QMCkl source code documentation
Table of Contents
- 1. Introduction
- 2. Documentation
- 3. Acknowledgments
1 Introduction
The ultimate goal of the QMCkl library is to provide a high-performance implementation of the main kernels of QMC. In this particular implementation of the library, we focus on the definition of the API and the tests, and on a pedagogical presentation of the algorithms. We expect the HPC experts to use this repository as a reference for re-writing optimized libraries.
1.1 Literate programming
In a traditional source code, most of the lines of source files of a program are code, scripts, Makefiles, and only a few lines are comments explaining parts of the code that are non-trivial to understand. The documentation of the prorgam is usually written in a separate directory, and is often outdated compared to the code.
Literate programming is a different approach to programming, where the program is considered as a publishable-quality document. Most of the lines of the source files are text, mathematical formulas, tables, figures, etc, and the lines of code are just the translation in a computer language of the ideas and algorithms expressed in the text. More importantly, the "document" is structured like a text document with sections, subsections, a bibliography, a table of contents etc, and the place where pieces of code appear are the places where they should belong for the reader to understand the logic of the program, not the places where the compiler expects to find them. Both the publishable-quality document and the binary executable are produced from the same source files.
Literate programming is particularly well adapted in this context, as the central part of this project is the documentation of an API. The implementation of the algorithms is just an expression of the algorithms in a language that can be compiled, so that the correctness of the algorithms can be tested.
We have chosen to write the source files in org-mode format,
as any text editor can be used to edit org-mode files. To
produce the documentation, there exists multiple possibilities to convert
org-mode files into different formats such as HTML or PDF. The source code is
easily extracted from the org-mode files invoking the Emacs text editor from
the command-line in the Makefile
, and then the produced files are compiled.
Moreover, within the Emacs text editor the source code blocks can be executed
interactively, in the same spirit as Jupyter notebooks.
1.2 Source code editing
For a tutorial on literate programming with org-mode, follow this link.
Any text editor can be used to edit org-mode files. For a better user experience Emacs is recommended. For users hating Emacs, it is good to know that Emacs can behave like Vim when switched into ``Evil'' mode.
In the tools/init.el
file, we provide a minimal Emacs configuration
file for vim users. This file should be copied into .emacs.d/init.el
.
For users with a preference for Jupyter notebooks, we also provide the
tools/nb_to_org.sh
script can convert jupyter notebooks into org-mode
files.
Note that pandoc can be used to convert multiple markdown formats into org-mode.
1.3 Choice of the programming language
Most of the codes of the TREX CoE are written in Fortran with some scripts in Bash and Python. Outside of the CoE, Fortran is also important (Casino, Amolqc), and other important languages used by the community are C and C++ (QMCPack, QWalk), and Julia is gaining in popularity. The library we design should be compatible with all of these languages. The QMCkl API has to be compatible with the C language since libraries with a C-compatible API can be used in every other language.
High-performance versions of the QMCkl, with the same API, will be rewritten by the experts in HPC. These optimized libraries will be tuned for specific architectures, among which we can cite x86 based processors, and GPU accelerators. Nowadays, the most efficient software tools to take advantage of low-level features of the processor (intrinsics) and of GPUs are for C++ developers. It is highly probable that the optimized implementations will be written in C++, and this is agreement with our choice to make the API C-compatible.
Fortran is one of the most common languages used by the community, and is simple enough to make the algorithms readable both by experts in QMC, and experts in HPC. Hence we propose in this pedagogical implementation of QMCkl to use Fortran to express the QMC algorithms. As the main languages of the library is C, this implies that the exposed C functions call the Fortran routine. However, for internal functions related to system programming, the C language is more natural than Fortran.
The Fortran source files should provide a C interface using the
iso_c_binding
module. The name of the Fortran source files should end with
_f.f90
to be properly handled by the Makefile
. The names of the functions
defined in Fortran should be the same as those exposed in the API suffixed by
_f
. Fortran interfaces should also be written in the qmckl_f.f90
file.
For more guidelines on using Fortran to generate a C interface, see this link.
1.4 Design of the library
The proposed API should allow the library to: deal with memory transfers between CPU and accelerators, and to use different levels of floating-point precision. We chose a multi-layered design with low-level and high-level functions (see below).
1.4.1 Naming conventions
To avoid namespace collisions, we use qmckl_
as a prefix for all exported
functions and variables. All exported header files should have a file name
prefixed with qmckl_
.
If the name of the org-mode file is xxx.org
, the name of the
produced C files should be xxx.c
and xxx.h
and the name of the
produced Fortran file should be xxx.f90
.
Arrays are in uppercase and scalars are in lowercase.
In the names of the variables and functions, only the singular form is allowed.
1.4.2 Application programming interface
In the C language, the number of bits used by the integer types can change
from one architecture to another one. To circumvent this problem, we choose to
use the integer types defined in <stdint.h>
where the number of bits used for
the integers are fixed.
To ensure that the library will be easily usable in any other language than C, we restrict the data types in the interfaces to the following:
- 32-bit and 64-bit integers, scalars and and arrays (
int32_t
andint64_t
) - 32-bit and 64-bit floats, scalars and and arrays (
float
anddouble
) - Pointers are always casted into 64-bit integers, even on legacy 32-bit architectures
- ASCII strings are represented as a pointers to character arrays
and terminated by a
'\0'
character (C convention). - Complex numbers can be represented by an array of 2 floats.
- Boolean variables are stored as integers,
1
fortrue
and0
forfalse
- Floating point variables should be by default
double
unless explicitly mentioned- integers used for counting should always be
int64_t
To facilitate the use in other languages than C, we will provide some bindings in other languages in other repositories.
1.4.3 Global state
Global variables should be avoided in the library, because it is
possible that one single program needs to use multiple instances
of the library. To solve this problem we propose to use a pointer
to a context
variable, built by the library with the
qmckl_context_create
function. The context
contains the global
state of the library, and is used as the first argument of many
QMCkl functions.
