UP | HOME

Electrons

Table of Contents

1 Context

The following data stored in the context:

Variable Type Description
uninitialized int32_t Keeps bit set for uninitialized data
num int64_t Total number of electrons
up_num int64_t Number of up-spin electrons
down_num int64_t Number of down-spin electrons
walk_num int64_t Number of walkers
rescale_factor_kappa_ee double The distance scaling factor
rescale_factor_kappa_en double The distance scaling factor
provided bool If true, electron is valid
coord_new double[walk_num][3][num] New set of electron coordinates
coord_old double[walk_num][3][num] Old set of electron coordinates
coord_new_date uint64_t Last modification date of the coordinates

Computed data:

Variable Type Description
ee_distance double[walk_num][num][num] Electron-electron distances
ee_distance_date uint64_t Last modification date of the electron-electron distances
en_distance double[walk_num][nucl_num][num] Electron-nucleus distances
en_distance_date uint64_t Last modification date of the electron-electron distances
ee_distance_rescaled double[walk_num][num][num] Electron-electron rescaled distances
ee_distance_rescaled_date uint64_t Last modification date of the electron-electron distances
ee_distance_rescaled_deriv_e double[walk_num][4][num][num] Electron-electron rescaled distances derivatives
ee_distance_rescaled_deriv_e_date uint64_t Last modification date of the electron-electron distance derivatives
ee_pot double[walk_num] Electron-electron rescaled distances derivatives
ee_pot_date uint64_t Last modification date of the electron-electron distance derivatives
en_pot double[walknum] Electron-nucleus potential energy
en_pot_date int64t Date when the electron-nucleus potential energy was computed
en_distance_rescaled double[walk_num][nucl_num][num] Electron-nucleus distances
en_distance_rescaled_date uint64_t Last modification date of the electron-electron distances
en_distance_rescaled_deriv_e double[walk_num][4][nucl_num][num] Electron-electron rescaled distances derivatives
en_distance_rescaled_deriv_e_date uint64_t Last modification date of the electron-electron distance derivatives

1.1 Data structure

typedef struct qmckl_electron_struct {
  int64_t   num;
  int64_t   up_num;
  int64_t   down_num;
  int64_t   walk_num;
  double    rescale_factor_kappa_ee;
  double    rescale_factor_kappa_en;
  int64_t   coord_new_date;
  int64_t   ee_distance_date;
  int64_t   en_distance_date;
  int64_t   ee_pot_date;
  int64_t   en_pot_date;
  int64_t   ee_distance_rescaled_date;
  int64_t   ee_distance_rescaled_deriv_e_date;
  int64_t   en_distance_rescaled_date;
  int64_t   en_distance_rescaled_deriv_e_date;
  double*   coord_new;
  double*   coord_old;
  double*   ee_distance;
  double*   en_distance;
  double*   ee_pot;
  double*   en_pot;
  double*   ee_distance_rescaled;
  double*   ee_distance_rescaled_deriv_e;
  double*   en_distance_rescaled;
  double*   en_distance_rescaled_deriv_e;
  int32_t   uninitialized;
  bool      provided;
} qmckl_electron_struct;

The uninitialized integer contains one bit set to one for each initialization function which has not been called. It becomes equal to zero after all initialization functions have been called. The struct is then initialized and provided == true. Some values are initialized by default, and are not concerned by this mechanism.

qmckl_exit_code qmckl_init_electron(qmckl_context context);
qmckl_exit_code qmckl_init_electron(qmckl_context context) {

  if (qmckl_context_check(context) == QMCKL_NULL_CONTEXT) {
    return false;
  }

  qmckl_context_struct* const ctx = (qmckl_context_struct* const) context;
  assert (ctx != NULL);

  ctx->electron.uninitialized = (1 << 2) - 1;

  /* Default values */
  ctx->electron.rescale_factor_kappa_ee = 1.0;
  ctx->electron.rescale_factor_kappa_en = 1.0;

  return QMCKL_SUCCESS;
}
bool qmckl_electron_provided (const qmckl_context context);

1.2 Access functions

Access functions return QMCKL_SUCCESS when the data has been successfully retrieved. It returnes QMCKL_INVALID_CONTEXT when the context is not a valid context, and QMCKL_NOT_PROVIDED when the data has not been provided. If the function returns successfully, the variable pointed by the pointer given in argument contains the requested data. Otherwise, this variable is untouched.

