memory it should be provided in input.
1.5.5 High-level functions
High-level functions are at the top of the function call tree. They are able to choose which lower-level function to call depending on the required precision, and do the corresponding type conversions. These functions are also responsible for allocating temporary storage, to simplify the use of accelerators.
The high-level functions should be pure, unless the introduction
of non-purity is justified. All the side effects should be made in
the context
variable.
1.5.6 Numerical precision
The number of bits of precision required for a function should be
given as an input of low-level computational functions. This input
will be used to define the values of the different thresholds that
might be used to avoid computing unnecessary noise. High-level
functions will use the precision specified in the context
variable.
1.6 Algorithms
Reducing the scaling of an algorithm usually implies also reducing its arithmetic complexity (number of flops per byte). Therefore, for small sizes \(\mathcal{O}(N^3)\) and \(\mathcal{O}(N^2)\) algorithms are better adapted than linear scaling algorithms. As QMCkl is a general purpose library, multiple algorithms should be implemented adapted to different problem sizes.
1.7 Rules for the API
stdint
should be used for integers (int32_t
,int64_t
)- integers used for counting should always be
int64_t
- floats should be by default
double
, unless explicitly mentioned - pointers are converted to
int64_t
to increase portability
2 Documentation
2.1 qmckl.h
header file
This file produces the qmckl.h
header file, which is to be included
when qmckl functions are used.
We also create here the qmckl_f.f90
which is the Fortran interface file.
2.1.1 Constants
- Success/failure
These are the codes returned by the functions to indicate success or failure. All such functions should have as a return type
qmckl_exit_code
.#define QMCKL_SUCCESS 0 #define QMCKL_FAILURE 1 typedef int32_t qmckl_exit_code; typedef int64_t qmckl_context ;
integer, parameter :: QMCKL_SUCCESS = 0 integer, parameter :: QMCKL_FAILURE = 0
- Precision-related constants
Controlling numerical precision enables optimizations. Here, the default parameters determining the target numerical precision and range are defined.
#define QMCKL_DEFAULT_PRECISION 53 #define QMCKL_DEFAULT_RANGE 11
integer, parameter :: QMCKL_DEFAULT_PRECISION = 53 integer, parameter :: QMCKL_DEFAULT_RANGE = 11
2.2 Memory management
We override the allocation functions to enable the possibility of optimized libraries to fine-tune the memory allocation.
2 files are produced:
- a source file :
qmckl_memory.c
- a test file :
test_qmckl_memory.c
2.2.1 qmckl_malloc
Memory allocation function, letting the library choose how the memory will be allocated, and a pointer is returned to the user.
void* qmckl_malloc(const qmckl_context ctx, const size_t size);
interface type (c_ptr) function qmckl_malloc (context, size) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int64_t), intent(in), value :: size end function qmckl_malloc end interface
2.3 Context
This file is written in C because it is more natural to express the context in C than in Fortran.
2 files are produced:
- a source file :
qmckl_context.c
- a test file :
test_qmckl_context.c
2.3.1 Context
The context variable is a handle for the state of the library, and
is stored in the following data structure, which can't be seen
outside of the library. To simplify compatibility with other
languages, the pointer to the internal data structure is converted
into a 64-bit signed integer, defined in the qmckl_context
type.
A value of 0 for the context is equivalent to a NULL
pointer.
- Basis set data structure
Data structure for the info related to the atomic orbitals basis set.
typedef struct qmckl_ao_basis_struct { int64_t shell_num; int64_t prim_num; int64_t * shell_center; int32_t * shell_ang_mom; double * shell_factor; double * exponent ; double * coefficient ; int64_t * shell_prim_num; char type; } qmckl_ao_basis_struct;
- Source
The tag is used internally to check if the memory domain pointed by a pointer is a valid context.