The internal structure of the context is not specified, to give a
maximum of freedom to the different implementations. Modifying
the state is done by setters and getters, prefixed by
qmckl_context_set_
an qmckl_context_get_
. When a context
variable is modified by a setter, a copy of the old data structure
is made and updated, and the pointer to the new data structure is
returned, such that the old contexts can still be accessed. It is
also possible to modify the state in an impure fashion, using the
qmckl_context_update_
functions. The context and its old
versions can be destroyed with qmckl_context_destroy
.
1.4.4 Low-level functions
Low-level functions are very simple functions which are leaves of the function call tree (they don't call any other QMCkl function).
These functions are pure, and unaware of the QMCkl
context
. They are not allowed to allocate/deallocate memory, and
if they need temporary memory it should be provided in input.
1.4.5 High-level functions
High-level functions are at the top of the function call tree. They are able to choose which lower-level function to call depending on the required precision, and do the corresponding type conversions. These functions are also responsible for allocating temporary storage, to simplify the use of accelerators.
The high-level functions should be pure, unless the introduction
of non-purity is justified. All the side effects should be made in
the context
variable.
1.4.6 Numerical precision
The number of bits of precision required for a function should be
given as an input of low-level computational functions. This input
will be used to define the values of the different thresholds that
might be used to avoid computing unnecessary noise. High-level
functions will use the precision specified in the context
variable.
1.5 Algorithms
Reducing the scaling of an algorithm usually implies also reducing its arithmetic complexity (number of flops per byte). Therefore, for small sizes \(\mathcal{O}(N^3)\) and \(\mathcal{O}(N^2)\) algorithms are better adapted than linear scaling algorithms. As QMCkl is a general purpose library, multiple algorithms should be implemented adapted to different problem sizes.
1.6 Rules for the API
stdint
should be used for integers (int32_t
,int64_t
)- integers used for counting should always be
int64_t
- floats should be by default
double
, unless explicitly mentioned - pointers are converted to
int64_t
to increase portability
2 Documentation
2.1 qmckl.h
header file
The qmckl.h
header file has to be included in C codes when
QMCkl functions are used:
#+BEGINSRC C :tangle none
#include "qmckl.h"
#+ENDSRC f90
In Fortran programs, the qmckl_f.f90
interface file should be
included in the source code using the library, and the Fortran codes
should use the qmckl
module as
#+BEGINSRC f90 :tangle none
use qmckl
#+ENDSRC f90
2.2 Context
This file is written in C because it is more natural to express the context in C than in Fortran.
2 files are produced:
- a source file :
qmckl_context.c
- a test file :
test_qmckl_context.c
2.2.1 Context
The context variable is a handle for the state of the library, and
is stored in the following data structure, which can't be seen
outside of the library. To simplify compatibility with other
languages, the pointer to the internal data structure is converted
into a 64-bit signed integer, defined in the qmckl_context
type.
A value of 0
for the context is equivalent to a NULL
pointer.
typedef int64_t qmckl_context ;
- Data for error handling
We define here the the data structure containing the strings necessary for error handling.
#define QMCKL_MAX_FUN_LEN 256 #define QMCKL_MAX_MSG_LEN 1024 typedef struct qmckl_error_struct { qmckl_exit_code exit_code; char function[QMCKL_MAX_FUN_LEN]; char message [QMCKL_MAX_MSG_LEN]; } qmckl_error_struct;
- Basis set data structure
Data structure for the info related to the atomic orbitals basis set.
typedef struct qmckl_ao_basis_struct { int64_t shell_num; int64_t prim_num; int64_t * shell_center; int32_t * shell_ang_mom; double * shell_factor; double * exponent ; double * coefficient ; int64_t * shell_prim_num; char type; } qmckl_ao_basis_struct;
- Source
The tag is used internally to check if the memory domain pointed by a pointer is a valid context.
typedef struct qmckl_context_struct { struct qmckl_context_struct * prev; /* Molecular system */ // struct qmckl_nucleus_struct * nucleus; // struct qmckl_electron_struct * electron; struct qmckl_ao_basis_struct * ao_basis; // struct qmckl_mo_struct * mo; // struct qmckl_determinant_struct * det; /* Numerical precision */ uint32_t tag; int32_t precision; int32_t range; /* Error handling */ struct qmckl_error_struct * error; } qmckl_context_struct; #define VALID_TAG 0xBEEFFACE #define INVALID_TAG 0xDEADBEEF
- Source
qmckl_context_update_error
qmckl_exit_code qmckl_context_update_error(qmckl_context context, const qmckl_exit_code exit_code, const char* function, const char* message);
- Source
qmckl_exit_code qmckl_context_update_error(qmckl_context context, const qmckl_exit_code exit_code, const char* function, const char* message) { assert (context != 0); assert (function != NULL); assert (message != NULL); assert (exit_code > 0); assert (exit_code < QMCKL_INVALID_EXIT_CODE); qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; if (ctx->error != NULL) { free(ctx->error); ctx->error = NULL; } qmckl_error_struct* error = (qmckl_error_struct*) qmckl_malloc (context, sizeof(qmckl_error_struct)); error->exit_code = exit_code; strcpy(error->function, function); strcpy(error->message, message); ctx->error = error; return QMCKL_SUCCESS; }
- TODO Test
- Source
qmckl_context_set_error
qmckl_context qmckl_context_set_error(qmckl_context context, const qmckl_exit_code exit_code, const char* function, const char* message);
- Source
qmckl_context qmckl_context_set_error(qmckl_context context, const qmckl_exit_code exit_code, const char* function, const char* message) { assert (context != 0); assert (function != NULL); assert (message != NULL); assert (exit_code > 0); assert (exit_code < QMCKL_INVALID_EXIT_CODE); qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return context; if (qmckl_context_update_error(new_context, exit_code, function, message) != QMCKL_SUCCESS) { return context; } return new_context; }
- TODO Test
- Source
qmckl_context_check
qmckl_context_create
To create a new context, use
qmckl_context_create()
.- On success, returns a pointer to a context using the
qmckl_context
type Returns
0
upon failure to allocate the internal data structureqmckl_context qmckl_context_create();
- Source
qmckl_context qmckl_context_create() { qmckl_context_struct* context = (qmckl_context_struct*) qmckl_malloc ((qmckl_context) 0, sizeof(qmckl_context_struct)); if (context == NULL) { return (qmckl_context) 0; } context->prev = NULL; context->ao_basis = NULL; context->precision = QMCKL_DEFAULT_PRECISION; context->range = QMCKL_DEFAULT_RANGE; context->tag = VALID_TAG; context->error = NULL; return (qmckl_context) context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_create() bind(C) use, intrinsic :: iso_c_binding end function qmckl_context_create end interface
- On success, returns a pointer to a context using the
qmckl_context_copy
This function makes a shallow copy of the current context.