1.2.1 Number of electrons

1.2.2 Number of walkers

A walker is a set of electron coordinates that are arguments of the wave function. walk_num is the number of walkers.

1.2.3 Scaling factors Kappa

1.2.4 Electron coordinates

Returns the current electron coordinates. The pointer is assumed to point on a memory block of size size_max3 * elec_num * walk_num. The order of the indices is:

  Normal Transposed
C [walk_num][elec_num][3] [walk_num][3][elec_num]
Fortran (3,elec_num,walk_num) (elec_num,3,walk_num)

1.3 Initialization functions

To set the data relative to the electrons in the context, the following functions need to be called. When the data structure is initialized, the internal coord_new and coord_old arrays are both allocated.

qmckl_exit_code qmckl_set_electron_num      (qmckl_context context, const int64_t up_num, const int64_t down_num);
qmckl_exit_code qmckl_set_electron_walk_num (qmckl_context context, const int64_t walk_num);
qmckl_exit_code qmckl_set_electron_coord    (qmckl_context context, const char transp, const double* coord, const int64_t size_max);

qmckl_exit_code qmckl_set_electron_rescale_factor_ee (qmckl_context context, const double kappa_ee);
qmckl_exit_code qmckl_set_electron_rescale_factor_en (qmckl_context context, const double kappa_en);

To set the number of electrons, we give the number of up-spin and down-spin electrons to the context and we set the number of walkers.

The following function sets the number of walkers.

Next we set the rescale parameter for the rescaled distance metric.

interface
  integer(c_int32_t) function qmckl_set_electron_num(context, alpha, beta) bind(C)
    use, intrinsic :: iso_c_binding
    import
    implicit none

    integer (c_int64_t) , intent(in)  , value :: context                                  
    integer (c_int64_t) , intent(in)  , value :: alpha
    integer (c_int64_t) , intent(in)  , value :: beta 
  end function
end interface
interface
  integer(c_int32_t) function qmckl_set_electron_walk_num(context, walk_num) bind(C)
    use, intrinsic :: iso_c_binding
    import
    implicit none

    integer (c_int64_t) , intent(in)  , value :: context                                  
    integer (c_int64_t) , intent(in)  , value :: walk_num
  end function
end interface

The following function sets the electron coordinates of all the walkers. When this is done, the pointers to the old and new sets of coordinates are swapped, and the new coordinates are overwritten. This can be done only when the data relative to electrons have been set.

Important: changing the electron coordinates increments the date in the context.

interface
  integer(c_int32_t) function qmckl_set_electron_coord(context, transp, coord, size_max) bind(C)
    use, intrinsic :: iso_c_binding
    import
    implicit none

    integer (c_int64_t) , intent(in)  , value :: context                                  
    character           , intent(in)  , value :: transp 
    double precision    , intent(in)          :: coord(*)
    integer (c_int64_t) , intent(in)  , value :: size_max
  end function
end interface

1.4 Test

/* Reference input data */
int64_t walk_num      = chbrclf_walk_num;
int64_t elec_num      = chbrclf_elec_num;
int64_t elec_up_num   = chbrclf_elec_up_num;
int64_t elec_dn_num   = chbrclf_elec_dn_num;
double  rescale_factor_kappa_ee   = 1.0;
double  rescale_factor_kappa_en   = 1.0;
double  nucl_rescale_factor_kappa = 1.0;
double* elec_coord    = &(chbrclf_elec_coord[0][0][0]);

int64_t  nucl_num      = chbrclf_nucl_num;
double*  charge        = chbrclf_charge;
double*  nucl_coord    = &(chbrclf_nucl_coord[0][0]);