typedef struct qmckl_context_struct { struct qmckl_context_struct * prev; /* Molecular system */ // struct qmckl_nucleus_struct * nucleus; // struct qmckl_electron_struct * electron; struct qmckl_ao_basis_struct * ao_basis; // struct qmckl_mo_struct * mo; // struct qmckl_determinant_struct * det; /* Numerical precision */ uint32_t tag; int32_t precision; int32_t range; } qmckl_context_struct; #define VALID_TAG 0xBEEFFACE #define INVALID_TAG 0xDEADBEEF
qmckl_context_check
Checks if the domain pointed by the pointer is a valid context. Returns the input
qmckl_context
if the context is valid, 0 otherwise.qmckl_context qmckl_context_check(const qmckl_context context) ;
qmckl_context_create
To create a new context, use
qmckl_context_create()
.- On success, returns a pointer to a context using the
qmckl_context
type Returns
0
upon failure to allocate the internal data structureqmckl_context qmckl_context_create();
- Source
qmckl_context qmckl_context_create() { qmckl_context_struct* context = (qmckl_context_struct*) qmckl_malloc ((qmckl_context) 0, sizeof(qmckl_context_struct)); if (context == NULL) { return (qmckl_context) 0; } context->prev = NULL; context->ao_basis = NULL; context->precision = QMCKL_DEFAULT_PRECISION; context->range = QMCKL_DEFAULT_RANGE; context->tag = VALID_TAG; return (qmckl_context) context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_create() bind(C) use, intrinsic :: iso_c_binding end function qmckl_context_create end interface
- On success, returns a pointer to a context using the
qmckl_context_copy
This function makes a shallow copy of the current context.
- Copying the 0-valued context returns 0
- On success, returns a pointer to the new context using the
qmckl_context
type Returns 0 upon failure to allocate the internal data structure for the new context
qmckl_context qmckl_context_copy(const qmckl_context context);
- Source
qmckl_context qmckl_context_copy(const qmckl_context context) { const qmckl_context checked_context = qmckl_context_check(context); if (checked_context == (qmckl_context) 0) { return (qmckl_context) 0; } qmckl_context_struct* old_context = (qmckl_context_struct*) checked_context; qmckl_context_struct* new_context = (qmckl_context_struct*) qmckl_malloc (context, sizeof(qmckl_context_struct)); if (new_context == NULL) { return (qmckl_context) 0; } new_context->prev = old_context; new_context->ao_basis = old_context->ao_basis; new_context->precision = old_context->precision; new_context->range = old_context->range; new_context->tag = VALID_TAG; return (qmckl_context) new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_copy(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_copy end interface
qmckl_context_previous
Returns the previous context
- On success, returns the ancestor of the current context
- Returns 0 for the initial context
Returns 0 for the 0-valued context
qmckl_context qmckl_context_previous(const qmckl_context context);
- Source
qmckl_context qmckl_context_previous(const qmckl_context context) { const qmckl_context checked_context = qmckl_context_check(context); if (checked_context == (qmckl_context) 0) { return (qmckl_context) 0; } const qmckl_context_struct* ctx = (qmckl_context_struct*) checked_context; return qmckl_context_check((qmckl_context) ctx->prev); }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_previous(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_previous end interface
qmckl_context_destroy
Destroys the current context, leaving the ancestors untouched.
- Succeeds if the current context is properly destroyed
- Fails otherwise
- Fails if the 0-valued context is given in argument
- Fails if the the pointer is not a valid context
qmckl_exit_code qmckl_context_destroy(qmckl_context context);
- Source
qmckl_exit_code qmckl_context_destroy(const qmckl_context context) { const qmckl_context checked_context = qmckl_context_check(context); if (checked_context == (qmckl_context) 0) return QMCKL_FAILURE; qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; ctx->tag = INVALID_TAG; qmckl_free(ctx); return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_destroy(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_destroy end interface
2.3.2 Basis set
For H2 with the following basis set,
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = 'G' shell_num = 12 prim_num = 20 SHELL_CENTER = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2] SHELL_ANG_MOM = ['S', 'S', 'S', 'P', 'P', 'D', 'S', 'S', 'S', 'P', 'P', 'D'] SHELL_PRIM_NUM = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] prim_index = [1, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20] EXPONENT = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] COEFFICIENT = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0]
qmckl_context_update_ao_basis
Updates the data describing the AO basis set into the context.