- Source
qmckl_context qmckl_context_copy(const qmckl_context context) { const qmckl_context checked_context = qmckl_context_check(context); if (checked_context == (qmckl_context) 0) { return (qmckl_context) 0; } qmckl_context_struct* old_context = (qmckl_context_struct*) checked_context; qmckl_context_struct* new_context = (qmckl_context_struct*) qmckl_malloc (context, sizeof(qmckl_context_struct)); if (new_context == NULL) { return (qmckl_context) 0; } new_context->prev = old_context; new_context->ao_basis = old_context->ao_basis; new_context->precision = old_context->precision; new_context->range = old_context->range; new_context->tag = VALID_TAG; new_context->error = old_context->error; return (qmckl_context) new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_copy(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_copy end interface
- Source
qmckl_context_previous
Returns the previous context
- Source
qmckl_context qmckl_context_previous(const qmckl_context context) { const qmckl_context checked_context = qmckl_context_check(context); if (checked_context == (qmckl_context) 0) { return (qmckl_context) 0; } const qmckl_context_struct* ctx = (qmckl_context_struct*) checked_context; return qmckl_context_check((qmckl_context) ctx->prev); }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_previous(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_previous end interface
- Source
qmckl_context_destroy
Destroys the current context, leaving the ancestors untouched.
- Succeeds if the current context is properly destroyed
- Fails otherwise
- Fails if the 0-valued context is given in argument
- Fails if the the pointer is not a valid context
qmckl_exit_code qmckl_context_destroy(qmckl_context context);
- Source
qmckl_exit_code qmckl_context_destroy(const qmckl_context context) { const qmckl_context checked_context = qmckl_context_check(context); if (checked_context == (qmckl_context) 0) return QMCKL_FAILURE; qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; ctx->tag = INVALID_TAG; return qmckl_free(context,ctx); }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_destroy(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_destroy end interface
- Basis set
For H2 with the following basis set,
HYDROGEN S 5 1 3.387000E+01 6.068000E-03 2 5.095000E+00 4.530800E-02 3 1.159000E+00 2.028220E-01 4 3.258000E-01 5.039030E-01 5 1.027000E-01 3.834210E-01 S 1 1 3.258000E-01 1.000000E+00 S 1 1 1.027000E-01 1.000000E+00 P 1 1 1.407000E+00 1.000000E+00 P 1 1 3.880000E-01 1.000000E+00 D 1 1 1.057000E+00 1.0000000
we have:
type = 'G' shell_num = 12 prim_num = 20 SHELL_CENTER = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2] SHELL_ANG_MOM = ['S', 'S', 'S', 'P', 'P', 'D', 'S', 'S', 'S', 'P', 'P', 'D'] SHELL_PRIM_NUM = [5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1] prim_index = [1, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20] EXPONENT = [ 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057, 33.87, 5.095, 1.159, 0.3258, 0.1027, 0.3258, 0.1027, 1.407, 0.388, 1.057] COEFFICIENT = [ 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0, 0.006068, 0.045308, 0.202822, 0.503903, 0.383421, 1.0, 1.0, 1.0, 1.0, 1.0]
qmckl_context_update_ao_basis
Updates the data describing the AO basis set into the context.