/* --- */

qmckl_exit_code rc;

assert(!qmckl_electron_provided(context));

int64_t n;
rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);

rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);

rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_NOT_PROVIDED);


rc = qmckl_set_electron_num (context, elec_up_num, elec_dn_num);
assert(rc == QMCKL_SUCCESS);
assert(!qmckl_electron_provided(context));

rc = qmckl_get_electron_up_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_up_num);

rc = qmckl_get_electron_down_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_dn_num);

rc = qmckl_get_electron_num (context, &n);
assert(rc == QMCKL_SUCCESS);
assert(n == elec_num);

double k_ee = 0.;
double k_en = 0.;
rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == 1.0);

rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == 1.0);

rc = qmckl_set_electron_rescale_factor_en(context, rescale_factor_kappa_en);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_electron_rescale_factor_ee(context, rescale_factor_kappa_ee);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_get_electron_rescale_factor_ee (context, &k_ee);
assert(rc == QMCKL_SUCCESS);
assert(k_ee == rescale_factor_kappa_ee);

rc = qmckl_get_electron_rescale_factor_en (context, &k_en);
assert(rc == QMCKL_SUCCESS);
assert(k_en == rescale_factor_kappa_en);


int64_t w;
rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_NOT_PROVIDED);


rc = qmckl_set_electron_walk_num (context, walk_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_get_electron_walk_num (context, &w);
assert(rc == QMCKL_SUCCESS);
assert(w == walk_num);

assert(qmckl_electron_provided(context));

rc = qmckl_set_electron_coord (context, 'N', elec_coord, walk_num*elec_num*3);
assert(rc == QMCKL_SUCCESS);

double elec_coord2[walk_num*3*elec_num];

rc = qmckl_get_electron_coord (context, 'N', elec_coord2);
assert(rc == QMCKL_SUCCESS);
for (int64_t i=0 ; i<3*elec_num ; ++i) {
  assert( elec_coord[i] == elec_coord2[i] );
 }

2 Computation

The computed data is stored in the context so that it can be reused by different kernels. To ensure that the data is valid, for each computed data the date of the context is stored when it is computed. To know if some data needs to be recomputed, we check if the date of the dependencies are more recent than the date of the data to compute. If it is the case, then the data is recomputed and the current date is stored.

2.1 Electron-electron distances

2.1.1 Get

qmckl_exit_code qmckl_get_electron_ee_distance(qmckl_context context, double* const distance);

2.1.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
walk_num int64_t in Number of walkers
coord double[walk_num][3][elec_num] in Electron coordinates
ee_distance double[walk_num][elec_num][elec_num] out Electron-electron distances
integer function qmckl_compute_ee_distance_f(context, elec_num, walk_num, coord, ee_distance) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: coord(elec_num,3,walk_num)
  double precision      , intent(out) :: ee_distance(elec_num,elec_num,walk_num)

  integer*8 :: k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  do k=1,walk_num
     info = qmckl_distance(context, 'T', 'T', elec_num, elec_num, &
          coord(1,1,k), elec_num, &
          coord(1,1,k), elec_num, &
          ee_distance(1,1,k), elec_num)
     if (info /= QMCKL_SUCCESS) then
        exit
     endif
  end do

end function qmckl_compute_ee_distance_f

2.1.3 Test

assert(qmckl_electron_provided(context));


double ee_distance[walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance(context, ee_distance);

// (e1,e2,w)
// (0,0,0) == 0.
assert(ee_distance[0] == 0.);

// (1,0,0) == (0,1,0)
assert(ee_distance[1] == ee_distance[elec_num]);

// value of (1,0,0)
assert(fabs(ee_distance[1]-7.152322512964209) < 1.e-12);

// (0,0,1) == 0.
assert(ee_distance[elec_num*elec_num] == 0.);

// (1,0,1) == (0,1,1)
assert(ee_distance[elec_num*elec_num+1] == ee_distance[elec_num*elec_num+elec_num]);

// value of (1,0,1)
assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12);

2.2 Electron-electron rescaled distances

ee_distance_rescaled stores the matrix of the rescaled distances between all pairs of electrons:

\[ C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa \]

where \(C_{ij}\) is the matrix of electron-electron distances.