type
Gaussian or Slater shell_num
Number of shells prim_num
Total number of primitives SHELL_CENTER(shell_num)
Id of the nucleus on which the shell is centered SHELL_ANG_MOM(shell_num)
Id of the nucleus on which the shell is centered SHELL_FACTOR(shell_num)
Normalization factor for the shell SHELL_PRIM_NUM(shell_num)
Number of primitives in the shell SHELL_PRIM_INDEX(shell_num)
Address of the first primitive of the shelll in the EXPONENT
arrayEXPONENT(prim_num)
Array of exponents COEFFICIENT(prim_num)
Array of coefficients qmckl_exit_code qmckl_context_update_ao_basis(qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT);
- Source
qmckl_exit_code qmckl_context_update_ao_basis(qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT) { int64_t i; /* Check input */ if (type != 'G' && type != 'S') return QMCKL_FAILURE; if (shell_num <= 0) return QMCKL_FAILURE; if (prim_num <= 0) return QMCKL_FAILURE; if (prim_num < shell_num) return QMCKL_FAILURE; for (i=0 ; i<shell_num ; i++) { if (SHELL_CENTER[i] <= 0) return QMCKL_FAILURE; if (SHELL_PRIM_NUM[i] <= 0) return QMCKL_FAILURE; if (SHELL_ANG_MOM[i] < 0) return QMCKL_FAILURE; if (SHELL_PRIM_INDEX[i] < 0) return QMCKL_FAILURE; } for (i=0 ; i<prim_num ; i++) { if (EXPONENT[i] <= 0) return QMCKL_FAILURE; } qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; qmckl_ao_basis_struct* basis = (qmckl_ao_basis_struct*) malloc (sizeof(qmckl_ao_basis_struct)); if (basis == NULL) return QMCKL_FAILURE; /* Memory allocations */ basis->shell_center = (int64_t*) malloc (shell_num * sizeof(int64_t)); if (basis->shell_center == NULL) { free(basis); return QMCKL_FAILURE; } basis->shell_ang_mom = (int32_t*) malloc (shell_num * sizeof(int32_t)); if (basis->shell_ang_mom == NULL) { free(basis->shell_center); free(basis); return QMCKL_FAILURE; } basis->shell_prim_num= (int64_t*) malloc (shell_num * sizeof(int64_t)); if (basis->shell_prim_num == NULL) { free(basis->shell_ang_mom); free(basis->shell_center); free(basis); return QMCKL_FAILURE; } basis->shell_factor = (double *) malloc (shell_num * sizeof(double )); if (basis->shell_factor == NULL) { free(basis->shell_prim_num); free(basis->shell_ang_mom); free(basis->shell_center); free(basis); return QMCKL_FAILURE; } basis->exponent = (double *) malloc (prim_num * sizeof(double )); if (basis->exponent == NULL) { free(basis->shell_factor); free(basis->shell_prim_num); free(basis->shell_ang_mom); free(basis->shell_center); free(basis); return QMCKL_FAILURE; } basis->coefficient = (double *) malloc (prim_num * sizeof(double )); if (basis->coefficient == NULL) { free(basis->exponent); free(basis->shell_factor); free(basis->shell_prim_num); free(basis->shell_ang_mom); free(basis->shell_center); free(basis); return QMCKL_FAILURE; } /* Assign data */ basis->type = type; basis->shell_num = shell_num; basis->prim_num = prim_num; for (i=0 ; i<shell_num ; i++) { basis->shell_center [i] = SHELL_CENTER [i]; basis->shell_ang_mom [i] = SHELL_ANG_MOM [i]; basis->shell_prim_num[i] = SHELL_PRIM_NUM[i]; basis->shell_factor [i] = SHELL_FACTOR [i]; } for (i=0 ; i<prim_num ; i++) { basis->exponent [i] = EXPONENT[i]; basis->coefficient[i] = COEFFICIENT[i]; } ctx->ao_basis = basis; return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_update_ao_basis(context, & typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, & SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context character(c_char) , intent(in), value :: typ integer (c_int64_t), intent(in), value :: shell_num integer (c_int64_t), intent(in), value :: prim_num integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num) integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num) double precision , intent(in) :: SHELL_FACTOR(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num) double precision , intent(in) :: EXPONENT(prim_num) double precision , intent(in) :: COEFFICIENT(prim_num) end function qmckl_context_update_ao_basis end interface
- TODO Test
- Source
qmckl_context_set_ao_basis
Sets the data describing the AO basis set into the context.