type
Gaussian or Slater shell_num
Number of shells prim_num
Total number of primitives SHELL_CENTER(shell_num)
Id of the nucleus on which the shell is centered SHELL_ANG_MOM(shell_num)
Id of the nucleus on which the shell is centered SHELL_FACTOR(shell_num)
Normalization factor for the shell SHELL_PRIM_NUM(shell_num)
Number of primitives in the shell SHELL_PRIM_INDEX(shell_num)
Address of the first primitive of the shelll in the EXPONENT
arrayEXPONENT(prim_num)
Array of exponents COEFFICIENT(prim_num)
Array of coefficients qmckl_exit_code qmckl_context_update_ao_basis(qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT);
- Source
qmckl_exit_code qmckl_context_update_ao_basis(qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT) { int64_t i; /* Check input */ if (type != 'G' && type != 'S') return QMCKL_FAILURE; if (shell_num <= 0) return QMCKL_FAILURE; if (prim_num <= 0) return QMCKL_FAILURE; if (prim_num < shell_num) return QMCKL_FAILURE; for (i=0 ; i<shell_num ; i++) { if (SHELL_CENTER[i] <= 0) return QMCKL_FAILURE; if (SHELL_PRIM_NUM[i] <= 0) return QMCKL_FAILURE; if (SHELL_ANG_MOM[i] < 0) return QMCKL_FAILURE; if (SHELL_PRIM_INDEX[i] < 0) return QMCKL_FAILURE; } for (i=0 ; i<prim_num ; i++) { if (EXPONENT[i] <= 0) return QMCKL_FAILURE; } qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; qmckl_ao_basis_struct* basis = (qmckl_ao_basis_struct*) malloc (sizeof(qmckl_ao_basis_struct)); if (basis == NULL) return QMCKL_FAILURE; /* Memory allocations */ basis->shell_center = (int64_t*) malloc (shell_num * sizeof(int64_t)); if (basis->shell_center == NULL) { qmckl_free(context, basis); return QMCKL_FAILURE; } basis->shell_ang_mom = (int32_t*) malloc (shell_num * sizeof(int32_t)); if (basis->shell_ang_mom == NULL) { qmckl_free(context, basis->shell_center); qmckl_free(context, basis); return QMCKL_FAILURE; } basis->shell_prim_num= (int64_t*) malloc (shell_num * sizeof(int64_t)); if (basis->shell_prim_num == NULL) { qmckl_free(context, basis->shell_ang_mom); qmckl_free(context, basis->shell_center); qmckl_free(context, basis); return QMCKL_FAILURE; } basis->shell_factor = (double *) malloc (shell_num * sizeof(double )); if (basis->shell_factor == NULL) { qmckl_free(context, basis->shell_prim_num); qmckl_free(context, basis->shell_ang_mom); qmckl_free(context, basis->shell_center); qmckl_free(context, basis); return QMCKL_FAILURE; } basis->exponent = (double *) malloc (prim_num * sizeof(double )); if (basis->exponent == NULL) { qmckl_free(context, basis->shell_factor); qmckl_free(context, basis->shell_prim_num); qmckl_free(context, basis->shell_ang_mom); qmckl_free(context, basis->shell_center); qmckl_free(context, basis); return QMCKL_FAILURE; } basis->coefficient = (double *) malloc (prim_num * sizeof(double )); if (basis->coefficient == NULL) { qmckl_free(context, basis->exponent); qmckl_free(context, basis->shell_factor); qmckl_free(context, basis->shell_prim_num); qmckl_free(context, basis->shell_ang_mom); qmckl_free(context, basis->shell_center); qmckl_free(context, basis); return QMCKL_FAILURE; } /* Assign data */ basis->type = type; basis->shell_num = shell_num; basis->prim_num = prim_num; for (i=0 ; i<shell_num ; i++) { basis->shell_center [i] = SHELL_CENTER [i]; basis->shell_ang_mom [i] = SHELL_ANG_MOM [i]; basis->shell_prim_num[i] = SHELL_PRIM_NUM[i]; basis->shell_factor [i] = SHELL_FACTOR [i]; } for (i=0 ; i<prim_num ; i++) { basis->exponent [i] = EXPONENT[i]; basis->coefficient[i] = COEFFICIENT[i]; } ctx->ao_basis = basis; return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_update_ao_basis(context, & typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, & SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context character(c_char) , intent(in), value :: typ integer (c_int64_t), intent(in), value :: shell_num integer (c_int64_t), intent(in), value :: prim_num integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num) integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num) double precision , intent(in) :: SHELL_FACTOR(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num) double precision , intent(in) :: EXPONENT(prim_num) double precision , intent(in) :: COEFFICIENT(prim_num) end function qmckl_context_update_ao_basis end interface
- TODO Test
- Source
qmckl_context_set_ao_basis
Sets the data describing the AO basis set into the context.
type
Gaussian or Slater shell_num
Number of shells prim_num
Total number of primitives SHELL_CENTER(shell_num)
Id of the nucleus on which the shell is centered SHELL_ANG_MOM(shell_num)
Id of the nucleus on which the shell is centered SHELL_FACTOR(shell_num)
Normalization factor for the shell SHELL_PRIM_NUM(shell_num)
Number of primitives in the shell SHELL_PRIM_INDEX(shell_num)
Address of the first primitive of the shelll in the EXPONENT
arrayEXPONENT(prim_num)
Array of exponents COEFFICIENT(prim_num)
Array of coefficients qmckl_context qmckl_context_set_ao_basis(const qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT);
- Source
qmckl_context qmckl_context_set_ao_basis(const qmckl_context context , const char type, const int64_t shell_num , const int64_t prim_num, const int64_t * SHELL_CENTER, const int32_t * SHELL_ANG_MOM, const double * SHELL_FACTOR, const int64_t * SHELL_PRIM_NUM, const int64_t * SHELL_PRIM_INDEX, const double * EXPONENT , const double * COEFFICIENT) { qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return 0; if (qmckl_context_update_ao_basis(new_context, type, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT ) == QMCKL_FAILURE) return 0; return new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_set_ao_basis(context, & typ, shell_num, prim_num, SHELL_CENTER, SHELL_ANG_MOM, SHELL_FACTOR, & SHELL_PRIM_NUM, SHELL_PRIM_INDEX, EXPONENT, COEFFICIENT) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context character(c_char) , intent(in), value :: typ integer (c_int64_t), intent(in), value :: shell_num integer (c_int64_t), intent(in), value :: prim_num integer (c_int64_t), intent(in) :: SHELL_CENTER(shell_num) integer (c_int32_t), intent(in) :: SHELL_ANG_MOM(shell_num) double precision , intent(in) :: SHELL_FACTOR(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_NUM(shell_num) integer (c_int64_t), intent(in) :: SHELL_PRIM_INDEX(shell_num) double precision , intent(in) :: EXPONENT(prim_num) double precision , intent(in) :: COEFFICIENT(prim_num) end function qmckl_context_set_ao_basis end interface
- TODO Test
- Source
- Precision
The following functions set and get the expected required precision and range.
precision
should be an integer between 2 and 53, andrange
should be an integer between 2 and 11.The setter functions functions return a new context as a 64-bit integer. The getter functions return the value, as a 32-bit integer. The update functions return
QMCKL_SUCCESS
orQMCKL_FAILURE
. qmckl_context_update_precision
Modifies the parameter for the numerical precision in a given context.