2.2.1 Get

qmckl_exit_code qmckl_get_electron_ee_distance_rescaled(qmckl_context context, double* const distance_rescaled);

2.2.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
rescale_factor_kappa_ee double in Factor to rescale ee distances
walk_num int64_t in Number of walkers
coord double[walk_num][3][elec_num] in Electron coordinates
ee_distance double[walk_num][elec_num][elec_num] out Electron-electron rescaled distances
integer function qmckl_compute_ee_distance_rescaled_f(context, elec_num, rescale_factor_kappa_ee, walk_num, &
     coord, ee_distance_rescaled) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  double precision      , intent(in)  :: rescale_factor_kappa_ee
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: coord(elec_num,3,walk_num)
  double precision      , intent(out) :: ee_distance_rescaled(elec_num,elec_num,walk_num)

  integer*8 :: k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  do k=1,walk_num
     info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, elec_num, &
          coord(1,1,k), elec_num, &
          coord(1,1,k), elec_num, &
          ee_distance_rescaled(1,1,k), elec_num, rescale_factor_kappa_ee)
     if (info /= QMCKL_SUCCESS) then
        exit
     endif
  end do

end function qmckl_compute_ee_distance_rescaled_f

2.2.3 Test

assert(qmckl_electron_provided(context));


double ee_distance_rescaled[walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance_rescaled(context, ee_distance_rescaled);

// (e1,e2,w)
// (0,0,0) == 0.
assert(ee_distance_rescaled[0] == 0.);

// (1,0,0) == (0,1,0)
assert(ee_distance_rescaled[1] == ee_distance_rescaled[elec_num]);

// value of (1,0,0)
assert(fabs(ee_distance_rescaled[1]-0.9992169566605263) < 1.e-12);

// (0,0,1) == 0.
assert(ee_distance_rescaled[elec_num*elec_num] == 0.);

// (1,0,1) == (0,1,1)
assert(ee_distance_rescaled[elec_num*elec_num+1] == ee_distance_rescaled[elec_num*elec_num+elec_num]);

// value of (1,0,1)
assert(fabs(ee_distance_rescaled[elec_num*elec_num+1]-0.9985724058042633) < 1.e-12);

2.3 Electron-electron rescaled distance gradients and laplacian with respect to electron coords

The rescaled distances which is given as \(R = (1 - \exp{-\kappa r})/\kappa\) needs to be perturbed with respect to the electorn coordinates. This data is stored in the ee_distance_rescaled_deriv_e tensor. The The first three elements of this three index tensor [4][num][num] gives the derivatives in the x, y, and z directions \(dx, dy, dz\) and the last index gives the Laplacian \(\partial x^2 + \partial y^2 + \partial z^2\).

2.3.1 Get

qmckl_exit_code qmckl_get_electron_ee_distance_rescaled_deriv_e(qmckl_context context, double* const distance_rescaled_deriv_e);

2.3.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
rescale_factor_kappa_ee double in Factor to rescale ee distances
walk_num int64_t in Number of walkers
coord double[walk_num][3][elec_num] in Electron coordinates
ee_distance_deriv_e double[walk_num][4][elec_num][elec_num] out Electron-electron rescaled distance derivatives
integer function qmckl_compute_ee_distance_rescaled_deriv_e_f(context, elec_num, rescale_factor_kappa_ee, walk_num, &
     coord, ee_distance_rescaled_deriv_e) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  double precision      , intent(in)  :: rescale_factor_kappa_ee
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: coord(elec_num,3,walk_num)
  double precision      , intent(out) :: ee_distance_rescaled_deriv_e(4,elec_num,elec_num,walk_num)