type
Gaussian or Slater shell_num
Number of shells prim_num
Total number of primitives SHELL_CENTER(shell_num)
Id of the nucleus on which the shell is centered SHELL_ANG_MOM(shell_num)
Id of the nucleus on which the shell is centered SHELL_FACTOR(shell_num)
Normalization factor for the shell SHELL_PRIM_NUM(shell_num)
Number of primitives in the shell SHELL_PRIM_INDEX(shell_num)
Address of the first primitive of the shelll in the EXPONENT
arrayEXPONENT(prim_num)
Array of exponents COEFFICIENT(prim_num)
Array of coefficients qmckl_context qmckl_context_set_ao_basis(const qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT);
- Source
qmckl_context qmckl_context_set_ao_basis(const qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT) { qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return 0; if (qmckl_context_update_ao_basis(context, type, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT ) == QMCKL_FAILURE) return 0; return new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_set_ao_basis(context, & typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, & SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context character(c_char) , intent(in), value :: typ integer (c_int64_t), intent(in), value :: shell_num integer (c_int64_t), intent(in), value :: prim_num integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num) integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num) double precision , intent(in) :: SHELL_FACTOR(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num) double precision , intent(in) :: EXPONENT(prim_num) double precision , intent(in) :: COEFFICIENT(prim_num) end function qmckl_context_set_ao_basis end interface
- TODO Test
- Source
2.3.3 Precision
The following functions set and get the expected required
precision and range. precision
should be an integer between 2
and 53, and range
should be an integer between 2 and 11.
The setter functions functions return a new context as a 64-bit
integer. The getter functions return the value, as a 32-bit
integer. The update functions return QMCKL_SUCCESS
or
QMCKL_FAILURE
.
qmckl_context_update_precision
Modifies the parameter for the numerical precision in a given context.
qmckl_exit_code qmckl_context_update_precision(const qmckl_context context, const int precision);
- Source
qmckl_exit_code qmckl_context_update_precision(const qmckl_context context, const int precision) { if (precision < 2) return QMCKL_FAILURE; if (precision > 53) return QMCKL_FAILURE; qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; ctx->precision = precision; return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_update_precision(context, precision) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: precision end function qmckl_context_update_precision end interface
- Source
qmckl_context_update_range
Modifies the parameter for the numerical range in a given context.
qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const int range);
- Source
qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const int range) { if (range < 2) return QMCKL_FAILURE; if (range > 11) return QMCKL_FAILURE; qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; ctx->range = range; return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_update_range(context, range) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: range end function qmckl_context_update_range end interface
- Source
qmckl_context_set_precision
Returns a copy of the context with a different precision parameter.
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision);
- Source
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision) { qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return 0; if (qmckl_context_update_precision(context, precision) == QMCKL_FAILURE) return 0; return new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_set_precision(context, precision) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: precision end function qmckl_context_set_precision end interface
- Source
qmckl_context_set_range
Returns a copy of the context with a different precision parameter.
qmckl_context qmckl_context_set_range(const qmckl_context context, const int range);
- Source
qmckl_context qmckl_context_set_range(const qmckl_context context, const int range) { qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return 0; if (qmckl_context_update_range(context, range) == QMCKL_FAILURE) return 0; return new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_set_range(context, range) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: range end function qmckl_context_set_range end interface
- Source
qmckl_context_get_precision
Returns the value of the numerical precision in the context
int32_t qmckl_context_get_precision(const qmckl_context context);
- Source
int qmckl_context_get_precision(const qmckl_context context) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; return ctx->precision; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_get_precision(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_get_precision end interface
- Source
qmckl_context_get_range
Returns the value of the numerical range in the context
int32_t qmckl_context_get_range(const qmckl_context context);
- Source
int qmckl_context_get_range(const qmckl_context context) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; return ctx->range; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_get_range(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_get_range end interface
- Source
qmckl_context_get_epsilon
Returns \(\epsilon = 2^{1-n}\) where
n
is the precisiondouble qmckl_context_get_epsilon(const qmckl_context context);
- Source
double qmckl_context_get_epsilon(const qmckl_context context) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; return pow(2.0,(double) 1-ctx->precision); }
- Fortran interface
interface real (c_double) function qmckl_context_get_epsilon(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_get_epsilon end interface
- Source
2.4 Computation of distances
Function for the computation of distances between particles.