qmckl_exit_code qmckl_context_update_precision(const qmckl_context context, const int precision);
- Source
qmckl_exit_code qmckl_context_update_precision(const qmckl_context context, const int precision) { if (precision < 2) return QMCKL_FAILURE; if (precision > 53) return QMCKL_FAILURE; qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; ctx->precision = precision; return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_update_precision(context, precision) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: precision end function qmckl_context_update_precision end interface
- Source
qmckl_context_update_range
Modifies the parameter for the numerical range in a given context.
qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const int range);
- Source
qmckl_exit_code qmckl_context_update_range(const qmckl_context context, const int range) { if (range < 2) return QMCKL_FAILURE; if (range > 11) return QMCKL_FAILURE; qmckl_context_struct* ctx = (qmckl_context_struct*) context; if (ctx == NULL) return QMCKL_FAILURE; ctx->range = range; return QMCKL_SUCCESS; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_update_range(context, range) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: range end function qmckl_context_update_range end interface
- Source
qmckl_context_set_precision
Returns a copy of the context with a different precision parameter.
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision);
- Source
qmckl_context qmckl_context_set_precision(const qmckl_context context, const int precision) { qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return 0; if (qmckl_context_update_precision(new_context, precision) == QMCKL_FAILURE) return 0; return new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_set_precision(context, precision) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: precision end function qmckl_context_set_precision end interface
- Source
qmckl_context_set_range
Returns a copy of the context with a different precision parameter.
qmckl_context qmckl_context_set_range(const qmckl_context context, const int range);
- Source
qmckl_context qmckl_context_set_range(const qmckl_context context, const int range) { qmckl_context new_context = qmckl_context_copy(context); if (new_context == 0) return 0; if (qmckl_context_update_range(new_context, range) == QMCKL_FAILURE) return 0; return new_context; }
- Fortran interface
interface integer (c_int64_t) function qmckl_context_set_range(context, range) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int32_t), intent(in), value :: range end function qmckl_context_set_range end interface
- Source
qmckl_context_get_precision
Returns the value of the numerical precision in the context
int32_t qmckl_context_get_precision(const qmckl_context context);
- Source
int qmckl_context_get_precision(const qmckl_context context) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; return ctx->precision; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_get_precision(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_get_precision end interface
- Source
qmckl_context_get_range
Returns the value of the numerical range in the context
int32_t qmckl_context_get_range(const qmckl_context context);
- Source
int qmckl_context_get_range(const qmckl_context context) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; return ctx->range; }
- Fortran interface
interface integer (c_int32_t) function qmckl_context_get_range(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_get_range end interface
- Source
qmckl_context_get_epsilon
Returns \(\epsilon = 2^{1-n}\) where
n
is the precisiondouble qmckl_context_get_epsilon(const qmckl_context context);
- Source
double qmckl_context_get_epsilon(const qmckl_context context) { const qmckl_context_struct* ctx = (qmckl_context_struct*) context; return pow(2.0,(double) 1-ctx->precision); }
- Fortran interface
interface real (c_double) function qmckl_context_get_epsilon(context) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context end function qmckl_context_get_epsilon end interface
- Source
2.3 Error handling
This file is written in C because it is more natural to express the error handling in C than in Fortran.
2 files are produced:
- a source file :
qmckl_error.c
- a test file :
test_qmckl_error.c
2.3.1 Error handling
The library should never make the calling programs abort, nor perform any input/output operations. This decision has to be taken by the developer of the code calling the library.
All the functions return with an exit code, defined as
typedef int32_t qmckl_exit_code;
The exit code returns the completion status of the function to the
calling program. When a function call completed successfully, the
QMCKL_SUCCESS
exit code is returned. If one of the functions of
the library fails to complete the requested task, an appropriate
error code is returned to the program.
Here is the complete list of exit codes.
QMCKL_SUCCESS |
0 |
QMCKL_INVALID_ARG_1 |
1 |
QMCKL_INVALID_ARG_2 |
2 |
QMCKL_INVALID_ARG_3 |
3 |
QMCKL_INVALID_ARG_4 |
4 |
QMCKL_INVALID_ARG_5 |
5 |
QMCKL_INVALID_ARG_6 |
6 |
QMCKL_INVALID_ARG_7 |
7 |
QMCKL_INVALID_ARG_8 |
8 |
QMCKL_INVALID_ARG_9 |
9 |
QMCKL_INVALID_ARG_10 |
10 |
QMCKL_NULL_CONTEXT |
101 |
QMCKL_FAILURE |
102 |
QMCKL_ERRNO |
103 |
QMCKL_INVALID_EXIT_CODE |
104 |
""" This script generates the C and Fortran constants for the error codes from the org-mode table. """ result = [ "#+BEGIN_SRC C :comments org :tangle qmckl.h" ] for (text, code) in table: text=text.replace("~","") result += [ f"#define {text:30s} {code:d}" ] result += [ "#+END_SRC" ] result += [ "" ] result += [ "#+BEGIN_SRC f90 :comments org :tangle qmckl_f.f90" ] for (text, code) in table: text=text.replace("~","") result += [ f" integer, parameter :: {text:30s} = {code:d}" ] result += [ "#+END_SRC" ] return '\n'.join(result)
#define QMCKL_SUCCESS 0 #define QMCKL_INVALID_ARG_1 1 #define QMCKL_INVALID_ARG_2 2 #define QMCKL_INVALID_ARG_3 3 #define QMCKL_INVALID_ARG_4 4 #define QMCKL_INVALID_ARG_5 5 #define QMCKL_INVALID_ARG_6 6 #define QMCKL_INVALID_ARG_7 7 #define QMCKL_INVALID_ARG_8 8 #define QMCKL_INVALID_ARG_9 9 #define QMCKL_INVALID_ARG_10 10 #define QMCKL_NULL_CONTEXT 101 #define QMCKL_FAILURE 102 #define QMCKL_ERRNO 103 #define QMCKL_INVALID_EXIT_CODE 104
integer, parameter :: QMCKL_SUCCESS = 0 integer, parameter :: QMCKL_INVALID_ARG_1 = 1 integer, parameter :: QMCKL_INVALID_ARG_2 = 2 integer, parameter :: QMCKL_INVALID_ARG_3 = 3 integer, parameter :: QMCKL_INVALID_ARG_4 = 4 integer, parameter :: QMCKL_INVALID_ARG_5 = 5 integer, parameter :: QMCKL_INVALID_ARG_6 = 6 integer, parameter :: QMCKL_INVALID_ARG_7 = 7 integer, parameter :: QMCKL_INVALID_ARG_8 = 8 integer, parameter :: QMCKL_INVALID_ARG_9 = 9 integer, parameter :: QMCKL_INVALID_ARG_10 = 10 integer, parameter :: QMCKL_NULL_CONTEXT = 101 integer, parameter :: QMCKL_FAILURE = 102 integer, parameter :: QMCKL_ERRNO = 103 integer, parameter :: QMCKL_INVALID_EXIT_CODE = 104
To make a function fail, the qmckl_failwith
function should be
called, such that information about the failure is stored in
the context. The desired exit code is given as an argument, as
well as the name of the function and an error message. The return
code of the function is the desired return code.