  integer*8 :: k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  do k=1,walk_num
     info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, elec_num, &
          coord(1,1,k), elec_num, &
          coord(1,1,k), elec_num, &
          ee_distance_rescaled_deriv_e(1,1,1,k), elec_num, rescale_factor_kappa_ee)
     if (info /= QMCKL_SUCCESS) then
        exit
     endif
  end do

end function qmckl_compute_ee_distance_rescaled_deriv_e_f

2.3.3 Test

assert(qmckl_electron_provided(context));


double ee_distance_rescaled_deriv_e[4 * walk_num * elec_num * elec_num];
rc = qmckl_get_electron_ee_distance_rescaled_deriv_e(context, ee_distance_rescaled_deriv_e);

// TODO: Get exact values
//// (e1,e2,w)
//// (0,0,0) == 0.
//assert(ee_distance[0] == 0.);
//
//// (1,0,0) == (0,1,0)
//assert(ee_distance[1] == ee_distance[elec_num]);
//
//// value of (1,0,0)
//assert(fabs(ee_distance[1]-7.152322512964209) < 1.e-12);
//
//// (0,0,1) == 0.
//assert(ee_distance[elec_num*elec_num] == 0.);
//
//// (1,0,1) == (0,1,1)
//assert(ee_distance[elec_num*elec_num+1] == ee_distance[elec_num*elec_num+elec_num]);
//
//// value of (1,0,1)
//assert(fabs(ee_distance[elec_num*elec_num+1]-6.5517646321055665) < 1.e-12);

2.4 Electron-electron potential

ee_pot calculates the ee potential energy.

\[ \mathcal{V}_{ee} = \sum_{i=1}^{N_e}\sum_{j>i}^{N_e}\frac{1}{r_{ij}} \]

where \(\mathcal{V}_{ee}\) is the ee potential and \[r_{ij}\] the ee distance.

2.4.1 Get

qmckl_exit_code qmckl_get_electron_ee_potential(qmckl_context context, double* const ee_pot);

2.4.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
walk_num int64_t in Number of walkers
ee_distance double[walk_num][elec_num][elec_num] in Electron-electron rescaled distances
ee_pot double[walk_num] out Electron-electron potential
integer function qmckl_compute_ee_potential_f(context, elec_num, walk_num, &
     ee_distance, ee_pot) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: ee_distance(elec_num,elec_num,walk_num)
  double precision      , intent(out) :: ee_pot(walk_num)

  integer*8 :: nw, i, j

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  ee_pot = 0.0d0
  do nw=1,walk_num
    do j=2,elec_num
      do i=1,j-1
        if (dabs(ee_distance(i,j,nw)) > 1e-5) then
          ee_pot(nw) = ee_pot(nw) + 1.0d0/(ee_distance(i,j,nw))
        endif
      end do
    end do
  end do

end function qmckl_compute_ee_potential_f
qmckl_exit_code qmckl_compute_ee_potential (
      const qmckl_context context,
      const int64_t elec_num,
      const int64_t walk_num,
      const double* ee_distance,
      double* const ee_pot ); 

2.4.3 Test

double ee_pot[walk_num];

rc = qmckl_get_electron_ee_potential(context, &(ee_pot[0]));
assert (rc == QMCKL_SUCCESS);

2.5 Electron-nucleus distances

2.5.1 Get

qmckl_exit_code qmckl_get_electron_en_distance(qmckl_context context, double* distance);

2.5.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
nucl_num int64_t in Number of nuclei
walk_num int64_t in Number of walkers
elec_coord double[walk_num][3][elec_num] in Electron coordinates
nucl_coord double[3][elec_num] in Nuclear coordinates
en_distance double[walk_num][nucl_num][elec_num] out Electron-nucleus distances
integer function qmckl_compute_en_distance_f(context, elec_num, nucl_num, walk_num, elec_coord, nucl_coord, en_distance) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: nucl_num
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: elec_coord(elec_num,3,walk_num)
  double precision      , intent(in)  :: nucl_coord(nucl_num,3)
  double precision      , intent(out) :: en_distance(elec_num,nucl_num,walk_num)