3 files are produced:
- a source file :
qmckl_distance.f90
- a C test file :
test_qmckl_distance.c
- a Fortran test file :
test_qmckl_distance_f.f90
2.4.1 Squared distance
qmckl_distance_sq
Computes the matrix of the squared distances between all pairs of points in two sets, one point within each set: \[ C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2 \]
- Arguments
context
input Global state transa
input Array A
isN
: Normal,T
: Transposedtransb
input Array B
isN
: Normal,T
: Transposedm
input Number of points in the first set n
input Number of points in the second set A(lda,3)
input Array containing the \(m \times 3\) matrix \(A\) lda
input Leading dimension of array A
B(ldb,3)
input Array containing the \(n \times 3\) matrix \(B\) ldb
input Leading dimension of array B
C(ldc,n)
output Array containing the \(m \times n\) matrix \(C\) ldc
input Leading dimension of array C
- Requirements
context
is not 0m
> 0n
> 0lda
>= 3 iftransa
isN
lda
>= m iftransa
isT
ldb
>= 3 iftransb
isN
ldb
>= n iftransb
isT
ldc
>= mA
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(m \times n \times 8\) bytes
- Performance
This function might be more efficient when
A
andB
are transposed.qmckl_exit_code qmckl_distance_sq(const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double *A, const int64_t lda, const double *B, const int64_t ldb, const double *C, const int64_t ldc);
- Source
integer function qmckl_distance_sq_f(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC) result(info) implicit none integer*8 , intent(in) :: context character , intent(in) :: transa, transb integer*8 , intent(in) :: m, n integer*8 , intent(in) :: lda real*8 , intent(in) :: A(lda,*) integer*8 , intent(in) :: ldb real*8 , intent(in) :: B(ldb,*) integer*8 , intent(in) :: ldc real*8 , intent(out) :: C(ldc,*) integer*8 :: i,j real*8 :: x, y, z integer :: transab info = 0 if (context == 0_8) then info = -1 return endif if (m <= 0_8) then info = -2 return endif if (n <= 0_8) then info = -3 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transa == 'T' .or. transa == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = -4 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = -5 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = -6 return endif if (iand(transab,2) == 0 .and. LDA < 3) then info = -6 return endif if (iand(transab,2) == 2 .and. LDA < m) then info = -7 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do end select end function qmckl_distance_sq_f
- Arguments
2.5 Atomic Orbitals
This files contains all the routines for the computation of the values, gradients and Laplacian of the atomic basis functions.
3 files are produced:
- a source file :
qmckl_ao.f90
- a C test file :
test_qmckl_ao.c
- a Fortran test file :
test_qmckl_ao_f.f90
2.5.1 Polynomials
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*} \begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \end{eqnarray*}qmckl_ao_power
Computes all the powers of the
n
input data up to the given maximum value given in input for each of the \(n\) points:\[ P_{ij} = X_j^i \]
- Arguments
context
input Global state n
input Number of values X(n)
input Array containing the input values LMAX(n)
input Array containing the maximum power for each value P(LDP,n)
output Array containing all the powers of X
LDP
input Leading dimension of array P
- Requirements
context
is not 0n
> 0X
is allocated with at least \(n \times 8\) bytesLMAX
is allocated with at least \(n \times 4\) bytesP
is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytesLDP
>= \(\max_i\)LMAX[i]
- Header
qmckl_exit_code qmckl_ao_power(const qmckl_context context, const int64_t n, const double *X, const int32_t *LMAX, const double *P, const int64_t LDP);
- Source
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info) implicit none integer*8 , intent(in) :: context integer*8 , intent(in) :: n real*8 , intent(in) :: X(n) integer , intent(in) :: LMAX(n) real*8 , intent(out) :: P(ldp,n) integer*8 , intent(in) :: ldp integer*8 :: i,j info = 0 if (context == 0_8) then info = -1 return endif if (LDP < MAXVAL(LMAX)) then info = -2 return endif do j=1,n P(1,j) = X(j) do i=2,LMAX(j) P(i,j) = P(i-1,j) * X(j) end do end do end function qmckl_ao_power_f
- Arguments
qmckl_ao_polynomial_vgl
Computes the values, gradients and Laplacians at a given point of all polynomials with an angular momentum up to
lmax
.- Arguments
context
input Global state X(3)
input Array containing the coordinates of the points R(3)
input Array containing the x,y,z coordinates of the center lmax
input Maximum angular momentum n