qmckl_exit_code qmckl_failwith(qmckl_context context, const qmckl_exit_code exit_code, const char* function, const char* message) ;
qmckl_exit_code qmckl_failwith(qmckl_context context, const qmckl_exit_code exit_code, const char* function, const char* message) { if (context == 0) return QMCKL_NULL_CONTEXT; assert (exit_code > 0); assert (exit_code < QMCKL_INVALID_EXIT_CODE); assert (function != NULL); assert (message != NULL); assert (strlen(function) < QMCKL_MAX_FUN_LEN); assert (strlen(message) < QMCKL_MAX_MSG_LEN); context = qmckl_context_set_error(context, exit_code, function, message); return exit_code; }
For example, this function can be used as
if (x < 0) { return qmckl_failwith(context, QMCKL_INVALID_ARG_2, "qmckl_function", "Expected x >= 0"); }
2.3.2 Multi-precision related constants
Controlling numerical precision enables optimizations. Here, the default parameters determining the target numerical precision and range are defined.
#define QMCKL_DEFAULT_PRECISION 53 #define QMCKL_DEFAULT_RANGE 11
integer, parameter :: QMCKL_DEFAULT_PRECISION = 53 integer, parameter :: QMCKL_DEFAULT_RANGE = 11
2.4 Memory management
We override the allocation functions to enable the possibility of optimized libraries to fine-tune the memory allocation.
2 files are produced:
- a source file :
qmckl_memory.c
- a test file :
test_qmckl_memory.c
2.4.1 qmckl_malloc
Memory allocation function, letting the library choose how the memory will be allocated, and a pointer is returned to the user. The context is passed to let the library store data related to the allocation inside the context.
void* qmckl_malloc(const qmckl_context ctx, const size_t size);
interface type (c_ptr) function qmckl_malloc (context, size) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context integer (c_int64_t), intent(in), value :: size end function qmckl_malloc end interface
2.4.2 qmckl_free
The context is passed, in case some important information has been stored related to memory allocation and needs to be updated.
qmckl_exit_code qmckl_free(qmckl_context context, void *ptr);
interface integer (c_int32_t) function qmckl_free (context, ptr) bind(C) use, intrinsic :: iso_c_binding integer (c_int64_t), intent(in), value :: context type (c_ptr), intent(in), value :: ptr end function qmckl_free end interface
2.5 Computation of distances
Function for the computation of distances between particles.
3 files are produced:
2.5.1 Squared distance
qmckl_distance_sq
Computes the matrix of the squared distances between all pairs of points in two sets, one point within each set: \[ C_{ij} = \sum_{k=1}^3 (A_{k,i}-B_{k,j})^2 \]
- Arguments
context
input Global state transa
input Array A
isN
: Normal,T
: Transposedtransb
input Array B
isN
: Normal,T
: Transposedm
input Number of points in the first set n
input Number of points in the second set A(lda,3)
input Array containing the \(m \times 3\) matrix \(A\) lda
input Leading dimension of array A
B(ldb,3)
input Array containing the \(n \times 3\) matrix \(B\) ldb
input Leading dimension of array B
C(ldc,n)
output Array containing the \(m \times n\) matrix \(C\) ldc
input Leading dimension of array C
- Requirements
context
is not 0m
> 0n
> 0lda
>= 3 iftransa
isN
lda
>= m iftransa
isT
ldb
>= 3 iftransb
isN
ldb
>= n iftransb
isT
ldc
>= mA
is allocated with at least \(3 \times m \times 8\) bytesB
is allocated with at least \(3 \times n \times 8\) bytesC
is allocated with at least \(m \times n \times 8\) bytes
- Performance
This function might be more efficient when
A
andB
are transposed.qmckl_exit_code qmckl_distance_sq(const qmckl_context context, const char transa, const char transb, const int64_t m, const int64_t n, const double *A, const int64_t lda, const double *B, const int64_t ldb, const double *C, const int64_t ldc);
- Source
integer function qmckl_distance_sq_f(context, transa, transb, m, n, A, LDA, B, LDB, C, LDC) result(info) implicit none integer*8 , intent(in) :: context character , intent(in) :: transa, transb integer*8 , intent(in) :: m, n integer*8 , intent(in) :: lda real*8 , intent(in) :: A(lda,*) integer*8 , intent(in) :: ldb real*8 , intent(in) :: B(ldb,*) integer*8 , intent(in) :: ldc real*8 , intent(out) :: C(ldc,*) integer*8 :: i,j real*8 :: x, y, z integer :: transab info = 0 if (context == 0_8) then info = -1 return endif if (m <= 0_8) then info = -2 return endif if (n <= 0_8) then info = -3 return endif if (transa == 'N' .or. transa == 'n') then transab = 0 else if (transa == 'T' .or. transa == 't') then transab = 1 else transab = -100 endif if (transb == 'N' .or. transb == 'n') then continue else if (transa == 'T' .or. transa == 't') then transab = transab + 2 else transab = -100 endif if (transab < 0) then info = -4 return endif if (iand(transab,1) == 0 .and. LDA < 3) then info = -5 return endif if (iand(transab,1) == 1 .and. LDA < m) then info = -6 return endif if (iand(transab,2) == 0 .and. LDA < 3) then info = -6 return endif if (iand(transab,2) == 2 .and. LDA < m) then info = -7 return endif select case (transab) case(0) do j=1,n do i=1,m x = A(1,i) - B(1,j) y = A(2,i) - B(2,j) z = A(3,i) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(1) do j=1,n do i=1,m x = A(i,1) - B(1,j) y = A(i,2) - B(2,j) z = A(i,3) - B(3,j) C(i,j) = x*x + y*y + z*z end do end do case(2) do j=1,n do i=1,m x = A(1,i) - B(j,1) y = A(2,i) - B(j,2) z = A(3,i) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do case(3) do j=1,n do i=1,m x = A(i,1) - B(j,1) y = A(i,2) - B(j,2) z = A(i,3) - B(j,3) C(i,j) = x*x + y*y + z*z end do end do end select end function qmckl_distance_sq_f
- Arguments
2.6 Atomic Orbitals
This files contains all the routines for the computation of the values, gradients and Laplacian of the atomic basis functions.