  integer*8 :: k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (nucl_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_4
     return
  endif

  do k=1,walk_num
     info = qmckl_distance(context, 'T', 'T', elec_num, nucl_num, &
          elec_coord(1,1,k), elec_num, &
          nucl_coord, nucl_num, &
          en_distance(1,1,k), elec_num)
     if (info /= QMCKL_SUCCESS) then
        exit
     endif
  end do

end function qmckl_compute_en_distance_f

2.5.3 Test

assert(!qmckl_nucleus_provided(context));
assert(qmckl_electron_provided(context));

rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_charge (context, charge);
assert (rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord);
assert (rc == QMCKL_SUCCESS);

assert(qmckl_nucleus_provided(context));

double en_distance[walk_num][nucl_num][elec_num];

rc = qmckl_get_electron_en_distance(context, &(en_distance[0][0][0]));
assert (rc == QMCKL_SUCCESS);

// (e,n,w) in Fortran notation
// (1,1,1)
assert(fabs(en_distance[0][0][0] - 7.546738741619978) < 1.e-12);

// (1,2,1)
assert(fabs(en_distance[0][1][0] - 8.77102435246984) < 1.e-12);

// (2,1,1)
assert(fabs(en_distance[0][0][1] - 3.698922010513608) < 1.e-12);

// (1,1,2)
assert(fabs(en_distance[1][0][0] - 5.824059436060509) < 1.e-12);

// (1,2,2)
assert(fabs(en_distance[1][1][0] - 7.080482110317645) < 1.e-12);

// (2,1,2)
assert(fabs(en_distance[1][0][1] - 3.1804527583077356) < 1.e-12);

2.6 Electron-nucleus rescaled distances

en_distance_rescaled stores the matrix of the rescaled distances between electrons and nuclei.

\[ C_{ij} = \left( 1 - \exp{-\kappa C_{ij}}\right)/\kappa \]

where \(C_{ij}\) is the matrix of electron-nucleus distances.

2.6.1 Get

qmckl_exit_code qmckl_get_electron_en_distance_rescaled(qmckl_context context, double* distance_rescaled);

2.6.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
nucl_num int64_t in Number of nuclei
rescale_factor_kappa_en double in The factor for rescaled distances
walk_num int64_t in Number of walkers
elec_coord double[walk_num][3][elec_num] in Electron coordinates
nucl_coord double[3][elec_num] in Nuclear coordinates
en_distance_rescaled double[walk_num][nucl_num][elec_num] out Electron-nucleus distances
integer function qmckl_compute_en_distance_rescaled_f(context, elec_num, nucl_num, rescale_factor_kappa_en, walk_num, elec_coord, &
     nucl_coord, en_distance_rescaled) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: nucl_num
  double precision      , intent(in)  :: rescale_factor_kappa_en
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: elec_coord(elec_num,3,walk_num)
  double precision      , intent(in)  :: nucl_coord(nucl_num,3)
  double precision      , intent(out) :: en_distance_rescaled(elec_num,nucl_num,walk_num)

  integer*8 :: k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (nucl_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  ! TODO: comparison with 0
  !if (rescale_factor_kappa_en <= 0) then
  !   info = QMCKL_INVALID_ARG_4
  !   return
  !endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_5
     return
  endif

  do k=1,walk_num
     info = qmckl_distance_rescaled(context, 'T', 'T', elec_num, nucl_num, &
          elec_coord(1,1,k), elec_num, &
          nucl_coord, nucl_num, &
          en_distance_rescaled(1,1,k), elec_num, rescale_factor_kappa_en)
     if (info /= QMCKL_SUCCESS) then
        exit
     endif
  end do

end function qmckl_compute_en_distance_rescaled_f

2.6.3 Test

assert(qmckl_electron_provided(context));

rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_charge (context, charge);
assert (rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord);
assert (rc == QMCKL_SUCCESS);

assert(qmckl_nucleus_provided(context));

double en_distance_rescaled[walk_num][nucl_num][elec_num];

rc = qmckl_get_electron_en_distance_rescaled(context, &(en_distance_rescaled[0][0][0]));

assert (rc == QMCKL_SUCCESS);