output Number of computed polynomials L(ldl,n)
output Contains a,b,c for all n
resultsldl
input Leading dimension of L
VGL(ldv,n)
output Value, gradients and Laplacian of the polynomials ldv
input Leading dimension of array VGL
- Requirements
context
is not 0n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least \(3 \times n \times 4\) bytesVGL
is allocated with at least \(5 \times n \times 8\) bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
- On output, the powers are given in the following order (l=a+b+c):
- Increase values of
l
- Within a given value of
l
, alphabetical order of the string made by a*"x" + b*"y" + c*"z" (in Python notation). For example, with a=0, b=2 and c=1 the string is "yyz"
- Increase values of
- Error codes
-1 Null context -2 Inconsistent ldl
-3 Inconsistent ldv
-4 Inconsistent lmax
- Header
qmckl_exit_code qmckl_ao_polynomial_vgl(const qmckl_context context, const double *X, const double *R, const int32_t lmax, const int64_t *n, const int32_t *L, const int64_t ldl, const double *VGL, const int64_t ldv);
- Source
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info) implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer , intent(in) :: lmax integer*8 , intent(out) :: n integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldl real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldv integer*8 :: i,j integer :: a,b,c,d real*8 :: Y(3) integer :: lmax_array(3) real*8 :: pows(-2:lmax,3) integer, external :: qmckl_ao_power_f double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == 0_8) then info = -1 return endif if (ldl < 3) then info = -2 return endif if (ldv < 5) then info = -3 return endif if (lmax <= 0) then info = -4 return endif do i=1,3 Y(i) = X(i) - R(i) end do lmax_array(1:3) = lmax if (lmax == 0) then VGL(1,1) = 1.d0 vgL(2:5,1) = 0.d0 l(1:3,1) = 0 n=1 else if (lmax > 0) then pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do VGL(1:5,1:4) = 0.d0 l(1:3,1:4) = 0 VGL(1,1) = 1.d0 vgl(1:5,2:4) = 0.d0 l(1,2) = 1 vgl(1,2) = pows(1,1) vgL(2,2) = 1.d0 l(2,3) = 1 vgl(1,3) = pows(1,2) vgL(3,3) = 1.d0 l(3,4) = 1 vgl(1,4) = pows(1,3) vgL(4,4) = 1.d0 n=4 endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 l(1,n) = a l(2,n) = b l(3,n) = c xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) vgl(1,n) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz vgl(2,n) = pows(a-1,1) * yz vgl(3,n) = pows(b-1,2) * xz vgl(4,n) = pows(c-1,3) * xy vgl(5,n) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = 0 end function qmckl_ao_polynomial_vgl_f
- Arguments
2.5.2 Gaussian basis functions
qmckl_ao_gaussian_vgl
Computes the values, gradients and Laplacians at a given point of
n
Gaussian functions centered at the same point:\[ v_i = exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
- Arguments
context
input Global state X(3)
input Array containing the coordinates of the points R(3)
input Array containing the x,y,z coordinates of the center n
input Number of computed gaussians A(n)
input Exponents of the Gaussians VGL(ldv,5)
output Value, gradients and Laplacian of the Gaussians ldv
input Leading dimension of array VGL
- Requirements
context
is not 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesA
is allocated with at least \(n \times 8\) bytesVGL
is allocated with at least \(n \times 5 \times 8\) bytes
- Header
qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context, const double *X, const double *R, const int64_t *n, const int64_t *A, const double *VGL, const int64_t ldv);
- Source
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info) implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer*8 , intent(in) :: n real*8 , intent(in) :: A(n) real*8 , intent(out) :: VGL(ldv,5) integer*8 , intent(in) :: ldv integer*8 :: i,j real*8 :: Y(3), r2, t, u, v info = 0 if (context == 0_8) then info = -1 return endif if (n <= 0) then info = -2 return endif if (ldv < n) then info = -3 return endif do i=1,3 Y(i) = X(i) - R(i) end do r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3) do i=1,n VGL(i,1) = dexp(-A(i) * r2) end do do i=1,n VGL(i,5) = A(i) * VGL(i,1) end do t = -2.d0 * ( X(1) - R(1) ) u = -2.d0 * ( X(2) - R(2) ) v = -2.d0 * ( X(3) - R(3) ) do i=1,n VGL(i,2) = t * VGL(i,5) VGL(i,3) = u * VGL(i,5) VGL(i,4) = v * VGL(i,5) end do t = 4.d0 * r2 do i=1,n VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) end do end function qmckl_ao_gaussian_vgl_f
- Arguments
2.5.3 TODO Slater basis functions
3 Acknowledgments
TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union’s Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.