3 files are produced:
2.6.1 Polynomials
\[ P_l(\mathbf{r},\mathbf{R}_i) = (x-X_i)^a (y-Y_i)^b (z-Z_i)^c \]
\begin{eqnarray*} \frac{\partial }{\partial x} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & a (x-X_i)^{a-1} (y-Y_i)^b (z-Z_i)^c \\ \frac{\partial }{\partial y} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & b (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c \\ \frac{\partial }{\partial z} P_l\left(\mathbf{r},\mathbf{R}_i \right) & = & c (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \\ \end{eqnarray*} \begin{eqnarray*} \left( \frac{\partial }{\partial x^2} + \frac{\partial }{\partial y^2} + \frac{\partial }{\partial z^2} \right) P_l \left(\mathbf{r},\mathbf{R}_i \right) & = & a(a-1) (x-X_i)^{a-2} (y-Y_i)^b (z-Z_i)^c + \\ && b(b-1) (x-X_i)^a (y-Y_i)^{b-1} (z-Z_i)^c + \\ && c(c-1) (x-X_i)^a (y-Y_i)^b (z-Z_i)^{c-1} \end{eqnarray*}qmckl_ao_power
Computes all the powers of the
n
input data up to the given maximum value given in input for each of the \(n\) points:\[ P_{ij} = X_j^i \]
- Arguments
context
input Global state n
input Number of values X(n)
input Array containing the input values LMAX(n)
input Array containing the maximum power for each value P(LDP,n)
output Array containing all the powers of X
LDP
input Leading dimension of array P
- Requirements
context
is not 0n
> 0X
is allocated with at least \(n \times 8\) bytesLMAX
is allocated with at least \(n \times 4\) bytesP
is allocated with at least \(n \times \max_i \text{LMAX}_i \times 8\) bytesLDP
>= \(\max_i\)LMAX[i]
- Header
qmckl_exit_code qmckl_ao_power(const qmckl_context context, const int64_t n, const double *X, const int32_t *LMAX, const double *P, const int64_t LDP);
- Source
integer function qmckl_ao_power_f(context, n, X, LMAX, P, ldp) result(info) implicit none integer*8 , intent(in) :: context integer*8 , intent(in) :: n real*8 , intent(in) :: X(n) integer , intent(in) :: LMAX(n) real*8 , intent(out) :: P(ldp,n) integer*8 , intent(in) :: ldp integer*8 :: i,j info = 0 if (context == 0_8) then info = -1 return endif if (LDP < MAXVAL(LMAX)) then info = -2 return endif do j=1,n P(1,j) = X(j) do i=2,LMAX(j) P(i,j) = P(i-1,j) * X(j) end do end do end function qmckl_ao_power_f
- Arguments
qmckl_ao_polynomial_vgl
Computes the values, gradients and Laplacians at a given point of all polynomials with an angular momentum up to
lmax
.- Arguments
context
input Global state X(3)
input Array containing the coordinates of the points R(3)
input Array containing the x,y,z coordinates of the center lmax
input Maximum angular momentum n
output Number of computed polynomials L(ldl,n)
output Contains a,b,c for all n
resultsldl
input Leading dimension of L
VGL(ldv,n)
output Value, gradients and Laplacian of the polynomials ldv
input Leading dimension of array VGL
- Requirements
context
is not 0n
> 0lmax
>= 0ldl
>= 3ldv
>= 5X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesn
>=(lmax+1)(lmax+2)(lmax+3)/6
L
is allocated with at least \(3 \times n \times 4\) bytesVGL
is allocated with at least \(5 \times n \times 8\) bytes- On output,
n
should be equal to(lmax+1)(lmax+2)(lmax+3)/6
- On output, the powers are given in the following order (l=a+b+c):
- Error codes
-1 Null context -2 Inconsistent ldl
-3 Inconsistent ldv
-4 Inconsistent lmax
- Header
qmckl_exit_code qmckl_ao_polynomial_vgl(const qmckl_context context, const double *X, const double *R, const int32_t lmax, const int64_t *n, const int32_t *L, const int64_t ldl, const double *VGL, const int64_t ldv);
- Source