// (e,n,w) in Fortran notation
// (1,1,1)
assert(fabs(en_distance_rescaled[0][0][0] - 0.9994721712909764) < 1.e-12);

// (1,2,1)
assert(fabs(en_distance_rescaled[0][1][0] - 0.9998448354439821) < 1.e-12);

// (2,1,1)
assert(fabs(en_distance_rescaled[0][0][1] - 0.9752498074577688) < 1.e-12);

// (1,1,2)
assert(fabs(en_distance_rescaled[1][0][0] - 0.9970444172399963) < 1.e-12);

// (1,2,2)
assert(fabs(en_distance_rescaled[1][1][0] - 0.9991586325813303) < 1.e-12);

// (2,1,2)
assert(fabs(en_distance_rescaled[1][0][1] - 0.9584331688679852) < 1.e-12);

2.7 Electron-nucleus rescaled distance gradients and laplacian with respect to electron coords

The rescaled distances which is given as \(R = (1 - \exp{-\kappa r})/\kappa\) needs to be perturbed with respect to the nuclear coordinates. This data is stored in the en_distance_rescaled_deriv_e tensor. The The first three elements of this three index tensor [4][nucl_num][elec_num] gives the derivatives in the x, y, and z directions \(dx, dy, dz\) and the last index gives the Laplacian \(\partial x^2 + \partial y^2 + \partial z^2\).

2.7.1 Get

qmckl_exit_code qmckl_get_electron_en_distance_rescaled_deriv_e(qmckl_context context, double* distance_rescaled_deriv_e);

2.7.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
nucl_num int64_t in Number of nuclei
rescale_factor_kappa_en double in The factor for rescaled distances
walk_num int64_t in Number of walkers
elec_coord double[walk_num][3][elec_num] in Electron coordinates
nucl_coord double[3][elec_num] in Nuclear coordinates
en_distance_rescaled_deriv_e double[walk_num][4][nucl_num][elec_num] out Electron-nucleus distance derivatives
integer function qmckl_compute_en_distance_rescaled_deriv_e_f(context, elec_num, nucl_num, &
     rescale_factor_kappa_en, walk_num, elec_coord, &
     nucl_coord, en_distance_rescaled_deriv_e) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: nucl_num
  double precision      , intent(in)  :: rescale_factor_kappa_en
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: elec_coord(elec_num,3,walk_num)
  double precision      , intent(in)  :: nucl_coord(nucl_num,3)
  double precision      , intent(out) :: en_distance_rescaled_deriv_e(elec_num,nucl_num,walk_num)

  integer*8 :: k

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (nucl_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  ! TODO: comparison with 0
  !if (rescale_factor_kappa_en <= 0) then
  !   info = QMCKL_INVALID_ARG_4
  !   return
  !endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_5
     return
  endif

  do k=1,walk_num
     info = qmckl_distance_rescaled_deriv_e(context, 'T', 'T', elec_num, nucl_num, &
          elec_coord(1,1,k), elec_num, &
          nucl_coord, nucl_num, &
          en_distance_rescaled_deriv_e(1,1,k), elec_num, rescale_factor_kappa_en)
     if (info /= QMCKL_SUCCESS) then
        exit
     endif
  end do

end function qmckl_compute_en_distance_rescaled_deriv_e_f

2.7.3 Test

assert(qmckl_electron_provided(context));

rc = qmckl_set_nucleus_num (context, nucl_num);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_rescale_factor (context, nucl_rescale_factor_kappa);
assert(rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_charge (context, charge);
assert (rc == QMCKL_SUCCESS);

rc = qmckl_set_nucleus_coord (context, 'T', nucl_coord);
assert (rc == QMCKL_SUCCESS);

assert(qmckl_nucleus_provided(context));

double en_distance_rescaled_deriv_e[walk_num][4][nucl_num][elec_num];

rc = qmckl_get_electron_en_distance_rescaled_deriv_e(context, &(en_distance_rescaled_deriv_e[0][0][0][0]));

assert (rc == QMCKL_SUCCESS);

// TODO: check exact values
//// (e,n,w) in Fortran notation
//// (1,1,1)
//assert(fabs(en_distance_rescaled[0][0][0] - 7.546738741619978) < 1.e-12);
//
//// (1,2,1)
//assert(fabs(en_distance_rescaled[0][1][0] - 8.77102435246984) < 1.e-12);
//
//// (2,1,1)
//assert(fabs(en_distance_rescaled[0][0][1] - 3.698922010513608) < 1.e-12);
//
//// (1,1,2)
//assert(fabs(en_distance_rescaled[1][0][0] - 5.824059436060509) < 1.e-12);
//
//// (1,2,2)
//assert(fabs(en_distance_rescaled[1][1][0] - 7.080482110317645) < 1.e-12);
//
//// (2,1,2)
//assert(fabs(en_distance_rescaled[1][0][1] - 3.1804527583077356) < 1.e-12);

2.8 Electron-nucleus potential

en_potential stores the en potential energy

\[ \mathcal{V}_{en} = -\sum_{i=1}^{N_e}\sum_{A=1}^{N_n}\frac{Z_A}{r_{iA}} \]

where \(\mathcal{V}_{en}\) is the en potential, \[r_{iA}\] the en distance and \[Z_A\] is the nuclear charge.

2.8.1 Get

qmckl_exit_code qmckl_get_electron_en_potential(qmckl_context context, double* const en_pot);

2.8.2 Compute

Variable Type In/Out Description
context qmckl_context in Global state
elec_num int64_t in Number of electrons
nucl_num int64_t in Number of nuclei
walk_num int64_t in Number of walkers
charge double[nucl_num] in charge of nucleus
en_distance double[walk_num][nucl_num][elec_num] in Electron-electron rescaled distances
en_pot double[walk_num] out Electron-electron potential
integer function qmckl_compute_en_potential_f(context, elec_num, nucl_num, walk_num, &
     charge, en_distance, en_pot) &
     result(info)
  use qmckl
  implicit none
  integer(qmckl_context), intent(in)  :: context
  integer*8             , intent(in)  :: elec_num
  integer*8             , intent(in)  :: nucl_num
  integer*8             , intent(in)  :: walk_num
  double precision      , intent(in)  :: charge(nucl_num)
  double precision      , intent(in)  :: en_distance(elec_num,nucl_num,walk_num)
  double precision      , intent(out) :: en_pot(walk_num)

  integer*8 :: nw, i, j

  info = QMCKL_SUCCESS

  if (context == QMCKL_NULL_CONTEXT) then
     info = QMCKL_INVALID_CONTEXT
     return
  endif

  if (elec_num <= 0) then
     info = QMCKL_INVALID_ARG_2
     return
  endif

  if (walk_num <= 0) then
     info = QMCKL_INVALID_ARG_3
     return
  endif

  en_pot = 0.0d0
  do nw=1,walk_num
    do j=1,nucl_num
      do i=1,elec_num
        if (dabs(en_distance(i,j,nw)) > 1e-5) then
          en_pot(nw) = en_pot(nw) - charge(j)/(en_distance(i,j,nw))
        endif
      end do
    end do
  end do

end function qmckl_compute_en_potential_f
qmckl_exit_code qmckl_compute_en_potential (
      const qmckl_context context,
      const int64_t elec_num,
      const int64_t nucl_num,
      const int64_t walk_num,
      const double* charge,
      const double* en_distance,
      double* const en_pot ); 

2.8.3 Test

double en_pot[walk_num];

rc = qmckl_get_electron_en_potential(context, &(en_pot[0]));
assert (rc == QMCKL_SUCCESS);

2.9 Generate initial coordinates

Author: TREX CoE

Created: 2022-01-17 Mon 15:13

Validate