integer function qmckl_ao_polynomial_vgl_f(context, X, R, lmax, n, L, ldl, VGL, ldv) result(info) implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer , intent(in) :: lmax integer*8 , intent(out) :: n integer , intent(out) :: L(ldl,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldl real*8 , intent(out) :: VGL(ldv,(lmax+1)*(lmax+2)*(lmax+3)/6) integer*8 , intent(in) :: ldv integer*8 :: i,j integer :: a,b,c,d real*8 :: Y(3) integer :: lmax_array(3) real*8 :: pows(-2:lmax,3) integer, external :: qmckl_ao_power_f double precision :: xy, yz, xz double precision :: da, db, dc, dd info = 0 if (context == 0_8) then info = -1 return endif if (ldl < 3) then info = -2 return endif if (ldv < 5) then info = -3 return endif if (lmax <= 0) then info = -4 return endif do i=1,3 Y(i) = X(i) - R(i) end do lmax_array(1:3) = lmax if (lmax == 0) then VGL(1,1) = 1.d0 vgL(2:5,1) = 0.d0 l(1:3,1) = 0 n=1 else if (lmax > 0) then pows(-2:0,1:3) = 1.d0 do i=1,lmax pows(i,1) = pows(i-1,1) * Y(1) pows(i,2) = pows(i-1,2) * Y(2) pows(i,3) = pows(i-1,3) * Y(3) end do VGL(1:5,1:4) = 0.d0 l(1:3,1:4) = 0 VGL(1,1) = 1.d0 vgl(1:5,2:4) = 0.d0 l(1,2) = 1 vgl(1,2) = pows(1,1) vgL(2,2) = 1.d0 l(2,3) = 1 vgl(1,3) = pows(1,2) vgL(3,3) = 1.d0 l(3,4) = 1 vgl(1,4) = pows(1,3) vgL(4,4) = 1.d0 n=4 endif ! l>=2 dd = 2.d0 do d=2,lmax da = dd do a=d,0,-1 db = dd-da do b=d-a,0,-1 c = d - a - b dc = dd - da - db n = n+1 l(1,n) = a l(2,n) = b l(3,n) = c xy = pows(a,1) * pows(b,2) yz = pows(b,2) * pows(c,3) xz = pows(a,1) * pows(c,3) vgl(1,n) = xy * pows(c,3) xy = dc * xy xz = db * xz yz = da * yz vgl(2,n) = pows(a-1,1) * yz vgl(3,n) = pows(b-1,2) * xz vgl(4,n) = pows(c-1,3) * xy vgl(5,n) = & (da-1.d0) * pows(a-2,1) * yz + & (db-1.d0) * pows(b-2,2) * xz + & (dc-1.d0) * pows(c-2,3) * xy db = db - 1.d0 end do da = da - 1.d0 end do dd = dd + 1.d0 end do info = 0 end function qmckl_ao_polynomial_vgl_f
- Arguments
2.6.2 Gaussian basis functions
qmckl_ao_gaussian_vgl
Computes the values, gradients and Laplacians at a given point of
n
Gaussian functions centered at the same point:\[ v_i = \exp(-a_i |X-R|^2) \] \[ \nabla_x v_i = -2 a_i (X_x - R_x) v_i \] \[ \nabla_y v_i = -2 a_i (X_y - R_y) v_i \] \[ \nabla_z v_i = -2 a_i (X_z - R_z) v_i \] \[ \Delta v_i = a_i (4 |X-R|^2 a_i - 6) v_i \]
- Arguments
context
input Global state X(3)
input Array containing the coordinates of the points R(3)
input Array containing the x,y,z coordinates of the center n
input Number of computed gaussians A(n)
input Exponents of the Gaussians VGL(ldv,5)
output Value, gradients and Laplacian of the Gaussians ldv
input Leading dimension of array VGL
- Requirements
context
is not 0n
> 0ldv
>= 5A(i)
> 0 for alli
X
is allocated with at least \(3 \times 8\) bytesR
is allocated with at least \(3 \times 8\) bytesA
is allocated with at least \(n \times 8\) bytesVGL
is allocated with at least \(n \times 5 \times 8\) bytes
- Header
qmckl_exit_code qmckl_ao_gaussian_vgl(const qmckl_context context, const double *X, const double *R, const int64_t *n, const int64_t *A, const double *VGL, const int64_t ldv);
- Source
integer function qmckl_ao_gaussian_vgl_f(context, X, R, n, A, VGL, ldv) result(info) implicit none integer*8 , intent(in) :: context real*8 , intent(in) :: X(3), R(3) integer*8 , intent(in) :: n real*8 , intent(in) :: A(n) real*8 , intent(out) :: VGL(ldv,5) integer*8 , intent(in) :: ldv integer*8 :: i,j real*8 :: Y(3), r2, t, u, v info = 0 if (context == 0_8) then info = -1 return endif if (n <= 0) then info = -2 return endif if (ldv < n) then info = -3 return endif do i=1,3 Y(i) = X(i) - R(i) end do r2 = Y(1)*Y(1) + Y(2)*Y(2) + Y(3)*Y(3) do i=1,n VGL(i,1) = dexp(-A(i) * r2) end do do i=1,n VGL(i,5) = A(i) * VGL(i,1) end do t = -2.d0 * ( X(1) - R(1) ) u = -2.d0 * ( X(2) - R(2) ) v = -2.d0 * ( X(3) - R(3) ) do i=1,n VGL(i,2) = t * VGL(i,5) VGL(i,3) = u * VGL(i,5) VGL(i,4) = v * VGL(i,5) end do t = 4.d0 * r2 do i=1,n VGL(i,5) = (t * A(i) - 6.d0) * VGL(i,5) end do end function qmckl_ao_gaussian_vgl_f
- Arguments
2.6.3 TODO Slater basis functions
3 Acknowledgments
TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union’s Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.